CS254656B1 - A method for preparing a wear-resistant titanium carbide thin layer on an electrically conductive solid substrate - Google Patents
A method for preparing a wear-resistant titanium carbide thin layer on an electrically conductive solid substrate Download PDFInfo
- Publication number
- CS254656B1 CS254656B1 CS848178A CS817884A CS254656B1 CS 254656 B1 CS254656 B1 CS 254656B1 CS 848178 A CS848178 A CS 848178A CS 817884 A CS817884 A CS 817884A CS 254656 B1 CS254656 B1 CS 254656B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- titanium
- range
- electrically conductive
- hydrocarbon
- preparing
- Prior art date
Links
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Podstata spůsobu přípravy oteruvzdornej tenkej vrstvy karbidu titánu na elektricky vodivom pevnom substráte spočívá v tom, že na pevný elektricky vodivý substrát o- hriatý na teplotu váčšiu ako 300 °C sa pů sobí plazmou tvořenou parami titánu a inert ného plynu, zvyčajne argonu, za zníženého tlaku z intervalu 10' 4 až 10 Pa, za čím sa následné působí za .zníženého .tlaku z inter valu 10 “ 2 až 10 Pa plazmou tvořenou para mi titánu a uhlovodíka, zvyčajne acetylénu, alebo parami titánu a zmesou uhlovodíka a inertného plynu, pričom sa koncentrácia uhlovodíka plynule zvyšuje v intervale po merov k titánu od 0,2 do 0,7 a za tým v in tervale od 0,7 do 1,0.The essence of the method for preparing a wear-resistant thin layer of titanium carbide on an electrically conductive solid substrate consists in that a solid electrically conductive substrate heated to a temperature greater than 300 °C is treated with a plasma formed by titanium vapor and an inert gas, usually argon, at a reduced pressure in the range of 10' 4 to 10 Pa, followed by subsequent treatment under a reduced pressure in the range of 10 " 2 to 10 Pa with a plasma formed by titanium vapor and a hydrocarbon, usually acetylene, or titanium vapor and a mixture of hydrocarbon and inert gas, with the hydrocarbon concentration continuously increasing in the range of ratios to titanium from 0.2 to 0.7 and thereafter in the range from 0.7 to 1.0.
Description
Vynález sa týká sposobu přípravy tvrdej oteruvzdornej tenkej vrstvy na báze karbidu titánu na pevnom elektricky vodivom substráte vo vákuu v plazme.The invention relates to a process for preparing a hard abrasion-resistant thin layer based on titanium carbide on a solid electrically conductive substrate under vacuum in a plasma.
V súčasnom období existuje mimo klasických metod vytvárania tvrdých oteruvzdorných vrstiev, například metody galvanické, plazmové, žiarové striekanie a tak ďalej, aj celý rad modernějších metód a technologických postupov ako například metoda chemického povlakovania, magnetrónového rozprašovania a iónového plátovania. Velkou nevýhodou týchto metód je v niektorých prípadoch nižšia tvrdost připravovaných vrstiev, nedostačujúca přilnavost k povliekanému substrátu, zhoršenie kvality mikrogeometrie finálneho povrchu upravovaného substrátu, připadne nutnost ohriatia substrátu na teplotu 900 °C až 1100 °C, ďalej energetickou a materiálovou náročnosťou a v neposlednom radě aj nežiadúcim vplyvom na životné prostredie. Metodami reaktívného iónového plátovania a magnetrónového rozprašovania je možné v súčasnom období vytvárať vrstvy karbidu titánu na rychlořezné ocele, konstrukčně a nástrojové ocele, spekané karbidy, titánové a hliníkové zliatiny a podobné pri teplotách nad 300 ^C. Vzhladom na nehomogenity povrchových vlastností týchto substrátov sa v mnohých prípadoch vyskytuje nevyhovujúca přilnavost pripravovanej vrstvy k substrátu. Toto má za následok stratu, úžitkových vlastností pripravovanej vrstvy v procese jej použitia.Nowadays there are a number of more modern methods and technological procedures such as chemical coating, magnetron spraying and ion cladding, in addition to the classical methods of hard abrasion-resistant layers, such as galvanic, plasma, thermal spraying and so on. The big disadvantage of these methods is in some cases lower hardness of prepared layers, insufficient adhesion to coated substrate, deterioration of microgeometry quality of final surface of treated substrate, eventually necessity of heating of substrate to temperature of 900 ° C to 1100 ° C, energy and material intensity and last but not least and undesirable effects on the environment. Reactive ion cladding and magnetron sputtering methods can now be used to form titanium carbide layers on high speed steels, structural and tool steels, sintered carbides, titanium and aluminum alloys, and the like at temperatures above 300 ° C. Due to the inhomogeneities of the surface properties of these substrates, in many cases there is an inadequate adhesion of the prepared layer to the substrate. This results in loss of utility properties of the prepared layer in the process of its use.
