CS256098B1 - Method of 3-oxa-pentandiale preparation - Google Patents

Method of 3-oxa-pentandiale preparation Download PDF

Info

Publication number
CS256098B1
CS256098B1 CS867511A CS751186A CS256098B1 CS 256098 B1 CS256098 B1 CS 256098B1 CS 867511 A CS867511 A CS 867511A CS 751186 A CS751186 A CS 751186A CS 256098 B1 CS256098 B1 CS 256098B1
Authority
CS
Czechoslovakia
Prior art keywords
oxa
moles
preparation
acetone
hours
Prior art date
Application number
CS867511A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS751186A1 (en
Inventor
Jiri Zemek
Ludovit Kuniak
Alexander Andrassy
Pavol Banak
Original Assignee
Jiri Zemek
Ludovit Kuniak
Alexander Andrassy
Pavol Banak
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiri Zemek, Ludovit Kuniak, Alexander Andrassy, Pavol Banak filed Critical Jiri Zemek
Priority to CS867511A priority Critical patent/CS256098B1/en
Publication of CS751186A1 publication Critical patent/CS751186A1/en
Publication of CS256098B1 publication Critical patent/CS256098B1/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Riešenie sa týká sposobu přípravy 3-oxa- -pentandialu. Podstatou riešenia je, že na l,5-dihydroxy-3-oxa-pentan (1 mól) sa působí 2 až 10 mólami oxidu mangáničitého monohydrátu v prostředí 20 až 40 mólov acetónu alebo metyletylketónu alebo ich zmesi po dobu 2 až 8 hodin pri teplote 20 až 40 °C. Po ukončení reakcie sa vzniklý produkt oddělí od katalyzátora filtráciou a od rozpúšťadla destiláciou. Spósob přípravy má využitie v organickej chemii a v chemii biopolymérov pri sieťovaní a modifikácii prírodných látok, obsahujúcich primárné amínoskupiny.The solution relates to a method of preparing 3-oxa- -pentandialu. The essence of the solution is that of 1,5-dihydroxy-3-oxa-pentane (1 mol) is treated 2 to 10 moles of manganese dioxide monohydrate in an environment of 20 to 40 moles of acetone or methyl ethyl ketone or mixtures thereof for 2 to 8 hours at 20 to 40 ° C. Upon completion of the reaction, the product formed separates from the catalyst by filtration and from solvent distillation. Method of preparation has use in organic chemistry and in biopolymers chemistry in crosslinking and modification of natural substances containing primary amino groups.

Description

Riešenie sa týká sposobu přípravy 3-oxa-pentandialu. Podstatou riešenia je, že na l,5-dihydroxy-3-oxa-pentan (1 mól) sa posobí 2 až 10 mólami oxidu mangáničitého monohydrátu v prostředí 20 až 40 mólov acetónu alebo metyletylketónu alebo ich zmesi po dobu 2 až 8 hodin pri teplote 20 až 40 °C. Po ukončení reakcie sa vzniklý produkt oddělí od katalyzátora filtráciou a od rozpúšťadla destiláciou. Sposob přípravy má využitie v organickej chémii a v chémii biopolymérov pri sletovaní a modifikácii prírodných látok, obsahujúcich primárné amínoskupiny. 256098 256098The present invention relates to a process for preparing 3-oxa-pentanedial. The essence of the solution is that 1, 5-dihydroxy-3-oxa-pentane (1 mole) is treated with 2 to 10 moles of manganese oxide monohydrate in an environment of 20 to 40 moles of acetone or methyl ethyl ketone or a mixture thereof for 2 to 8 hours at a temperature of 20-40 ° C. After completion of the reaction, the resulting product is separated from the catalyst by filtration and distilled from the solvent. The method of preparation has utility in organic chemistry and in biopolymers chemistry in the blending and modification of natural compounds containing primary amino groups. 256098 256098

Vynález sa týká sposobu přípravy 3-oxa-pentandialu. Nízkomolekulové bifunkčné alifatické, aromatické alebo lieterocyklické zlúčeniny, ktoré sú schopné vstupovat do reakcii s katalytickými alebo štruktúrnyml biopolymérmi sa prejavujú ako sieťovacie činidlá. Také vlastnosti má aj 3-oxa-pentandial.The invention relates to a process for the preparation of 3-oxa-pentanedial. Low molecular weight bifunctional aliphatic, aromatic, or lieterocyclic compounds that are capable of reacting with catalytic or structural biopolymers manifest themselves as crosslinking agents. Also 3-oxa-pentanedial has such properties.

