CS258213B1 - Contactor for temperature chamber with ice-formation protection - Google Patents
Contactor for temperature chamber with ice-formation protection Download PDFInfo
- Publication number
- CS258213B1 CS258213B1 CS862725A CS272586A CS258213B1 CS 258213 B1 CS258213 B1 CS 258213B1 CS 862725 A CS862725 A CS 862725A CS 272586 A CS272586 A CS 272586A CS 258213 B1 CS258213 B1 CS 258213B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- contactor
- temperature chamber
- ice
- cavities
- formation protection
- Prior art date
Links
- 238000005496 tempering Methods 0.000 claims 1
- 239000002826 coolant Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical group [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Riešenie sa týká kontaktora teplotnej komory s ochranou proti tvoreniu námrazy. Podstatou riešenia je, že v strednom telese sú vytvořené otvory nadvSdzujúce na dutiny vytvořené v spodnom telese.The solution relates to a thermal contactor chambers with icing protection. The essence The solution is that in the middle body they are the openings formed on the cavities formed in the lower body.
Description
Vynález sa týká kontaktora teplotnej komory s ocharanou proti tvoreniu námrazy na kontaktoch kontaktora pri meraní polovodičových súčiastok za teplót pod bodom mrazu.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a contactor of a temperature chamber with anti-icing on the contactor contacts when measuring semiconductor devices at temperatures below freezing.
Kontaktor teplotnej komory je umiestnený vo vytemperovanom priestore a jeho kontakty prechádzajú do prostredia s teplotou okolia. V kontaktore sa meraná súčiastka pripája k elektronickým obvodom testovacieho zariadenia, ktoré vyhodnocujú jej elektrické parametre. Meracia a testovacia technika sa ku kontaktoru pripája mimo temperovaný priestor. Kvalita merania závisí od mechanického, ale aj elektrického spojenia, ktoré ovlivňuje přechodové odpory, indukčnost, izolačně odpory medzi prívodmi, mechanická spolahlivost, životnost.The contactor of the temperature chamber is located in the tempered space and its contacts pass into the ambient temperature environment. In the contactor, the measured component is connected to the electronic circuits of the test device, which evaluate its electrical parameters. The measuring and testing technology is connected to the contactor outside the tempered space. The quality of measurement depends on the mechanical but also electrical connection, which affects the transient resistance, inductance, insulation resistance between the leads, mechanical reliability, durability.
Kontaktor sa nachádza v priestore s extrémně nízkou teplotou a připojovací člen kontaktora a meracej elektroniky je v prostředí s teplotou okolia. Tým dochádza k přestupu tepla, ochladzovaniu pripojovacieho člena a možnosti tvorby kondenzátov vodnej páry nachádzajucej sa v okolitom prostředí. S tvorbou kondenzátov dochádza k zhoršeniu izolačných vlastností celej sústavy a tým k znemožneniu merania elektrických veličin. Doteraz známe riešenia používajú v podstatě dva druhy ochrany voči tvorbě kondenzátov vodnej páry a to ohrievanie ktritických častí kontaktora spolu s pripojovacou elektronikou na teplotu vyššiu ako je teplota rosného bodu okolia a druhým spósobom je privádzanie kvapalného dusíka, respektive iného kvapalného chladiaceho média ku kritickým častiam, kde dochádza k jeho odparovaniu a tým k tvorbě atmosféry neobsahujúcej vodnú páru. Nevýhodou týchto riešení je v prvom spósobe potřeba pomocného zdroja tepla a s tým súvisiace zvýšenie spotřeby elektrickej energie a v druhom spósobe nutnost sekundárného přívodu kvapalného chladiaceho média a váčšia zložitost uzla kontaktora.The contactor is located in an extremely low temperature area, and the contactor and measurement electronics connector is in an ambient temperature environment. This leads to heat transfer, cooling of the connection member and the possibility of formation of water vapor condensates present in the surrounding environment. With the formation of condensates, the insulating properties of the whole system are deteriorated and thus the measurement of electrical quantities is impossible. The prior art solutions basically use two kinds of protection against the formation of condensation of water vapor, namely heating of the tritium parts of the contactor together with the connecting electronics to a temperature above the dew point of the environment and the second way is to supply liquid nitrogen or other liquid cooling medium to where it evaporates and thereby creates an atmosphere free of water vapor. The disadvantage of these solutions is, firstly, the need for an auxiliary heat source and the associated increase in electricity consumption, and secondly, the need for a secondary supply of liquid coolant and greater complexity of the contactor node.
