CS254656B1 - Method for production of an abrasion-proof thin layer made of titanium carbide on an electric conductive solid substrate - Google Patents
Method for production of an abrasion-proof thin layer made of titanium carbide on an electric conductive solid substrate Download PDFInfo
- Publication number
- CS254656B1 CS254656B1 CS848178A CS817884A CS254656B1 CS 254656 B1 CS254656 B1 CS 254656B1 CS 848178 A CS848178 A CS 848178A CS 817884 A CS817884 A CS 817884A CS 254656 B1 CS254656 B1 CS 254656B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- titanium
- hydrocarbon
- range
- titanium carbide
- electrically conductive
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 18
- 239000007787 solid Substances 0.000 title claims description 6
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 title claims description 6
- 238000004519 manufacturing process Methods 0.000 title description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000010936 titanium Substances 0.000 claims abstract description 20
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 9
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 9
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 9
- 229910052786 argon Inorganic materials 0.000 claims abstract description 8
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 claims abstract description 5
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 claims abstract description 5
- 239000011261 inert gas Substances 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims abstract description 3
- 239000007789 gas Substances 0.000 claims abstract 2
- 238000000034 method Methods 0.000 claims description 12
- 238000005253 cladding Methods 0.000 claims description 4
- 238000010894 electron beam technology Methods 0.000 claims description 2
- 239000010409 thin film Substances 0.000 claims 1
- 238000005019 vapor deposition process Methods 0.000 claims 1
- 238000005299 abrasion Methods 0.000 abstract description 4
- 241000282941 Rangifer tarandus Species 0.000 abstract 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Podstata spůsobu přípravy oteruvzdornej tenkej vrstvy karbidu titánu na elektricky vodivom pevnom substráte spočívá v tom, že na pevný elektricky vodivý substrát o- hriatý na teplotu váčšiu ako 300 °C sa pů sobí plazmou tvořenou parami titánu a inert ného plynu, zvyčajne argonu, za zníženého tlaku z intervalu 10' 4 až 10 Pa, za čím sa následné působí za .zníženého .tlaku z inter valu 10 “ 2 až 10 Pa plazmou tvořenou para mi titánu a uhlovodíka, zvyčajne acetylénu, alebo parami titánu a zmesou uhlovodíka a inertného plynu, pričom sa koncentrácia uhlovodíka plynule zvyšuje v intervale po merov k titánu od 0,2 do 0,7 a za tým v in tervale od 0,7 do 1,0.nature minded to of preparation abrasion resistant thin layers carbide titanium on the electrically conducting hard substrate is in how that on the firm electrically conductive substrate about- mull on the room rather than 300 ° C the pů reindeer plasma formed vapors titanium and inert Joint gas, usually argon for reduced pressure from interval 10 ' 4 until 10 Pa. for what the follow acts for Reduction in .tlaku from inter Wall 10 " 2 until 10 Pa plasma formed steam me titanium and hydrocarbon, usually acetylene, or vapors titanium and mixture hydrocarbon and inert gas, while the concentration hydrocarbon smoothly increases in interval after mers to titanium from 0.2 to 0.7 and for team in and tervale from 0.7 to 1.0.
Description
Vynález sa týká sposobu přípravy tvrdej oteruvzdornej tenkej vrstvy na báze karbidu titánu na pevnom elektricky vodivom substráte vo vákuu v plazme.The invention relates to a process for preparing a hard abrasion-resistant thin layer based on titanium carbide on a solid electrically conductive substrate under vacuum in a plasma.
