CS260391B1 - Molybdenum ion catalyzed aldose epimerization agent - Google Patents

Molybdenum ion catalyzed aldose epimerization agent Download PDF

Info

Publication number
CS260391B1
CS260391B1 CS874632A CS463287A CS260391B1 CS 260391 B1 CS260391 B1 CS 260391B1 CS 874632 A CS874632 A CS 874632A CS 463287 A CS463287 A CS 463287A CS 260391 B1 CS260391 B1 CS 260391B1
Authority
CS
Czechoslovakia
Prior art keywords
aldoses
catalyzed
epimerization
molybdenum
aldose
Prior art date
Application number
CS874632A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS463287A1 (en
Inventor
Vojtech Bilik
Igor Knezek
Original Assignee
Vojtech Bilik
Igor Knezek
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vojtech Bilik, Igor Knezek filed Critical Vojtech Bilik
Priority to CS874632A priority Critical patent/CS260391B1/en
Publication of CS463287A1 publication Critical patent/CS463287A1/en
Publication of CS260391B1 publication Critical patent/CS260391B1/en

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

ÚČelom prostriedku na inhibíciu epimerizácie aldóz katalyzovanej molybdénanovými iónmi je zlepšenie spósobov přípravy aldóz reakciami katalyzovanými molybdénanovými iónmi, t. j. zjednodušenie a zhospodárnenie týchto spósobov příprav. Uvedený účel sa dosiahne přidáváním kyseliny citrónové) do reakčných roztokov aldóz s molybdénanovými iónmi alebo reakčných zmesi derivátov aldóz s molybdénanovými iónmi, aby aldózy nemohli epimerizovať. Prostriedok na inhibíciu epimerizácie katalyzovanej molybdénanovými iónmi má použitie v organlckej chémii.The purpose of the composition for inhibiting the epimerization of aldoses catalyzed by molybdate ions is to improve the methods of preparing aldoses by reactions catalyzed by molybdate ions, i.e. to simplify and economize these methods of preparation. The stated purpose is achieved by adding citric acid) to the reaction solutions of aldoses with molybdate ions or reaction mixtures of aldose derivatives with molybdate ions, so that the aldoses cannot epimerize. The composition for inhibiting the epimerization catalyzed by molybdate ions has applications in organic chemistry.

Description

260391260391

Vynález sa týká prostriedku na ínliibíciuepimerizácie aldóz katalyzovanej ínolybdé-nanovými iónmi.The present invention relates to a composition for the inhibition of the dimerization of aldoses catalyzed by the aminobutane ions.

Aldózy sa v slabo kyslých vodných roz-tokoch za přítomnosti molybdénanových ió-nov epimerizujú a vytvárajú rovnovážnuzmes C — 2-epimárnych aldóz [V. Bílik: Chem.listy 77, 496 (1983)]. Molybdénanové iónyako katalytická zložka sa využívajú tiež přistereoselektívnej hydroxylácii glykalov naodpovedajúce aldózy s cis-usporiadaním hyd-roxylových skupin na atome uhlíka C — 2 aC-3 [V. Bílik: Chem. Zvěsti 26, 76 (1972)],oxidačnom rozklade 1-deoxy-l-nitroaldito-lov na odpovedajúce aldózy [V. Bílik: Coll.Czechoslov. Chem. Commun. 39, 1 621 (1974)] a oxidačnom odbúravaní fenylhyd-razónov aldóz na odpovedajúce aldózy o je-den atom uhlíka nižšie [V. Bílik. P. Biely,M. Matulová: Chem. Zvěsti 33, 782 (1979)].Aldoses are epimerized in weak acidic aqueous solutions in the presence of molybdenum ions to form C-2-epimeric aldoses [V. Bílik: Chem. Lists 77, 496 (1983)]. The molybdenum ionic catalyst component is also utilized by the re-stereoselective hydroxylation of glycals corresponding to aldoses with the cis-arrangement of hydroxyl groups on the carbon atom C-2 and C-3 [V. Bilik: Chem. Rumors 26, 76 (1972)], by oxidative decomposition of 1-deoxy-1-nitroaldito to the corresponding aldoses [V. Bilik: Coll.Czechoslov. Chem. Commun. 39, 1621 (1974)] and the oxidative degradation of phenylhydrazones of aldoses to the corresponding aldoses by a day carbon atom [V. Bílik. P. Biely, M .; Matul: Chem. Rumors 33, 782 (1979)].