Uvedené nevýhody odstraňuje a technický problém rieši kontaktor teplotnej komory s ochranou proti tvoreniu námrazy, ktorého podstatou je, že v strednom telese sú vytvořené otvory, nadv&zujúce na dutiny vytvořené v spodnom telese.These drawbacks are overcome and the technical problem is solved by the anti-icing temperature chamber contactor, which is based on the fact that openings are formed in the central body which are connected to the cavities formed in the lower body.
Výhodou kontaktora teplotnej komory s ochranou proti námraze podlá vynálezu je, že odstraňuje potřebu sekundárného zdroja tepla pre zohriatie kritických častí a v druhom spósobe ochrany odstraňuje nutnosti sekundárného přívodu kvapalného chladiaceho média pre tvorbu ochrannej atmosféry. Ďalšou výhodou je jednoduchost riešenia uzla.An advantage of the frost protection temperature chamber contactor of the invention is that it eliminates the need for a secondary heat source to heat critical parts and, in the second mode of protection, eliminates the need for a secondary supply of liquid cooling medium to create a protective atmosphere. Another advantage is the simplicity of the solution of the node.
Ďalšou výhodou kontaktora teplotnej komory voči spósobu so sekundárným prívodom kvapalného chladiaceho média je to> že ku kritickým Častiam kontaktora prúdi už odobratím tepla z primárného temperovaného priestoru ohriate médium. Přívod tepla cez připojovací člen a kontakty z okolia potom postačuje na to, aby sa kritické miesto s teplotou rosného bodu okolia nachádzalo v dutinách kontaktora.A further advantage of the thermal chamber contactor over the method of secondary supply of liquid cooling medium is that the heated medium already flows to the critical parts of the contactor by removing heat from the primary tempered space. The heat supply through the connection member and the ambient contacts is then sufficient for the critical point with the ambient dew point temperature to be in the cavities of the contactor.
Kontaktor teplotnej komory s ochranou proti tvoreniu námrazy je příkladné znázorněný na pripojenom výkrese, kde je nakreslený kontaktor v náryse v čiastočnom řeze.The contactor of the anti-icing temperature chamber is shown by way of example in the accompanying drawing, where the contactor is drawn in elevation in partial section.
Kontaktor teplotnej komory s ochranou proti tvoreniu námrazy pozostáva z vlastného kontaktora JL, stredného telesa 2 kontaktora, ktoré oddelujú temperovaný priestor 2 od prostre dia 4 s teplotou okolia a spodného telesa J5. V strednom telese sú vytvořené otvory 9 nadvázujúce na dutiny 10 vytvořené v spodnom telese _5. Dutiny 10 sú uzatvorené připojovacím členom meracej elektroniky. V dutinách 10 sú umiestnené kontakty 2· Na vrchnej časti kontaktora 1. je umiestnená meraná súčiastka J3·The anti-icing temperature chamber contactor consists of the actual contactor J1, the central contactor body 2, which separate the tempered space 2 from the ambient temperature environment 4 and the lower body J5. In the central body, openings 9 are formed following the cavities 10 formed in the lower body 5. The cavities 10 are closed by a measuring electronics connector. In the cavities 10 there are placed contacts 2 · On the top of the contactor 1 there is a measured component J3 ·
Funkcia teplotnej komory s ochranou proti tvoreniu námrazy je nasledovná: V temperovánom priestore 2, kde je umiestnený samotný kontaktor je tvořený přetlak ochrannej atmosféry 6 v dósledku odparovania sa chladiaceho média. Cez otvory 2 vytvořené v strednom telese 3 prúdi ochranná atmosféra 6 do dutin 10 a čiastočne okolo připojovacích členov 12 do prostre dia 4 s teplotou okolia. Dutiny 10 sú v mieste 11 merania uzavreté připojovacím členom 12 meracej elektroniky, čím sa v dutinách 10 vytvoří přetlak ochrannej atmosféry 6.The function of the anti-icing temperature chamber is as follows: In the tempered compartment 2, where the contactor itself is located, an overpressure of the protective atmosphere 6 is created as a result of the evaporation of the cooling medium. A protective atmosphere 6 flows through the openings 2 formed in the central body 3 into the cavities 10 and partly around the connecting members 12 into the ambient temperature environment 4. The cavities 10 are closed at the measurement point 11 by the measuring electronics connection member 12, thereby creating an overpressure of the protective atmosphere 6 in the cavities 10.