V súčasnom období existuje mimo klasických metod vytvárania tvrdých oteruvzdorných vrstiev, například metody galvanické, plazmové, žiarové striekanie a tak ďalej, aj celý rad modernějších metód a technologických postupov ako například metoda chemického povlakovania, magnetrónového rozprašovania a iónového plátovania. Velkou nevýhodou týchto metód je v niektorých prípadoch nižšia tvrdost připravovaných vrstiev, nedostačujúca přilnavost k povliekanému substrátu, zhoršenie kvality mikrogeometrie finálneho povrchu upravovaného substrátu, připadne nutnost ohriatia substrátu na teplotu 900 °C až 1100 °C, ďalej energetickou a materiálovou náročnosťou a v neposlednom radě aj nežiadúcim vplyvom na životné prostredie. Metodami reaktívného iónového plátovania a magnetrónového rozprašovania je možné v súčasnom období vytvárať vrstvy karbidu titánu na rychlořezné ocele, konstrukčně a nástrojové ocele, spekané karbidy, titánové a hliníkové zliatiny a podobné pri teplotách nad 300 ^C. Vzhladom na nehomogenity povrchových vlastností týchto substrátov sa v mnohých prípadoch vyskytuje nevyhovujúca přilnavost pripravovanej vrstvy k substrátu. Toto má za následok stratu, úžitkových vlastností pripravovanej vrstvy v procese jej použitia.Nowadays there are a number of more modern methods and technological procedures such as chemical coating, magnetron spraying and ion cladding, in addition to the classical methods of hard abrasion-resistant layers, such as galvanic, plasma, thermal spraying and so on. The big disadvantage of these methods is in some cases lower hardness of prepared layers, insufficient adhesion to coated substrate, deterioration of microgeometry quality of final surface of treated substrate, eventually necessity of heating of substrate to temperature of 900 ° C to 1100 ° C, energy and material intensity and last but not least and undesirable effects on the environment. Reactive ion cladding and magnetron sputtering methods can now be used to form titanium carbide layers on high speed steels, structural and tool steels, sintered carbides, titanium and aluminum alloys, and the like at temperatures above 300 ° C. Due to the inhomogeneities of the surface properties of these substrates, in many cases there is an inadequate adhesion of the prepared layer to the substrate. This results in loss of utility properties of the prepared layer in the process of its use.
Vyššie uvedené nedostatky odstraňuje nový spósob přípravy vrstvy na báze karbidu titánu na pevnom elektricky vodivom substráte pódia vynálezu, ktorého podstatou je, že na pevný elektricky vodivý substrát ohriatý na teplotu vačšiu ako 300 °C sa posobí plazmou tvořenou parami titánu a inertného plynu, zvyčajne argonu, za zníženého tlaku z intervalu 10”4 Pa, za čím sa následné posobí za zníženého tlaku z intervalu IO-2 až 10 Pa plazmou tvořenou parami titánu a uhlovodíka, zvyčajne acetylénu, alebo parami titánu a zmesou uhlovodíka a inertného plynu, pričom sa koncentrácia uhlovodíka plynule zvyšuje v intervale pomerov k titánu od 0,2 do 0,7 a za tým v intervale od_0,7 do 1,0.The above-mentioned drawbacks are overcome by a novel process for preparing a titanium carbide layer on a solid electrically conductive substrate of the invention, which is based on the electrically conductive substrate heated to a temperature greater than 300 ° C by plating titanium and inert gas vapor, usually argon , under reduced pressure in the range 10 "4 Pa to thereby subsequently treated under reduced pressure in the range of -2 to IC 10 Pa, the plasma formed by titanium vapor and a hydrocarbon, usually acetylene or para titanium and mixtures of hydrocarbon and inert gas, wherein the concentration of The hydrocarbon continuously increases in the ratio of titanium to from 0.2 to 0.7, and thereafter in the range of from 0.7 to 1.0.
Dalej je podl’a vynálezu účelné, aby povrch pevného elektricky vodivého' substrátu bol bombardovaný iónmi inertného plynu, čo spósobuje odprašovanie adsorbovaných vrstiev z jeho povrchu a súčasne ohřev substrátu na požadovanú teplotu.It is further preferred according to the invention that the surface of the solid electrically conductive substrate be bombarded with inert gas ions, which causes the adsorbed layers to be dusted off its surface and at the same time to heat the substrate to the desired temperature.
