CS254656B1 - Method for production of an abrasion-proof thin layer made of titanium carbide on an electric conductive solid substrate - Google Patents

Method for production of an abrasion-proof thin layer made of titanium carbide on an electric conductive solid substrate Download PDF

Info

Publication number
CS254656B1
CS254656B1 CS848178A CS817884A CS254656B1 CS 254656 B1 CS254656 B1 CS 254656B1 CS 848178 A CS848178 A CS 848178A CS 817884 A CS817884 A CS 817884A CS 254656 B1 CS254656 B1 CS 254656B1
Authority
CS
Czechoslovakia
Prior art keywords
titanium
hydrocarbon
range
titanium carbide
electrically conductive
Prior art date
Application number
CS848178A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS817884A1 (en
Inventor
Jozef Kral
Milan Ferdinandy
Dusan Liska
Ivan Pecar
Original Assignee
Jozef Kral
Milan Ferdinandy
Dusan Liska
Ivan Pecar
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jozef Kral, Milan Ferdinandy, Dusan Liska, Ivan Pecar filed Critical Jozef Kral
Priority to CS848178A priority Critical patent/CS254656B1/en
Publication of CS817884A1 publication Critical patent/CS817884A1/en
Publication of CS254656B1 publication Critical patent/CS254656B1/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

Podstata spůsobu přípravy oteruvzdornej tenkej vrstvy karbidu titánu na elektricky vodivom pevnom substráte spočívá v tom, že na pevný elektricky vodivý substrát o- hriatý na teplotu váčšiu ako 300 °C sa pů ­ sobí plazmou tvořenou parami titánu a inert ­ ného plynu, zvyčajne argonu, za zníženého tlaku z intervalu 10' 4 až 10 Pa, za čím sa následné působí za .zníženého .tlaku z inter ­ valu 10 “ 2 až 10 Pa plazmou tvořenou para ­ mi titánu a uhlovodíka, zvyčajne acetylénu, alebo parami titánu a zmesou uhlovodíka a inertného plynu, pričom sa koncentrácia uhlovodíka plynule zvyšuje v intervale po ­ merov k titánu od 0,2 do 0,7 a za tým v in ­tervale od 0,7 do 1,0.nature minded to of preparation abrasion resistant thin layers carbide titanium on the electrically conducting hard substrate is in how that on the firm electrically conductive substrate about- mull on the room rather than 300 ° C the pů reindeer plasma formed vapors titanium and inert Joint gas, usually argon for reduced pressure from interval 10 ' 4 until 10 Pa. for what the follow acts for Reduction in .tlaku from inter Wall 10 " 2 until 10 Pa plasma formed steam me titanium and hydrocarbon, usually acetylene, or vapors titanium and mixture hydrocarbon and inert gas, while the concentration hydrocarbon smoothly increases in interval after mers to titanium from 0.2 to 0.7 and for team in and tervale from 0.7 to 1.0.

Description

Vynález sa týká sposobu přípravy tvrdej oteruvzdornej tenkej vrstvy na báze karbidu titánu na pevnom elektricky vodivom substráte vo vákuu v plazme.The invention relates to a process for preparing a hard abrasion-resistant thin layer based on titanium carbide on a solid electrically conductive substrate under vacuum in a plasma.

