CS257466B1 - Method of oxide or metallic cobalt coatings formation on ceramic substrate - Google Patents
Method of oxide or metallic cobalt coatings formation on ceramic substrate Download PDFInfo
- Publication number
- CS257466B1 CS257466B1 CS861243A CS124386A CS257466B1 CS 257466 B1 CS257466 B1 CS 257466B1 CS 861243 A CS861243 A CS 861243A CS 124386 A CS124386 A CS 124386A CS 257466 B1 CS257466 B1 CS 257466B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- ceramic substrate
- temperature
- salt hydrate
- cobalt
- coating
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 27
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 18
- 239000010941 cobalt Substances 0.000 title claims abstract description 18
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 18
- 239000000758 substrate Substances 0.000 title claims abstract description 18
- 239000000919 ceramic Substances 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000015572 biosynthetic process Effects 0.000 title description 4
- 239000011248 coating agent Substances 0.000 claims abstract description 12
- SAXCKUIOAKKRAS-UHFFFAOYSA-N cobalt;hydrate Chemical compound O.[Co] SAXCKUIOAKKRAS-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000000843 powder Substances 0.000 claims abstract description 7
- 150000003839 salts Chemical class 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 238000005979 thermal decomposition reaction Methods 0.000 claims 1
- 229910052703 rhodium Inorganic materials 0.000 abstract 1
- 239000010948 rhodium Substances 0.000 abstract 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 description 4
- 239000010431 corundum Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- -1 salt hydrates Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Chemically Coating (AREA)
Abstract
SpSsob vytvorenia dobré přilnavých oxidových a kovových kobaltových povlakov róznej hrůbky spočívajúci v tom, že keramický substrát vo formě prásku alebo kompaktného telesa opatřený povrchovou vrstvou krystalického hydrátu soli kobaltu sa ohrieva na teplotu 45 až 850 °C za přístupu vzduchu alebo v inertnej atmosféře, pričom sa povlak rozkládá. Keramický substrát sa následné žíhá v inertnej a/alebo redukčnej atmosféře pri teplote 450 až 1 250 °C.A method of forming good adhesion oxide and metallic cobalt coatings of rhodium the ridge consisting of a ceramic substrate in the form of a powder or a compact body provided with a crystalline coating the cobalt salt hydrate is heated to a temperature 45 to 850 ° C under air or inert conditions atmosphere, while the coating decomposes. The ceramic substrate is subsequently annealed in an inert and / or reducing atmosphere at temperature 450 to 1250 ° C.
Description
Vynález sa týká spósobu tvorby kobaltových povlakov na keramickom substráte prostredníctvom tavenín solí, zvyčajne kryštalických hydrátov solí kobaltu.The invention relates to a process for forming cobalt coatings on a ceramic substrate by means of salt melts, usually crystalline cobalt salt hydrates.
V súčasnom období sú známe technologické procesy vytvárania kobaltových povlakov, založené najmá na fyzikálnych princípoch, Medzi najvýznamnejšie spósoby sa zaradujú povlakovanie vo vákuu priamym odpařováním kobaltu a žiarové striekanie kobaltu v ochrannej atmosféře.[0003] Technological processes for the formation of cobalt coatings, based on physical principles in particular, are currently known. Among the most important methods are the direct cobalt vapor deposition in vacuum and the hot spraying of cobalt in a protective atmosphere.
Nevýhoda povlakovania vo vákuu priamym odpařováním kobaltu spočívá najmá v tom, že vytvořený kobaltový povlak sa vyznačuje nízkou prilnavosťou k povrchu keramického substrátu. Za nevýhody žiarového striekania kobaltu v ochrannej atmosféře sa považujú obmedzené možnosti vytvárania submikroskopických a mikroskopických povlakov, pričom žiarové striekanie sa aktivně využívá len k tvorbě makroskopických vrstiev so značnou zrnitosťou, najmá na velkoplošných dielcoch s jednoduchým profilom.The disadvantage of direct cobalt vapor deposition in vacuum is that the cobalt coating formed exhibits low adhesion to the surface of the ceramic substrate. The disadvantages of the hot spraying of cobalt in a protective atmosphere are the limited possibilities of submicroscopic and microscopic coatings, and the hot spraying is actively used only to form macroscopic layers with a high grain size, especially on large-area single-profile parts.