Pri jeho príprave sa vychádza z anhydroalditolov [H. R. Greenberg, A. S. Perlin: Carbohydrate Research 35, 195 (1974)] z kondenzačného produktu 2-chlormetyloxiránu s glycerolom (3,3‘-dioxy-propandiol-1,2) [F. J. Lopez Aparicio, Seanz de Buonaga y Šeřena, J., Gimenez Martinez, J. J.: An. Quim. 72, 975 (1976)] alebo ozónolýzou 2,5-dihydrofuránu [Ger. Offen. 2 554 587]. Uvedené postupy sú nevýhodné vzhfadom k ťažkej dostupnosti východzích surovin.Its preparation is based on anhydroalditols [H. R. Greenberg, A. S. Perlin: Carbohydrate Research 35, 195 (1974)] from the condensation product of 2-chloromethyloxirane with glycerol (3,3'-dioxy-propanediol-1,2) [F. J. Lopez Aparicio, Seanz de Buonaga y Seena, J., Gimenez Martinez, J. J .: An. Quim. 72, 975 (1976)] or ozonolysis of 2,5-dihydrofuran [Ger. Offen. 2,554,587]. These processes are disadvantageous due to the difficult availability of starting materials.

Uvedené nedostatky odstraňuje postup podta vynálezu, podstata ktorého spočívá v tom, že na 1 mól l,5-dihydroxy-3-oxapentanu sa posobí 2 až 10 mólami oxidu manganičitého monohydrátu v prostředí 20 až 40 mólov acetonu alebo metyletylketónu alebo ich zmesi pri teplote 20 až 40 °C po dobu 2 až 8 hodin. Výťažok uvedenej reakcie je takmer kvantitativný. Usadenina katalyzátore tejto oxidačnej reakcie sa premýva dalšími podielami acetonu. Přítomnost atómu kyslíka v základnom skelete molekuly pentandialu sa prejavuje znížením schopnosti přestupu tejto zlúčeniny do živočišných buniek a tým aj znížením mutagenity tejto zlúčeniny. Přítomnost éterického kyslíka v molekule 3-oxapentandialu sa prejavuje jednak zvýšením rozpustnosti, jednak dalším zvýšením bodu varu a znížením tenzie par v porovnaní s vlastnosťami pentandialu. Příklad 1 l,5-dihydroxy-3-oxapentan (106 gj sa přidal do roztoku 20 mólov suchého acetonu a za miešania sa přidal suchý oxid manganičitý monohydrát (1020 gj. Reakcia oxidácie dietylénglykolu prebiehala za 8 hodin pri teplote 20 °C. Výťažok 3-oxapentandialu bol 96,5 g, t. j. 96,5 % normalizovaných. Suspenzia katalyzátora sa oddělila flltráciou, oddělený katalyzátor na filtri sa premyl trikrát 1 dm3 acetonu. 3-oxa-pentandial sa oddělil z reakčného filtrátu vákuovou destiláciou po oddělení acetónu. Získaný 3-oxa-pentandial mal bod varu 197 °C a jeho bis(2,4-dinitrofenylhydrazón) mal bod topenia 156 °C. Příklad 2The above mentioned drawbacks are solved by the process according to the invention, characterized in that on 1 mol of 1,5-dihydroxy-3-oxapentane is added 2 to 10 moles of manganese dioxide monohydrate in an environment of 20 to 40 moles of acetone or methyl ethyl ketone or their mixture at 20 ° C. to 40 ° C for 2 to 8 hours. The yield of the reaction is almost quantitative. The catalyst deposit of this oxidation reaction is washed with further portions of acetone. The presence of an oxygen atom in the parent pentandial molecule manifests itself by a reduction in the ability of this compound to pass into animal cells and thus by a decrease in the mutagenicity of the compound. The presence of etheric oxygen in the 3-oxapentandial molecule is manifested both by an increase in solubility and by a further increase in boiling point and a reduction in vapor tension compared to the pentandial properties. Example 1 1,5-dihydroxy-3-oxapentane (106 gj was added to a solution of 20 moles of dry acetone and dry manganese dioxide monohydrate was added with stirring (1020 gj) The diethylene glycol oxidation reaction was carried out at 20 ° C for 8 hours. The catalyst slurry was separated by filtration, the separated filter catalyst was washed three times with 1 dm 3 of acetone, and 3-oxa-pentanedial was separated from the reaction filtrate by vacuum distillation after separation of acetone. -oxa-pentanedial had a boiling point of 197 ° C and its bis (2,4-dinitrophenylhydrazone) had a melting point of 156 ° C.