V súčasnom období existuje mimo klasických metod vytvárania tvrdých oteruvzdorných vrstiev, například metody galvanické, plazmové, žiarové striekanie a tak ďalej, aj celý rad modernějších metód a technologických postupov ako například metoda chemického povlakovania, magnetrónového rozprašovania a iónového plátovania. Velkou nevýhodou týchto metód je v niektorých prípadoch nižšia tvrdost připravovaných vrstiev, nedostačujúca přilnavost k povliekanému substrátu, zhoršenie kvality mikrogeometrie finálneho povrchu upravovaného substrátu, připadne nutnost ohriatia substrátu na teplotu 900 °C až 1100 °C, ďalej energetickou a materiálovou náročnosťou a v neposlednom radě aj nežiadúcim vplyvom na životné prostredie. Metodami reaktívného iónového plátovania a magnetrónového rozprašovania je možné v súčasnom období vytvárať vrstvy karbidu titánu na rychlořezné ocele, konstrukčně a nástrojové ocele, spekané karbidy, titánové a hliníkové zliatiny a podobné pri teplotách nad 300 ^C. Vzhladom na nehomogenity povrchových vlastností týchto substrátov sa v mnohých prípadoch vyskytuje nevyhovujúca přilnavost pripravovanej vrstvy k substrátu. Toto má za následok stratu, úžitkových vlastností pripravovanej vrstvy v procese jej použitia.Nowadays there are a number of more modern methods and technological procedures such as chemical coating, magnetron spraying and ion cladding, in addition to the classical methods of hard abrasion-resistant layers, such as galvanic, plasma, thermal spraying and so on. The big disadvantage of these methods is in some cases lower hardness of prepared layers, insufficient adhesion to coated substrate, deterioration of microgeometry quality of final surface of treated substrate, eventually necessity of heating of substrate to temperature of 900 ° C to 1100 ° C, energy and material intensity and last but not least and undesirable effects on the environment. Reactive ion cladding and magnetron sputtering methods can now be used to form titanium carbide layers on high speed steels, structural and tool steels, sintered carbides, titanium and aluminum alloys, and the like at temperatures above 300 ° C. Due to the inhomogeneities of the surface properties of these substrates, in many cases there is an inadequate adhesion of the prepared layer to the substrate. This results in loss of utility properties of the prepared layer in the process of its use.

Vyššie uvedené nedostatky odstraňuje nový spósob přípravy vrstvy na báze karbidu titánu na pevnom elektricky vodivom substráte pódia vynálezu, ktorého podstatou je, že na pevný elektricky vodivý substrát ohriatý na teplotu vačšiu ako 300 °C sa posobí plazmou tvořenou parami titánu a inertného plynu, zvyčajne argonu, za zníženého tlaku z intervalu 10”4 Pa, za čím sa následné posobí za zníženého tlaku z intervalu IO-2 až 10 Pa plazmou tvořenou parami titánu a uhlovodíka, zvyčajne acetylénu, alebo parami titánu a zmesou uhlovodíka a inertného plynu, pričom sa koncentrácia uhlovodíka plynule zvyšuje v intervale pomerov k titánu od 0,2 do 0,7 a za tým v intervale od_0,7 do 1,0.The above-mentioned drawbacks are overcome by a novel process for preparing a titanium carbide layer on a solid electrically conductive substrate of the invention, which is based on the electrically conductive substrate heated to a temperature greater than 300 ° C by plating titanium and inert gas vapor, usually argon , under reduced pressure in the range 10 "4 Pa to thereby subsequently treated under reduced pressure in the range of -2 to IC 10 Pa, the plasma formed by titanium vapor and a hydrocarbon, usually acetylene or para titanium and mixtures of hydrocarbon and inert gas, wherein the concentration of The hydrocarbon continuously increases in the ratio of titanium to from 0.2 to 0.7, and thereafter in the range of from 0.7 to 1.0.

Dalej je podl’a vynálezu účelné, aby povrch pevného elektricky vodivého' substrátu bol bombardovaný iónmi inertného plynu, čo spósobuje odprašovanie adsorbovaných vrstiev z jeho povrchu a súčasne ohřev substrátu na požadovanú teplotu.It is further preferred according to the invention that the surface of the solid electrically conductive substrate be bombarded with inert gas ions, which causes the adsorbed layers to be dusted off its surface and at the same time to heat the substrate to the desired temperature.

Vrstvy na báze karbidu titánu připravené pódia vynálezu sa vyznačujú požadovanou adhéziou k povliekanému substrátu, ktorá je daná podkladovou tenkou vrstvou titánu, ďalej vysokou tvrdosťou a oteruvzdornosfou. Na základe týchto vlastností vrstvy připravené podta vynálezu sú předurčené pre aplikácie najmá v strojárstve na režné a tvárniace nástroje, extrémně namáhané tríbologické uzly strojných zariadení a podobné. Příklady prevedeniaThe titanium carbide layers prepared according to the invention are characterized by the desired adhesion to the coated substrate, which is given by the titanium undercoat, high hardness and abrasion resistance. Because of these properties, the layers prepared according to the invention are predestined for applications, in particular in mechanical engineering, for cutting and forming tools, extremely stressed tribological nodes of machinery and the like. Examples of design

