CS252524B1 - Method of n-alkanes production - Google Patents

Method of n-alkanes production Download PDF

Info

Publication number
CS252524B1
CS252524B1 CS857474A CS747485A CS252524B1 CS 252524 B1 CS252524 B1 CS 252524B1 CS 857474 A CS857474 A CS 857474A CS 747485 A CS747485 A CS 747485A CS 252524 B1 CS252524 B1 CS 252524B1
Authority
CS
Czechoslovakia
Prior art keywords
alkanes
hydrocracking
content
sulfur
petroleum
Prior art date
Application number
CS857474A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS747485A1 (en
Inventor
Jozef Baxa
Vendelin Macho
Martin Bajus
Karol Hlinstak
Ivan Kopernicky
Original Assignee
Jozef Baxa
Vendelin Macho
Martin Bajus
Karol Hlinstak
Ivan Kopernicky
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jozef Baxa, Vendelin Macho, Martin Bajus, Karol Hlinstak, Ivan Kopernicky filed Critical Jozef Baxa
Priority to CS857474A priority Critical patent/CS252524B1/en
Publication of CS747485A1 publication Critical patent/CS747485A1/en
Publication of CS252524B1 publication Critical patent/CS252524B1/en

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

n-Alkány sa vyrábajú odparafinovaním produktov o teplote varu z rozsahu 200 až 450 °C s obsahom n-alkánov minimálně 20 % hmot. z hydrokrakovania ropných látok s teplotou varu nad 300 °C (vákuové destiláty, gáče, extrakty a ich zmesi).n-Alkanes are produced by dewaxing boiling in the range of 200 to 450 ° C with n-alkanes content at least 20% wt. from the hydrocracking of petroleum substances boiling above 300 ° C (vacuum distillates, extracts and mixtures thereof).

Description

Vynález sa týká sposobu výroby n-alkánov Cio až Cso, zvlášť n-alkánov Cu až Cis, odparafinovaním frakcií z netradičných uhlovodíkových surovin s nízkým obsahom aromátov a len nepatrným obsahom síry a dusíka. Potom na rozdiel od obdobnej ropnej frakcie si nevyžaduje ani predbežnú rafináciu pred použitím na výrobu, či získavanie n-alkánov adsorpčnými procesmi.The invention relates to a process for the production of C 10 -C 50 n-alkanes, in particular C 1 -C 18 n-alkanes, by dewaxing fractions of low aromatic, non-traditional hydrocarbon feedstocks with only a low sulfur and nitrogen content. Then, unlike a similar petroleum fraction, it does not require pre-refining prior to use in the manufacture or recovery of n-alkanes by adsorption processes.

Mnoho pozornosti sa už věnovalo hydrogenolýze uhfovodíkov (Brcoks C. T.: Ing. Eng. Chem. Tundam 6, 236 (1967]; C. A. 68, 23263 f; Kohloefl K., Bažant V.: J. Catal. 10,; 140 (1968); Sinfelt: Catal. Rev. 3, No 2, 175 (1969); Eiichii Kikuchi a i.: J. Catal. 22, 226 (1971); jap. pat. 7396477 (1973); C. A. 80, 95205 j a i.) na obvyklých hydrogenačných katalyzátoroch, najmá na vzácných kovoch (Pt, Rh, Ru, Pd), ale tiež na nikle, kobalte, molybdene, volfráme, urane, chróme i železe, spravidla na kyslých nosičoch (alumina, hlinitokremičitany a i.j, ale nevěnovala sa dostatočná pozornost konverzii, či potencionálnym premenám izoalkánov a cykloalkánov na n-alkány. Naproti tomu sa však poměrně dókladne preštudovala hydrogenolýza organických, respektive uhlovodíkových zlúčenín síry a dusíka za tvorby uhlovodíka a sírovodíka, respektive amoniaku takisto na uvedených katalyzátoroch a to či už vo formě kovu na nosičoch, oxidov alebo sírnikov [V. Brit. pat. 1 311 473; jap. pat. 76 26686 (1976); Ozimek a i.: Chem. Stosow. 19, 97 (1975); Sotani: Rev. Phys. Chem. Jap. 48, 9 (1976); C. A. 86, 54697 b; Benson a i.: Hydro' carbon Process 53, No 4, 81 (1974) j, pričom sa venuje pozornost aj zachytávaniu sírovodíka a amoniaku z plynných podielov hydrogenolýzy.Much attention has already been paid to the hydrogenolysis of hydrocarbons (Brcoks CT: Ing. Eng. Chem. Tundam 6, 236 (1967); CA 68, 23263 f; Kohloefl K., Bazant V .: J. Catal. 10, 140 (1968)) Sinfelt: Catal. Rev. 3, No 2, 175 (1969), Eiichii Kikuchi et al., J. Catal. 22, 226 (1971), Japanese Pat 7396477 (1973), CA 80, 95205 et al. ) on conventional hydrogenation catalysts, especially on precious metals (Pt, Rh, Ru, Pd), but also on nickel, cobalt, molybdenum, tungsten, uranium, chromium and iron, usually on acidic supports (alumina, aluminosilicates and others) but Conversely, however, the hydrogenolysis of the organic and hydrocarbon compounds of sulfur and nitrogen with the formation of the hydrocarbon and hydrogen sulfide and ammonia, respectively in the above-mentioned catalysts, has been studied quite carefully. metal on carriers, oxides or sulphides [V. Bri U.S. Pat. No. 1,311,473, Japanese Pat 76, 26686 (1976), Ozimek et al., Chem. Stosowne. 19, 97 (1975); Sotani: Rev. Phys. Chem. Jap. 48, 9 (1976); C.A. 86, 54697 b; Benson et al., Hydrocarbon Process 53, No 4, 81 (1974), paying attention also to the capture of hydrogen sulfide and ammonia from the hydrogenolysis gas fractions.