Vrstvy na báze karbidu titánu připravené pódia vynálezu sa vyznačujú požadovanou adhéziou k povliekanému substrátu, ktorá je daná podkladovou tenkou vrstvou titánu, ďalej vysokou tvrdosťou a oteruvzdornosfou. Na základe týchto vlastností vrstvy připravené podta vynálezu sú předurčené pre aplikácie najmá v strojárstve na režné a tvárniace nástroje, extrémně namáhané tríbologické uzly strojných zariadení a podobné. Příklady prevedeniaThe titanium carbide layers prepared according to the invention are characterized by the desired adhesion to the coated substrate, which is given by the titanium undercoat, high hardness and abrasion resistance. Because of these properties, the layers prepared according to the invention are predestined for applications, in particular in mechanical engineering, for cutting and forming tools, extremely stressed tribological nodes of machinery and the like. Examples of design
Příklad 1Example 1
Overovanie spósobu podlá vynálezu prebiehalo na podložke z rýchloreznej ocele ČSN 19 830, ktorá bola umiestnená ako katóda v zariadení na iónové plátovanie s odparovačom s elektronovým zdrojom. Podložky boli ohriaté na teplotu nad 400 °C, a to počas ich čistenia v tlejivom výboji argonu pri tlaku 5 Pa. Za tým nanášanie systému vrstiev podi'.a vynálezu prebiehalo následovně: do vákuovej komory bol napúštaný argon na tlak 2.101 Pa za súčasného odparovania titánu pomocou elektronového lúča pri jeho výkone 2,5 KW po dobu 2 minút. V ďalšom kroku bol přítok argonu postupné zastavovaný a následné plynule priptíšťaný acetylén, a to na tlak 7.10”2 Pa pri súčasnom znížení výkonu odparovacieho zdroja na 2,0 KW. Proces tvorby vrstvy TiCx pri týchto parametrocb trval ďalšie 3 minúty. Popísaným sposobom vznikla na podložke z rýchloreznej ocele vrstva TiC0,95 o hrúbke 3,0 jum, ktorá bola difúzne spojená so substrátom cez tenkú vrstvu titánu.Verification of the method according to the invention was carried out on a high-speed steel support ČSN 19 830, which was placed as a cathode in an ion cladding device with an electron source evaporator. The pads were heated to a temperature above 400 ° C during their purification in a argon flash at 5 Pa. At the same time, the deposition of the system of layers according to the invention proceeded as follows: argon was fed into a vacuum chamber at a pressure of 2.10 1 Pa while simultaneously titrating the titanium with an electron beam at a power of 2.5 KW for 2 minutes. In the next step, the argon feed was gradually stopped and then the acetylene was continuously added to a pressure of 7.10 " 2 Pa while reducing the power of the evaporation source to 2.0 KW. The TiC x layer formation process for these parameters took an additional 3 minutes. Described previously formed on a substrate of high-speed steel layer of TiC 0, 95 having a thickness of 3.0 microns, which was diffusion bonded to the substrate through a thin layer of titanium.
Příklad 2Example 2
V ďalšom případe bol spósob přípravy vrstvy TiC overený za inák rovnakých podmienok, ako v příklade 1, avšak s tým rozdielom, že do vákuovej komory v prvom kroku bol napúštaný argon na tlak 2.IQ”1 Pa a súčasne odpařovaný titán pri výkone elektronového' zdroja 2,5 KW po dobu 1 minúty, za čím bol tlak argonu upravený na hodnotu 5 . IO”2 Pa. Po dosiahnutí uvedeného tlaku bol plynule do komory napúštaný acetylén, a to až do tlaku 3.10_1 Pa za sňčasnébO' odparovania titánu při výkone elektrónového zdroja 2,0 KW po dobu 5 minút. Po skončení procesu celková hrúbka takto pripravenej vrstvy bola 4 ,«m.In another case, a method for preparing layers of TiC verified under otherwise identical conditions as in Example 1, but with the difference that in the vacuum chamber in the first step the impregnation of argon to a pressure 2.IQ "1 Pa and simultaneously vaporized titanium in the performance of the electron ' source of 2.5 KW for 1 minute, after which the argon pressure was adjusted to 5. IO ” 2 Pa. After reaching this pressure was continuously infused into the chamber acetylene, up to a pressure of 3.10 Pa sňčasnébO _1 'evaporation of titanium in the performance of the electron source of 2.0 kW for 5 minutes. After completion of the process, the total thickness of the thus prepared layer was 4.1 .mu.m.