Vyššie uvedené nedostatky odstraňuje nový spósob přípravy vrstvy na báze karbidu titánu na pevnom elektricky vodivom substráte pódia vynálezu, ktorého podstatou je, že na pevný elektricky vodivý substrát ohriatý na teplotu vačšiu ako 300 °C sa posobí plazmou tvořenou parami titánu a inertného plynu, zvyčajne argonu, za zníženého tlaku z intervalu 10”4 Pa, za čím sa následné posobí za zníženého tlaku z intervalu IO-2 až 10 Pa plazmou tvořenou parami titánu a uhlovodíka, zvyčajne acetylénu, alebo parami titánu a zmesou uhlovodíka a inertného plynu, pričom sa koncentrácia uhlovodíka plynule zvyšuje v intervale pomerov k titánu od 0,2 do 0,7 a za tým v intervale od_0,7 do 1,0.The above-mentioned drawbacks are overcome by a novel process for preparing a titanium carbide layer on a solid electrically conductive substrate of the invention, which is based on the electrically conductive substrate heated to a temperature greater than 300 ° C by plating titanium and inert gas vapor, usually argon , under reduced pressure in the range 10 "4 Pa to thereby subsequently treated under reduced pressure in the range of -2 to IC 10 Pa, the plasma formed by titanium vapor and a hydrocarbon, usually acetylene or para titanium and mixtures of hydrocarbon and inert gas, wherein the concentration of The hydrocarbon continuously increases in the ratio of titanium to from 0.2 to 0.7, and thereafter in the range of from 0.7 to 1.0.
Dalej je podl’a vynálezu účelné, aby povrch pevného elektricky vodivého' substrátu bol bombardovaný iónmi inertného plynu, čo spósobuje odprašovanie adsorbovaných vrstiev z jeho povrchu a súčasne ohřev substrátu na požadovanú teplotu.It is further preferred according to the invention that the surface of the solid electrically conductive substrate be bombarded with inert gas ions, which causes the adsorbed layers to be dusted off its surface and at the same time to heat the substrate to the desired temperature.
Vrstvy na báze karbidu titánu připravené pódia vynálezu sa vyznačujú požadovanou adhéziou k povliekanému substrátu, ktorá je daná podkladovou tenkou vrstvou titánu, ďalej vysokou tvrdosťou a oteruvzdornosfou. Na základe týchto vlastností vrstvy připravené podta vynálezu sú předurčené pre aplikácie najmá v strojárstve na režné a tvárniace nástroje, extrémně namáhané tríbologické uzly strojných zariadení a podobné. Příklady prevedeniaThe titanium carbide layers prepared according to the invention are characterized by the desired adhesion to the coated substrate, which is given by the titanium undercoat, high hardness and abrasion resistance. Because of these properties, the layers prepared according to the invention are predestined for applications, in particular in mechanical engineering, for cutting and forming tools, extremely stressed tribological nodes of machinery and the like. Examples of design
Příklad 1Example 1
Overovanie spósobu podlá vynálezu prebiehalo na podložke z rýchloreznej ocele ČSN 19 830, ktorá bola umiestnená ako katóda v zariadení na iónové plátovanie s odparovačom s elektronovým zdrojom. Podložky boli ohriaté na teplotu nad 400 °C, a to počas ich čistenia v tlejivom výboji argonu pri tlaku 5 Pa. Za tým nanášanie systému vrstiev podi'.a vynálezu prebiehalo následovně: do vákuovej komory bol napúštaný argon na tlak 2.101 Pa za súčasného odparovania titánu pomocou elektronového lúča pri jeho výkone 2,5 KW po dobu 2 minút. V ďalšom kroku bol přítok argonu postupné zastavovaný a následné plynule priptíšťaný acetylén, a to na tlak 7.10”2 Pa pri súčasnom znížení výkonu odparovacieho zdroja na 2,0 KW. Proces tvorby vrstvy TiCx pri týchto parametrocb trval ďalšie 3 minúty. Popísaným sposobom vznikla na podložke z rýchloreznej ocele vrstva TiC0,95 o hrúbke 3,0 jum, ktorá bola difúzne spojená so substrátom cez tenkú vrstvu titánu.Verification of the method according to the invention was carried out on a high-speed steel support ČSN 19 830, which was placed as a cathode in an ion cladding device with an electron source evaporator. The pads were heated to a temperature above 400 ° C during their purification in a argon flash at 5 Pa. At the same time, the deposition of the system of layers according to the invention proceeded as follows: argon was fed into a vacuum chamber at a pressure of 2.10 1 Pa while simultaneously titrating the titanium with an electron beam at a power of 2.5 KW for 2 minutes. In the next step, the argon feed was gradually stopped and then the acetylene was continuously added to a pressure of 7.10 " 2 Pa while reducing the power of the evaporation source to 2.0 KW. The TiC x layer formation process for these parameters took an additional 3 minutes. Described previously formed on a substrate of high-speed steel layer of TiC 0, 95 having a thickness of 3.0 microns, which was diffusion bonded to the substrate through a thin layer of titanium.