Kontakty J_ sú chráněné od prostredia 2 s teplotou okolia spodným telesom 5 a ochrannou atmosférou 6 v dutinách 10.The contacts 1 are protected from the environment 2 with the ambient temperature by the lower body 5 and the protective atmosphere 6 in the cavities 10.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS862725A CS258213B1 (en) | 1986-04-14 | 1986-04-14 | Contactor for temperature chamber with ice-formation protection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS862725A CS258213B1 (en) | 1986-04-14 | 1986-04-14 | Contactor for temperature chamber with ice-formation protection |
Publications (2)
Publication Number | Publication Date |
---|---|
CS272586A1 CS272586A1 (en) | 1987-11-12 |
CS258213B1 true CS258213B1 (en) | 1988-07-15 |
Family
ID=5365160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS862725A CS258213B1 (en) | 1986-04-14 | 1986-04-14 | Contactor for temperature chamber with ice-formation protection |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS258213B1 (en) |
-
1986
- 1986-04-14 CS CS862725A patent/CS258213B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS272586A1 (en) | 1987-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5066852A (en) | Thermoplastic end seal for electric heating elements | |
ES2028605A6 (en) | Cost effective fluid line status sensor system | |
ATE201931T1 (en) | TEMPERA TOWER PROBE | |
US4282754A (en) | Temperature sensor for measuring the temperature of an engine | |
US2307626A (en) | Resistance thermometer | |
US3592060A (en) | Apparatus and method for measuring the thermal conductivity of insulating material | |
CS258213B1 (en) | Contactor for temperature chamber with ice-formation protection | |
Hamidi et al. | Effects of current density and chip temperature distribution on lifetime of high power IGBT modules in traction working conditions | |
WO2004003950A3 (en) | Multiple conductor indicator | |
US4106339A (en) | Wind chill meter and method of measuring wind chill effect | |
Salerno et al. | Thermal conductance of pressed brass contacts at liquid helium temperatures | |
US3782181A (en) | Dual measurement ablation sensor | |
US7147037B2 (en) | Leak detector for mixed heat exchangers | |
Goodwin | The compensated thermocouple ammeter | |
Gonnella et al. | Quench studies of a superconducting RF cavity | |
CN102705881A (en) | Induction cooker | |
JPH06308007A (en) | Thermal shock testing method for printed circuit board | |
US2971998A (en) | Thermocouple lead attachment | |
Reinders et al. | Novel top-loading 20 mK/15 T cryomagnetic system | |
JPS6483167A (en) | Testing method of electric properties of electronic component | |
JPH0714921Y2 (en) | Test board | |
SU1117511A1 (en) | Device for determination of hard material thermal conductivity | |
JPS59162465A (en) | Tester | |
SU711553A1 (en) | Device for thermal testing of microcircuits | |
KR20000060638A (en) | Multi-stress bdv cell |