Vyššie uvedené nedostatky odstraňuje spósob vytvárania oxidových alebo kovových kobaltových povlakov na keramickom substráte vo formě prášku alebo kompaktného telesa zásypom kryštalického hydrátu soli kobaltu vo formě prášku na povrch keramického substrátu alebo ponořením do taveniny kryštalického hydrátu solí kobaltu, ktorej teplota je nižšia ako teplota jej teplotného rozkladu, ktorého podstatou je, že keramický substrát opatřený povrchovou vrstvou kryštalického hydrátu solí kobaltu se ohrieva na teplotu vyššiu než je teplota rozkladu hydrátu soli ležiaca v rozsahu 45 až 850 °C za přístupu vzduchu alebo v inertnej atmosféře pričom sa povlak teplotně rozloží a následné sa žíhá v inertnej a/alebo redukčnej atmosféře pri teplote 450 až 1 250 °C.The above drawbacks are eliminated by the formation of oxide or metal cobalt coatings on the ceramic substrate in the form of powder or compact body by backfilling crystalline cobalt salt hydrate in powder form onto the ceramic substrate surface or by immersing it in a crystalline cobalt salt hydrate melt below its decomposition temperature. characterized in that the ceramic substrate provided with a surface layer of crystalline cobalt salt hydrate is heated to a temperature higher than the decomposition temperature of the salt hydrate lying in the range of 45 to 850 ° C under air or inert atmosphere whereby the coating is thermally decomposed and subsequently calcined in an inert and / or reducing atmosphere at a temperature of 450 to 1250 ° C.
Uvedený spósob sa aplikuje na kompaktně alebo práškové keramické substráty.The method is applied to compact or powdered ceramic substrates.
Výhody spósobu tvorby kobaltových povlakov na keramickom substráte spočívájú v tom, že kobaltové povlaky sa vyznačujú velmi dobrou adhéziou k povrchu keramického substrátu a celkový proces nevyžaduje náročné technologické zariadenie. Ďalšou výhodou podlá vynálezu je vysoká čistota a hladkost vytvořených kobaltových povlakov, pričom čistota je jednoducho dosažitelná použitím kryštalických hydrátov solí s definovanou čistotou.The advantages of the cobalt coating process on the ceramic substrate are that the cobalt coatings are characterized by very good adhesion to the surface of the ceramic substrate and the overall process does not require a sophisticated process equipment. A further advantage of the invention is the high purity and smoothness of the formed cobalt coatings, the purity being readily obtainable by using crystalline salt hydrates of defined purity.
K tvorbě kobaltového povlaku na slinutou korunde sa použije hexahydrát bisdusíčnanu kobaltnatého Co (NO^) £ · θϊ^Ο. Potřebné množstvo zlúčeniny sa určí podlá rozmerov vzorky, aby tavenina dokonale zmáčala všetky požadované plochy vzorky.Co (NO 2) ·ϊϊϊΟ is used to form a cobalt coating on sintered corundum. The amount of compound required is determined by the sample size to allow the melt to completely wet all desired areas of the sample.
Povlakovací proces prebieha následovným režimom:The coating process proceeds as follows:
- ohřev na 100 °C a výdrž pri konštantnej teplote 1 h za přístupu vzduchu- heating to 100 ° C and holding at constant temperature for 1 hour in the air
- po 1 h pozvolné zvyšovanie teploty na 850 °C rýchlosťou 2 °C za minútu- after 1 h, gradually raise the temperature to 850 ° C at a rate of 2 ° C per minute
- po dosiahnutí teploty 850 °C sa vzorky očistia od zbytkov práškových oxidov a podrobia sa redukčnému žíhaniu v atmosféře vodíka pri 800 °C počas 1 h- after reaching a temperature of 850 ° C, the samples are cleaned of residual powdered oxides and subjected to reductive annealing in a hydrogen atmosphere at 800 ° C for 1 h
- po redukčnom žíhaní sa vzorky ochladia v prúde vodíka na laboratórnu teplotu a povlakovanie je ukončené.- after reduction annealing, the samples are cooled in a stream of hydrogen to room temperature and the coating is complete.
Na vytvorenie kobaltového povlaku na práškovom slinutom korunde sa použije hexahydrát bidusičnanu kobaltnatého Co(NOg)^·61^0. Povlakovací proces prebiehal následovným režimom.Coobalt (II) -butyrate hexahydrate Co (NOg) · 61 0 0 is used to form the cobalt coating on the powdered sintered corundum. The coating process was carried out as follows.