Příklad 1Example 1

Overovanie spósobu podlá vynálezu prebiehalo na podložke z rýchloreznej ocele ČSN 19 830, ktorá bola umiestnená ako katóda v zariadení na iónové plátovanie s odparovačom s elektronovým zdrojom. Podložky boli ohriaté na teplotu nad 400 °C, a to počas ich čistenia v tlejivom výboji argonu pri tlaku 5 Pa. Za tým nanášanie systému vrstiev podi'.a vynálezu prebiehalo následovně: do vákuovej komory bol napúštaný argon na tlak 2.101 Pa za súčasného odparovania titánu pomocou elektronového lúča pri jeho výkone 2,5 KW po dobu 2 minút. V ďalšom kroku bol přítok argonu postupné zastavovaný a následné plynule priptíšťaný acetylén, a to na tlak 7.10”2 Pa pri súčasnom znížení výkonu odparovacieho zdroja na 2,0 KW. Proces tvorby vrstvy TiCx pri týchto parametrocb trval ďalšie 3 minúty. Popísaným sposobom vznikla na podložke z rýchloreznej ocele vrstva TiC0,95 o hrúbke 3,0 jum, ktorá bola difúzne spojená so substrátom cez tenkú vrstvu titánu.Verification of the method according to the invention was carried out on a high-speed steel support ČSN 19 830, which was placed as a cathode in an ion cladding device with an electron source evaporator. The pads were heated to a temperature above 400 ° C during their purification in a argon flash at 5 Pa. At the same time, the deposition of the system of layers according to the invention proceeded as follows: argon was fed into a vacuum chamber at a pressure of 2.10 1 Pa while simultaneously titrating the titanium with an electron beam at a power of 2.5 KW for 2 minutes. In the next step, the argon feed was gradually stopped and then the acetylene was continuously added to a pressure of 7.10 " 2 Pa while reducing the power of the evaporation source to 2.0 KW. The TiC x layer formation process for these parameters took an additional 3 minutes. Described previously formed on a substrate of high-speed steel layer of TiC 0, 95 having a thickness of 3.0 microns, which was diffusion bonded to the substrate through a thin layer of titanium.

Příklad 2Example 2

V ďalšom případe bol spósob přípravy vrstvy TiC overený za inák rovnakých podmienok, ako v příklade 1, avšak s tým rozdielom, že do vákuovej komory v prvom kroku bol napúštaný argon na tlak 2.IQ”1 Pa a súčasne odpařovaný titán pri výkone elektronového' zdroja 2,5 KW po dobu 1 minúty, za čím bol tlak argonu upravený na hodnotu 5 . IO”2 Pa. Po dosiahnutí uvedeného tlaku bol plynule do komory napúštaný acetylén, a to až do tlaku 3.10_1 Pa za sňčasnébO' odparovania titánu při výkone elektrónového zdroja 2,0 KW po dobu 5 minút. Po skončení procesu celková hrúbka takto pripravenej vrstvy bola 4 ,«m.In another case, a method for preparing layers of TiC verified under otherwise identical conditions as in Example 1, but with the difference that in the vacuum chamber in the first step the impregnation of argon to a pressure 2.IQ "1 Pa and simultaneously vaporized titanium in the performance of the electron ' source of 2.5 KW for 1 minute, after which the argon pressure was adjusted to 5. IO ” 2 Pa. After reaching this pressure was continuously infused into the chamber acetylene, up to a pressure of 3.10 Pa sňčasnébO _1 'evaporation of titanium in the performance of the electron source of 2.0 kW for 5 minutes. After completion of the process, the total thickness of the thus prepared layer was 4.1 .mu.m.

Popísaným spósobom podlá vynálezu vznikol na podložke z rýchloreznej ocele systém vrstiev tvořený podkladovou vrstvou z titánu a vrstvy Tičx s plynulým híbkovým koncentračným profilom, kde x sa měnilo smerom od povrchu v intervale od 0,9 až do 0,2.According to the method of the present invention, on a high-speed steel support, a layer system comprising a titanium backing layer and a Tic x layer with a continuous depth concentration profile was formed, where x varied from surface to surface in the range of 0.9 to 0.2.