Epimerizačná reakcia katalyzovaná mo-lybdénanovými iónmi je reakcia vratná. Pre-to třeba, aby pri izolácii aldóz získaných re-akciami katalyzovanými molybdénanovýmiiónmi molybdénanové ióny neboli přítom-né. Známe sú sposoby odstraňovania mo-lybdénanových iónov na anexoch, ktorýchnevýhody sú velké zriedenie roztokov al-dóz a velká spotřeba energie na zahustenietýchto roztokov. Úplná inhibícia epimerizač-nej reakcie katalyzovanej molybdénanovýmiiónmi nebola doteraz známa.The polybenzene ion catalyzed epimerization reaction is reversible. Thus, when isolating the aldoses obtained by the reaction-catalyzed molybdenum ionic moieties, molybdenum ions are not present. There are known methods for removing polybenzene ions on anion exchangers, the disadvantages of which are the large dilution of the solution solutions and the high energy consumption of the thickened solutions. The complete inhibition of the epimerizing reaction catalyzed by molybdenum aniones has not been known to date.

Podstata vynálezu spočívá v použití ky-seliny citrónovej ako prostriedku na inhi-bíciu epimerizácie aldóz katalyzovanej mo-lybdénanovými iónmi. Výhodou navrhovaného prostriedku na in-hibíciu epimerizácie aldóz katalyzovanejmolybdénanovými iónmi je že netřeba mo-lybdénanové ióny odstraňovat, najčastejšieanexami, s následným zhušťováním rozto-kov, čím sa ušetří na mzdách, materiáloch,energií a v podstatnej miere ušetří použitieniektorých zriadení odpariek, kolon. Příklad 1 V 100 ml vody sa rozpustí 29,7 g (0,15molu) monohydrátu D-glukózy, 0,37 g (3.. 10“4 mólov tetrahydrátu heptamolybdéna-nu hexaamonného (t. j. 2,1.10~3 mólov mo-lvbdénu v oxidačnom stupni VI), 3,09 g(1,47 . 10”2 mólov) monohydrátu kyselinycitrónovej (mólový poměr kyseliny citróno-vej k molybdénu v oxidačnom stupni VI je7:1). Roztok sa doplní vodou na 150 ml ob-jem a zahrieva pri teplote 90 °C po dobu 3hodin. Do vychladnutého roztoku sa přidá50 ml 96 %-ného hmot. etanolu a 16,2 ml(0,165 molu) fenylhydrazínu. Roztok sa ne-chá stát pri teplote 23 °C po dobu 20 h.Odfiltruje sa 0,1 g fenylhydrazónu D-manó-zy, čo představuje výťažok D-manózy 0,3 °/o,vzťahujúci sa na východiskovú D-glukózu. Příklad 2SUMMARY OF THE INVENTION The present invention is based on the use of citric acid as an agent for inhibiting the epimerization of aldoses catalyzed by polybenzene ions. The advantage of the proposed composition for inhibiting the epimerization of aldoses by catalyzed molybdenum ions is that it is not necessary to remove the polybenzene ions, most frequently by extinguishing them, followed by densification of the solution, thus saving on wages, materials, energy and substantially saving the use of evaporator, column installations. EXAMPLE 1 29.7 g (0.15 mol) of D-glucose monohydrate, 0.37 g (3.times.10@-4 moles of heptamolybdenum hexahydrate (i.e., 2.1 .mu.l of 3 mol of molybdenum) are dissolved in 100 ml of water. 3.09 g (1.47, 10 2 moles) of citric acid monohydrate (molar ratio of citric acid to molybdenum in oxidation stage VI is 7: 1), and make up to 150 ml with water. and heated at 90 ° C for 3 hours, 50 mL of 96% ethanol and 16.2 mL (0.165 mol) of phenylhydrazine are added to the cooled solution, and the solution is left to stand at 23 ° C for 20 h. 0.1 g of the phenylhydrazone D-mannose, which is a D-mannose yield of 0.3%, based on the starting D-glucose.