Příklad 2Example 2
V ďalšom případe bol spósob přípravy vrstvy TiC overený za inák rovnakých podmienok, ako v příklade 1, avšak s tým rozdielom, že do vákuovej komory v prvom kroku bol napúštaný argon na tlak 2.IQ”1 Pa a súčasne odpařovaný titán pri výkone elektronového' zdroja 2,5 KW po dobu 1 minúty, za čím bol tlak argonu upravený na hodnotu 5 . IO”2 Pa. Po dosiahnutí uvedeného tlaku bol plynule do komory napúštaný acetylén, a to až do tlaku 3.10_1 Pa za sňčasnébO' odparovania titánu při výkone elektrónového zdroja 2,0 KW po dobu 5 minút. Po skončení procesu celková hrúbka takto pripravenej vrstvy bola 4 ,«m.In another case, a method for preparing layers of TiC verified under otherwise identical conditions as in Example 1, but with the difference that in the vacuum chamber in the first step the impregnation of argon to a pressure 2.IQ "1 Pa and simultaneously vaporized titanium in the performance of the electron ' source of 2.5 KW for 1 minute, after which the argon pressure was adjusted to 5. IO ” 2 Pa. After reaching this pressure was continuously infused into the chamber acetylene, up to a pressure of 3.10 Pa sňčasnébO _1 'evaporation of titanium in the performance of the electron source of 2.0 kW for 5 minutes. After completion of the process, the total thickness of the thus prepared layer was 4.1 .mu.m.
Popísaným spósobom podlá vynálezu vznikol na podložke z rýchloreznej ocele systém vrstiev tvořený podkladovou vrstvou z titánu a vrstvy Tičx s plynulým híbkovým koncentračným profilom, kde x sa měnilo smerom od povrchu v intervale od 0,9 až do 0,2.According to the method of the present invention, on a high-speed steel support, a layer system comprising a titanium backing layer and a Tic x layer with a continuous depth concentration profile was formed, where x varied from surface to surface in the range of 0.9 to 0.2.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS848178A CS254656B1 (en) | 1984-10-29 | 1984-10-29 | A method for preparing a wear-resistant titanium carbide thin layer on an electrically conductive solid substrate |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS848178A CS254656B1 (en) | 1984-10-29 | 1984-10-29 | A method for preparing a wear-resistant titanium carbide thin layer on an electrically conductive solid substrate |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CS817884A1 CS817884A1 (en) | 1987-06-11 |
| CS254656B1 true CS254656B1 (en) | 1988-01-15 |
Family
ID=5432000
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS848178A CS254656B1 (en) | 1984-10-29 | 1984-10-29 | A method for preparing a wear-resistant titanium carbide thin layer on an electrically conductive solid substrate |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS254656B1 (en) |
-
1984
- 1984-10-29 CS CS848178A patent/CS254656B1/en unknown
Also Published As
| Publication number | Publication date |
|---|---|
| CS817884A1 (en) | 1987-06-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Matthews | Titanium nitride PVD coating technology | |
| Zhang et al. | TiN coating of tool steels: a review | |
| Nakamura et al. | Applications of wear-resistant thick films formed by physical vapor deposition processes | |
| US4401719A (en) | Highly hard material coated articles | |
| EP0672763B1 (en) | A process for coating metallic surfaces | |
| JP2793696B2 (en) | Wear resistant coating | |
| US5679448A (en) | Method of coating the surface of a substrate and a coating material | |
| EP0474369B1 (en) | Diamond-like carbon coatings | |
| CN212335269U (en) | Composite coating deposited on surface of cubic boron nitride cutter and vacuum coating device | |
| RU2409703C1 (en) | Procedure for vacuum application of coating on items out of electric conducting materials and dielectrics | |
| Peng et al. | Hard and wear-resistant titanium nitride films for ceramic cutting tools by pulsed high energy density plasma | |
| JP7179291B2 (en) | TiCN with reduced growth defects using HiPIMS | |
| CN111945111A (en) | Composite coating deposited on surface of cubic boron nitride cutter and deposition method | |
| KR102095344B1 (en) | Coated cutting tool | |
| Sharipov et al. | Increasing the resistance of the cutting tool during heat treatment and coating | |
| US4820392A (en) | Method of increasing useful life of tool steel cutting tools | |
| JP5218834B2 (en) | Film forming method and film forming apparatus | |
| Singh et al. | An overview: Electron beam-physical vapor deposition technology-Present and future applications | |
| JPH0911004A (en) | Hard layer covered cutting tool | |
| CS254656B1 (en) | A method for preparing a wear-resistant titanium carbide thin layer on an electrically conductive solid substrate | |
| Stowell | Ion-plated titanium carbide coatings | |
| US4925346A (en) | Method of increasing useful life of tool steel cutting tools | |
| WO2002070776A1 (en) | Deposition process | |
| JPS61195971A (en) | Formation of wear resisting film | |
| Novikov et al. | Superhard iC coatings used in complex processes of surface strengthening of tools and machine parts |