Do kúpela roztavovaného kryštalického hydrátu’soli pri teplote 150 °C sa vsypal práškový slinutý korund zohriaty na 800 °C. Po uplynutí 10 minút prášková hmota sa odfiltrovala, vymyla vodou od zbytvov taveniny a vysušila. Suchá prášková hmota sa redukčně žíhala v atmosféře vodíka pri 1 000 °C pačas 0,5 h. Povlaky vykazovali velmi dobrú přilnavost k podkladu. Povlak je kompaktný a od určitéj hrůbky je aj vodivý. Dokonca ho možno aj spájkovať. Korund opatřený povlakom naneseným spósobom podlá vynálezu dobré znáša tepelné rázy. Povlak nie je len fyzikálně přilnutý ale do určitej miery aj chemicky viazaný. Spósob tvorby kobaltových povlakov prostredníctvom tavenín kryštalických kobaltových hydrátov na keramickom substráte významné prispieva k uplatňovaniu keramických materiálov ako funkčných a konštrukčn ných prvkov, najma v strojárskom a elektrotechnickom priemysle. Kobaltový povlak na keramic- kom substráte umožňuje vytváranie viacvrstvových účelových povlakov, využitím známých fyzikálnych, fýzikálnochemických a chemických sposobov povlakovania vodivých substrátov.Powdered sintered corundum heated to 800 ° C was poured into a bath of molten crystalline hydrate's salt at 150 ° C. After 10 minutes, the powder mass was filtered off, washed with water from the melt residue and dried. The dry powder mass was annealed under a hydrogen atmosphere at 1000 ° C for 0.5 h. The coatings showed very good adhesion to the substrate. The coating is compact and conductive from a certain depth. It can even be soldered. Corundum coated according to the method of the invention is well tolerated by thermal shock. The coating is not only physically adhered but also chemically bound to some extent. The method of forming cobalt coatings by melting crystalline cobalt hydrates on a ceramic substrate contributes significantly to the application of ceramic materials as functional and structural elements, particularly in the mechanical and electrical industries. The cobalt coating on the ceramic substrate allows the formation of multi-layer purpose coatings, utilizing the known physical, physicochemical and chemical methods of coating conductive substrates.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS861243A CS257466B1 (en) | 1986-02-24 | 1986-02-24 | Method of oxide or metallic cobalt coatings formation on ceramic substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS861243A CS257466B1 (en) | 1986-02-24 | 1986-02-24 | Method of oxide or metallic cobalt coatings formation on ceramic substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
CS124386A1 CS124386A1 (en) | 1987-10-15 |
CS257466B1 true CS257466B1 (en) | 1988-05-16 |
Family
ID=5346313
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS861243A CS257466B1 (en) | 1986-02-24 | 1986-02-24 | Method of oxide or metallic cobalt coatings formation on ceramic substrate |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS257466B1 (en) |
-
1986
- 1986-02-24 CS CS861243A patent/CS257466B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS124386A1 (en) | 1987-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2100724C (en) | Method of forming coatings by plasma spraying magnetic- cermet dielectric composite particles | |
CN1309879C (en) | Vessel for holding silicon and method of producing the same | |
US6479108B2 (en) | Protective layer for quartz crucibles used for silicon crystallization | |
EP0035626B1 (en) | Improved electroless plating process for glass or ceramic bodies | |
US5427823A (en) | Laser densification of glass ceramic coatings on carbon-carbon composite materials | |
JPH0395288A (en) | Abrasive coated with refractory metal oxide and grinding wheel made therefrom | |
US20110045209A1 (en) | Continuous or discrete metallization layer on a ceramic substrate | |
KR20160062067A (en) | Novel adhesion promoting process for metallisation of substrate surfaces | |
JP3723753B2 (en) | Method for producing a coating on a fire-resistant component and use of such a coating | |
US6077564A (en) | Process for producing a metal-coated, metallized component of aluminum nitride ceramic and metal-coated component obtained thereby | |
CS257466B1 (en) | Method of oxide or metallic cobalt coatings formation on ceramic substrate | |
DE2004133C3 (en) | Process for the metallization of ceramic or glass substrates | |
US3446643A (en) | Method of coating articles with titanium and related metals and the article produced | |
US6224682B1 (en) | CVD of metals capable of receiving nickel or alloys thereof using inert contact | |
WO2016003196A1 (en) | Super water repellent cerium oxide nano/microstructure directly grown on various substrates, and preparation method therefor | |
US3433682A (en) | Silicon coated graphite | |
JPS63159258A (en) | Manufacture of oxidation-resistant silicon nitride material | |
GB2038884A (en) | Method for Applying Thin Layers of Metal, Alloys or Metal Compounds to Ceramic Surfaces Not Covered with a Vitreous Layer | |
JP2527666B2 (en) | Glassy carbon coated article | |
JP3520998B2 (en) | Heat-resistant silicon nitride sintered body and method for producing the same | |
KR19990052501A (en) | Thermal spray coating material with excellent dross resistance | |
JP3486438B2 (en) | Glaze composition and inorganic substrate provided with the composition | |
Okuno et al. | Thermodynamic Study on Interfacial Reaction between Blast Furnace Slag and Silicon Carbide | |
JPS6345191A (en) | Metallizing process for ceramic substrate | |
JPS597786B2 (en) | How to coat metal with dissimilar metals |