Postupuje sa podl'a příkladu 1 s tým rozdielom, že sa použije namiesto acetónu metyletylketón. Výťažok 3-oxa-pentadialu bol 97 θ/o. Příklad 3The procedure of Example 1 was followed except that methyl ethyl ketone was used instead of acetone. The yield of 3-oxa-pentadial was 97 / / o. Example 3

Postupuje sa podía příkladu 1 s tým rozdielom, že reakcia oxidácie prebieha pri teplote 40 °C v zmesi acetónu a metyletylglykolu (1 : 1, v objemových podieloch 2 móly) po dobu 4 hodin. Výťažok 3-oxa-pentandialu bol 97 °/o.The procedure of Example 1 was followed except that the oxidation reaction was carried out at 40 ° C in a mixture of acetone and methylethylglycol (1: 1, 2 moles by volume) for 4 hours. The yield of 3-oxa-pentanedial was 97%.

Vynález može nájsť uplatnenie v organickej chémii a v chémii biopolymérov pri sletovaní a modifikácii vlastností prírodných látok, obsahujúcich primárné amínoskupiny, s použitím v různých odvetviach spoločenskej praxe.The invention can be found to be useful in organic chemistry and in biopolymers chemistry in combining and modifying the properties of natural compounds containing primary amino groups using in various sectors of social practice.

Claims (1)

PREDMET Sposob přípravy 3-oxa-pentandialu vyznačený tým, že na 1 mól l,5-dihydroxy-3-oxapentanu sa posobí 2 až 10 mólami oxidu manganičitého monohydrátu v prostředí 20 až 40 mólov acetónu alebo metyletylketónu alebo ich zmesi pri teplote 20 až 40 °C po dobu 2 až 8 hodin.SUBSTANCE Method for the preparation of 3-oxa-pentanedial, characterized in that 2 to 10 moles of manganese dioxide monohydrate are added to 1 mole of 1,5-dihydroxy-3-oxapentane in an environment of 20 to 40 moles of acetone or methyl ethyl ketone or a mixture thereof at 20 to 40. ° C for 2 to 8 hours.
CS867511A 1986-10-17 1986-10-17 Method of 3-oxa-pentandiale preparation CS256098B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS867511A CS256098B1 (en) 1986-10-17 1986-10-17 Method of 3-oxa-pentandiale preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS867511A CS256098B1 (en) 1986-10-17 1986-10-17 Method of 3-oxa-pentandiale preparation

Publications (2)

Publication Number Publication Date
CS751186A1 CS751186A1 (en) 1987-07-16
CS256098B1 true CS256098B1 (en) 1988-04-15

Family

ID=5424386

Family Applications (1)

Application Number Title Priority Date Filing Date
CS867511A CS256098B1 (en) 1986-10-17 1986-10-17 Method of 3-oxa-pentandiale preparation

Country Status (1)

Country Link
CS (1) CS256098B1 (en)

Also Published As

Publication number Publication date
CS751186A1 (en) 1987-07-16

Similar Documents

Publication Publication Date Title
US3687978A (en) Macrocyclic polyether compounds
EP0519198A2 (en) Immobilization of PH-sensitive dyes to solid supports
JPS61501089A (en) Cyclic disulfonic acid ester compounds
Lewis et al. Tetraarylboronic acid resorcinarene stereoisomers. Versatile new substrates for divergent polyfunctionalization and molecular recognition
Ehsani-Nasab et al. Preparation and characterization of a novel room temperature dicationic ionic liquid and its application in the synthesis of xanthenediones under solvent-free conditions
CS256098B1 (en) Method of 3-oxa-pentandiale preparation
US4085133A (en) Preparation of monoperoxyphthalic acid
US3185709A (en) Process for obtaining crystal violet lactone
US5243075A (en) Process for producing N-chloromethyl nitramines
Dawans et al. 2, 7‐disubstituted 1, 3, 6, 8‐tetraazopyrene and related polymers
CH434748A (en) Polycondensation process
Veer Derivatives of 1: 3‐bis‐Phenylamino‐Propane
JP4065940B2 (en) Method for producing azotized fullerene
SU690002A1 (en) Method of preparing 4-methoxy-1,2-naphthoquinone
JPS62145053A (en) Production of 1,4-bis(dicyanomethylene)cyclohexane
JPH07126379A (en) Production of polysuccinimide
US2848481A (en) New guanidine compounds, their preparation and use as reagents for picric acid
SU362035A1 (en) METHOD OF OBTAINING WATER SOLUBLE FILES
SU1148850A1 (en) Method of purifying 4,4'-diaminobenzanilide
RU2268261C2 (en) Method for preparing phenylene-bis-benzimidazole-tetrasulfonic acid disodium salt
SU1685914A1 (en) Method for obtaining 2,4,6-trimethyl-isophtalic aldehyde
RU1825782C (en) Method of synthesis of higher aliphatic acid monoethanolamides
US3403154A (en) Compounds derived from phenanthrenequinone
SU1657054A3 (en) Method for obtaining salts of 4,4-dinitrostilben-2,2- disulfoacid
SU614091A1 (en) Method of obtaining acetopropyl alcohol acetate