Claims (1)

PREDMETSUBJECT Spósob přípravy oteruvzdornej tenkej vrstvy karbidu titánu na elektricky vodivom pevnom substráte, ktorý tvoří katódu v iónovo plátovacom systéme s odpařováním látky elektrónovo-lúčovým zdrojom, vyznačený tým, že na pevný elektricky vodivý substrát ohriatý na teplotu vačšiu ako 300 °C sa posobí plazmou tvořenou parami titánu a inertného plynu, zvyčajne argonu, za zníženéhoA method of preparing a wear resistant titanium carbide thin film on an electrically conductive solid substrate that forms a cathode in an ion cladding system with an electron beam source vapor deposition process, characterized in that the solid electrically conductive substrate heated to a temperature greater than 300 ° C is treated with vapor plasma. titanium and an inert gas, usually argon, under reduced pressure VYNÁLEZU tlaku z intervalu 104 až 10 Pa, za čím sa následné posobí za zníženého tlaku z intervalu 10'2 až 10 Pa plazmou tvořenou parami titánu a uhlovodíka, zvyčajne acetylénu, alebo parami titánu a zmesou uhlovodíka a inertného' plynu, pričom sa koncentrácia uhlovodíka plynule zvyšuje v intervale pomerov k titánu od 0,2 do 0,7 a za tým v intervale od 0,7 do 1,0.Invention, the pressure in the range of 10 4 to 10 Pa, to thereby subsequently treated under reduced pressure in the range 10 '2 and 10 Pa plasma formed by vapor of titanium and a hydrocarbon, usually acetylene or para titanium and mixtures of hydrocarbon and inert' gas, the concentration The hydrocarbon continuously increases in the ratio to the titanium range from 0.2 to 0.7 and thereafter in the range from 0.7 to 1.0.
CS848178A 1984-10-29 1984-10-29 Method for production of an abrasion-proof thin layer made of titanium carbide on an electric conductive solid substrate CS254656B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS848178A CS254656B1 (en) 1984-10-29 1984-10-29 Method for production of an abrasion-proof thin layer made of titanium carbide on an electric conductive solid substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS848178A CS254656B1 (en) 1984-10-29 1984-10-29 Method for production of an abrasion-proof thin layer made of titanium carbide on an electric conductive solid substrate

Publications (2)

Publication Number Publication Date
CS817884A1 CS817884A1 (en) 1987-06-11
CS254656B1 true CS254656B1 (en) 1988-01-15

Family

ID=5432000

Family Applications (1)

Application Number Title Priority Date Filing Date
CS848178A CS254656B1 (en) 1984-10-29 1984-10-29 Method for production of an abrasion-proof thin layer made of titanium carbide on an electric conductive solid substrate

Country Status (1)

Country Link
CS (1) CS254656B1 (en)

Also Published As

Publication number Publication date
CS817884A1 (en) 1987-06-11

Similar Documents

Publication Publication Date Title
Matthews Titanium nitride PVD coating technology
Zhang et al. TiN coating of tool steels: a review
Nakamura et al. Applications of wear-resistant thick films formed by physical vapor deposition processes
EP0474369B1 (en) Diamond-like carbon coatings
US5366564A (en) Hard wear-resistant film and method for production thereof
RU2409703C1 (en) Procedure for vacuum application of coating on items out of electric conducting materials and dielectrics
JP7179291B2 (en) TiCN with reduced growth defects using HiPIMS
Sharipov et al. Increasing the resistance of the cutting tool during heat treatment and coating
Singh et al. An overview: Electron beam-physical vapor deposition technology-Present and future applications
CS254656B1 (en) Method for production of an abrasion-proof thin layer made of titanium carbide on an electric conductive solid substrate
Stowell Ion-plated titanium carbide coatings
WO2002070776A1 (en) Deposition process
JPS6242995B2 (en)
Schmid et al. High Technology Ceramic Coatings—Current Limitations/Future Needs
JPS61195971A (en) Formation of wear resisting film
Novikov et al. Superhard iC coatings used in complex processes of surface strengthening of tools and machine parts
Zdanowski et al. Modification of metal properties by ion plating of TiN
CN1775997A (en) Device and process of microwave plasma enhanced arc glow coating coating
CN1147617C (en) Vacuum plasma gas-phase deposit process to form multielement and multilayer discrete coating
CS252707B1 (en) Method of titanium nitride's abrasion-proof layer formation on solid conductive substrate
Singh et al. A short note on the development of thin-film using sputtering process
Freller et al. Low temperature vapour phase coating processes for wear resistant coatings on high duty tools
Freller Vapour-phase coating processes for hard coatings
RU2114209C1 (en) Process of coat deposition in vacuum
JPH01132756A (en) Method for coating of wear-resistant film