Postupuje sa ako v příklade 1 s tým roz- dielom, že sa rozpustí 0,44 g (2,1 .10 3 mó-lov) monohydrátu kyseliny citrónovej (molo-vý poměr kyseliny citrónovej k molybdénuv oxidačnom stupni VI je 1 : 1). Odfiltrujesa 9,4 g fenylhydrazónu D-manózy, čo před-stavuje výťažok D-manózy 23,3 °/o, vzťahu-júci sa na východiskovú D-glukózu. Příklad 3 V 20 ml vody sa rozpustí 3 g (2.10 3mólov) L-arabinózy, 49,4 mg (4. 10'5 mó-lov) tetrahydrátu heptamolybdénanu hexa-amonného (t. j. 2,8 . ΙΟ"'· mólov molybde-nu v oxidačnom stupni VI), 0,59 g (2,8.10 3mólov) monohydrátu kyseliny citrónovej(mólový poměr kyseliny citrónovej k mo-lybdénu v oxidačnom stupni VI je 10 : 1).Zmes sa zahrieva pri teplote 100 °C po dobu5 h. Inhibícia epimerizácie L-arabinózy sazisťuje papierovou chromatografiou (What-man Nol) s použitím elučného systému Δ:acetonu, 1-butanolu a vody v objemovompomere 7 : 2: : 1 a elučného systému B: 1--butanolu, etanolu a vody 5 : 1 : 4, s dobouprietoku elučných systémov 18 až 20 h anasledujúcou detekciou s aniliniumhydro-génftalátom. Chromatografický záznam do-kazuje přítomnost L-arabinózy a v stopovommnožstve přítomnost L-ribózy. Pohyblivostvzťahujúca sa na D-glukózu 1,00 je pre L--arabinózu v elučnom systéme A: 1,41 a vB: 1,30 a pre L-ribózu v elučnom svstémeA: 2,13 a v B: 1.90. Příklad 4The procedure is as in Example 1, except that 0.44 g (2.1.10 3 mol) of citric acid monohydrate is dissolved (1: 1 molar ratio of citric acid to molybdenum in oxidation stage VI) . 9.4 g of D-mannose phenylhydrazone are filtered off, which represents a 23.3% yield of D-mannose relative to the starting D-glucose. Example 3 Dissolve 3 g (2.10 3 mol) of L-arabinose, 49.4 mg (4.10'5 mol) of hexa-ammonium heptamolybdate tetrahydrate (ie 2.8. Moles of molybdenum) in 20 ml of water. 0.59 g (2.8 x 10 3 mol) of citric acid monohydrate (molar ratio of citric acid to molybdenum in oxidation stage VI is 10: 1). The mixture was heated at 100 ° C for 5 h. Inhibition of L-arabinose epimerization by paper chromatography (What-man Nol) using an elution system of,: acetone, 1-butanol and water at a volume of 7: 2: 1 and elution system B: 1 - butanol, ethanol and water 5 : 1: 4, with an elution rate of 18 to 20 hours followed by detection with aniline hydrophthalate The chromatographic data shows the presence of L-arabinose and the presence of L-ribose in trace amounts. -arabinosis in elution system A: 1.41 and vB: 1.30 and for L-ribose in elution light MEA 2.13, and B: 1.90. EXAMPLE 4

Zmes 25,5 g (0,1 molu) N-fenyl-D-manct-zylamínu, 0,25 g (2.10 ^ mólov) tetrahyd-rátu heptamolybdénanu hexaamonného, 1,18gramu (5,6 . 10 ’ mólov) monohydrátu ky-seliny citrónovej (mólový poměr kyselinycitrónovej k molybdénu v oxidačnom stupniVI je 4:1), 15,8 ml (0,2 molu] 35 % hmot.vodného roztoku formaldehydu, 35 ml 96 %--ného hmot. etanolu a 190 ml vody sa za-hrieva počas 3 h pri teplote 90 °C. Chroma-tografický záznam dokazuje přítomnost D--manózy a v stopovom množstve přítomnostD-glukózy. Pohyblivost vzťahujúca sa naD-glukózu 1,00 je pre D-manózu v elučnomsystéme A: 1,31 a v elučnom systéme B: 1,30. Příklad 5A mixture of 25.5 g (0.1 mol) of N-phenyl-D-mannitylamine, 0.25 g (2.10 µmoles) of heptamolybdate hexaammonium tetrahydrate, 1.18 g (5.6, 10 'moles) of monohydrate cy citric acids (molar ratio of citric acid to molybdenum in the V1 oxidation stage is 4: 1), 15.8 ml (0.2 moles) 35% w / w aqueous formaldehyde solution, 35 ml 96% ethanol and 190 ml water is heated for 3 h at 90 DEG C. Chromatographic recording shows the presence of D-mannose and the presence of D-glucose in the trace amount of D-glucose 1.00 for D-mannose in the A: 1 elution system , 31 and in elution system B: 1.30 Example 5

Postupuje sa ako v příklade 3 s tým roz-dielom, že sa vychádza zo zmesi 22,5 g (0,1molu) N-fenyl-D-ribozylamínu, 25 mg (2 .. 10-5 mólov) tetrahydrátu heptamolybdé-nanu hexaamonného, 118 mg (5,6 . 10_4 mó-lov) monohydrátu kyseliny citrónovej (mó-lový poměr kyseliny citrónovej k molybdé-nu v oxidačnom stupni VI je 4 : 1), 15,7 mlformaldehydu, 35 ml 96 °/o hmot. etanolu(0,2 mólu) 35 % hmot. vodného roztokua 190 ml vody. Chromatografický záznamdokazuje přítomnost D-ribózy a v stopovomThe procedure is as in Example 3 except that starting from a mixture of 22.5 g (0.1 mol) of N-phenyl-D-ribozylamine, 25 mg (2. 10 -5 mol) of hexammonium heptamolybdate tetrahydrate 118 mg (5.6.104 mol) of citric acid monohydrate (molar ratio of citric acid to molybdenum in oxidation stage VI is 4: 1), 15.7 ml of formaldehyde, 35 ml of 96% w / w. % ethanol (0.2 mol) 35 wt. aqueous solution and 190 ml of water. The chromatographic record shows the presence of D-ribose and in the trace