Popísaným spósobom podlá vynálezu vznikol na podložke z rýchloreznej ocele systém vrstiev tvořený podkladovou vrstvou z titánu a vrstvy Tičx s plynulým híbkovým koncentračným profilom, kde x sa měnilo smerom od povrchu v intervale od 0,9 až do 0,2.According to the method of the present invention, on a high-speed steel support, a layer system comprising a titanium backing layer and a Tic x layer with a continuous depth concentration profile was formed, where x varied from surface to surface in the range of 0.9 to 0.2.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS848178A CS254656B1 (en) | 1984-10-29 | 1984-10-29 | Method for production of an abrasion-proof thin layer made of titanium carbide on an electric conductive solid substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CS848178A CS254656B1 (en) | 1984-10-29 | 1984-10-29 | Method for production of an abrasion-proof thin layer made of titanium carbide on an electric conductive solid substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
CS817884A1 CS817884A1 (en) | 1987-06-11 |
CS254656B1 true CS254656B1 (en) | 1988-01-15 |
Family
ID=5432000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CS848178A CS254656B1 (en) | 1984-10-29 | 1984-10-29 | Method for production of an abrasion-proof thin layer made of titanium carbide on an electric conductive solid substrate |
Country Status (1)
Country | Link |
---|---|
CS (1) | CS254656B1 (en) |
-
1984
- 1984-10-29 CS CS848178A patent/CS254656B1/en unknown
Also Published As
Publication number | Publication date |
---|---|
CS817884A1 (en) | 1987-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Matthews | Titanium nitride PVD coating technology | |
Zhang et al. | TiN coating of tool steels: a review | |
Nakamura et al. | Applications of wear-resistant thick films formed by physical vapor deposition processes | |
EP0474369B1 (en) | Diamond-like carbon coatings | |
US5366564A (en) | Hard wear-resistant film and method for production thereof | |
RU2409703C1 (en) | Procedure for vacuum application of coating on items out of electric conducting materials and dielectrics | |
JP7179291B2 (en) | TiCN with reduced growth defects using HiPIMS | |
Sharipov et al. | Increasing the resistance of the cutting tool during heat treatment and coating | |
Singh et al. | An overview: Electron beam-physical vapor deposition technology-Present and future applications | |
CS254656B1 (en) | Method for production of an abrasion-proof thin layer made of titanium carbide on an electric conductive solid substrate | |
Stowell | Ion-plated titanium carbide coatings | |
WO2002070776A1 (en) | Deposition process | |
JPS6242995B2 (en) | ||
Schmid et al. | High Technology Ceramic Coatings—Current Limitations/Future Needs | |
JPS61195971A (en) | Formation of wear resisting film | |
Novikov et al. | Superhard iC coatings used in complex processes of surface strengthening of tools and machine parts | |
Zdanowski et al. | Modification of metal properties by ion plating of TiN | |
CN1775997A (en) | Device and process of microwave plasma enhanced arc glow coating coating | |
CN1147617C (en) | Vacuum plasma gas-phase deposit process to form multielement and multilayer discrete coating | |
CS252707B1 (en) | Method of titanium nitride's abrasion-proof layer formation on solid conductive substrate | |
Singh et al. | A short note on the development of thin-film using sputtering process | |
Freller et al. | Low temperature vapour phase coating processes for wear resistant coatings on high duty tools | |
Freller | Vapour-phase coating processes for hard coatings | |
RU2114209C1 (en) | Process of coat deposition in vacuum | |
JPH01132756A (en) | Method for coating of wear-resistant film |