Claims (1)

Použitie kyseliny citrónovej ako prostriedku na inhibíciu epimerizácie aldóz katalyzovanej molybdénanovými iónmi.Use of citric acid as a means for inhibiting molybdenum ion catalyzed epimerization of aldoses.
CS874632A 1987-06-23 1987-06-23 Molybdenum ion catalyzed aldose epimerization agent CS260391B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS874632A CS260391B1 (en) 1987-06-23 1987-06-23 Molybdenum ion catalyzed aldose epimerization agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS874632A CS260391B1 (en) 1987-06-23 1987-06-23 Molybdenum ion catalyzed aldose epimerization agent

Publications (2)

Publication Number Publication Date
CS463287A1 CS463287A1 (en) 1988-05-16
CS260391B1 true CS260391B1 (en) 1988-12-15

Family

ID=5389546

Family Applications (1)

Application Number Title Priority Date Filing Date
CS874632A CS260391B1 (en) 1987-06-23 1987-06-23 Molybdenum ion catalyzed aldose epimerization agent

Country Status (1)

Country Link
CS (1) CS260391B1 (en)

Also Published As

Publication number Publication date
CS463287A1 (en) 1988-05-16

Similar Documents

Publication Publication Date Title
Aoyama et al. Molecular recognition. 5. Molecular recognition of sugars via hydrogen-bonding interaction with a synthetic polyhydroxy macrocycle
Wagner et al. Studies on the mechanism of action of cobamide coenzymes: chemical properties of the enzyme-coenzyme complex
Ferrier 1038. Unsaturated carbohydrates. Part II. Three reactions leading to unsaturated glycopyranosides
Zubay Studies on the lead-catalyzed synthesis of aldopentoses
Anet Degradation of carbohydrates: III. Unsaturated hexosones
Huennekens et al. Hydroxylated derivatives of 5-methy-5, 6, 7, 8-tetrahydrofolate
US4902790A (en) Novel process for the synthesis of amikacin
Taylor et al. Pteridines. XXXVII. A total synthesis of L-erythro-biopterin and some related 6-(polyhydroxyalkyl) pterins
CS260391B1 (en) Molybdenum ion catalyzed aldose epimerization agent
CA2600987A1 (en) Process for the production of methylcobalamin
JPS59222499A (en) Moenomycin a derivative and manufacture
Simonov et al. Selective synthesis of erythrulose and 3-pentulose from formaldehyde and dihydroxyacetone catalyzed by phosphates in a neutral aqueous medium
Beélik et al. Some new reactions and derivatives of kojic acid
Delidovich et al. Catalytic condensation of glycolaldehyde and glyceraldehyde with formaldehyde in neutral and weakly alkaline aqueous media: kinetics and mechanism
Kohata et al. Synthesis and Characterization of New Style of Water-Soluble Glycosylated Porphyrins as a Spectrophotometric Reagent for Metal Ions.
Yamauchi et al. Methylation of nucleosides with trimethylsulfonium hydroxide. Effects of transition metal ions
Schaefer et al. Ionization Constants of 3, 5-Dimethyl 4-Substituted Benzoic Acids
Stuart et al. 2, 4-Diamino-5-benzylpyrimidines and analogs as antibacterial agents. 6. A one-step synthesis of new trimethoprim derivatives and activity analysis by molecular modeling
Zhang et al. Photogeneration of HF from fluoromethoxybenzenes in aqueous solution
CS260395B1 (en) Molybdenum ion catalyzed aldose epimerization agent
Borchardt et al. Stereopopulation control. V. Facilitation on intramolecular conjugate addition of an aldehyde hydrate and hemiacetal
CS260390B1 (en) A method of stabilizing aldoses against, epimerizing in the presence of molybdenum ions
Neish PREPARATION OF 1-C14 PENTONIC ACIDS BY THE CYANHYDRIN SYNTHESIS
Lam et al. Purine N-oxides. LVI. Photoisomerization of 1-hydroxy-to 3-hydroxyxanthine. Photochemistry of related 1-hydroxypurines
CS260392B1 (en) Method of preparation of aldoses