Tiež dávnejšíe je známe [Cernožukov N. I. Technologija pererabotki nefti i gaza,' časť 3. Izdatefstvo „Chimija“ Moskva 1978; Ogorodnikov S. K. (red.j: Spravočnik neftechimika 1. a 2. diel. „Chimija“ Leningrad (1978); indický pat. 152 240 (1983); Lactic a i.: Gaziva Maziva 22, No 5—6, 253 (1983);' Ind. Eng. Chem. Prod. Res. Dev. 23, 634 (1984); Isunajlov a i.: Chim. Technol. topí. másel No 6, 32 (1984); USA pat. 4 455 444 a i.], že na odparafínovanie, či už močovino-adukčným procesom alebo pomocou molekulových sít 5A (zeolity CaA, NaX a i.) sa používajú ropné frakcie, najčastejšie petrolejová frakcia, resp. frakcie dieselových paliv, či širšie frakcie plynového oleja. V případe získavania n-hexánu to bývá úzká frakcia primárného benzínu. Avšak všetky tieto suroviny třeba pred použitím na deparafinízáciu, v závislosti od volby procesu viac alebo menej hydrorafinovať. Limitujúcim bývá obsah síry, aromátov i nenasýtených uhfovodíkov. Tak například na adsorpčný proces výroby n-alkánov v plynnej fáze, ktorý je poměrně energeticky náročný, je přípustné vo vstupnej surovině max. 0,2 % hmot. síry a 2.ÍO4 % dusíka, ale na účinnější a energeticky výhodnější proces v kvapalnej fáze je to už max. 2.10-4 síry a 1. . 104 % dusíka, pričom vo všetkých variantoch sa vyznačuje minimálny obsah aromátov.Also earlier is known [Cernožukov NI Technologija pererabotki nefti i gaza, 'part 3. Izdatefstvo' Khimija 'Moskva 1978; Ogorodnikov SK (ed.: Nephtechimics Episode 1 and 2. "Khimija" Leningrad (1978); Indian Pat. 152 240 (1983); Lactic et al.: Gaziva Maziva 22, No 5-6, 253 (1983) Ind. Eng. Chem Prod. Res., Dev., 23, 634 (1984); Isunaylov et al., Chim Technol. Butter No. 6, 32 (1984); US Pat. 4,455,444 et al. .] that petroleum fractions, most often petroleum fraction, diesel fuel fraction, or wider gas oil fraction, are used for dewaxing, either by the urea-reduction process or by 5A molecular sieves (zeolites CaA, NaX, etc.). However, all of these feedstocks need to be more or less hydrotreated prior to deparaffinization, depending on process choice, limiting the content of sulfur, aromatics and unsaturated hydrocarbons, such as the adsorption process of n-alkane production. in the gas phase, which is relatively energy intensive, e.g. permissible in the feed max. 0.2 wt.% of sulfur and nitrogen 2.ÍO 4%, but the energy-efficient and more preferred process the liquid phase is the maximum. 2.10 -4 sulfur and 1.. 4 10% N, which in all variations have minimal aromatic content.

O hydrokrakovaní je tiež dobré známe, že sa využívá hlavně na výrobu doplňuj úcich množstiev světlých ropných produktov katalytickým rozkladem ťažšej suroviny za přítomnosti vodíka. Ďalej, že existujú početné modifikácie hydrokrakovacích výrobných jednotiek. V závislosti od suroviny a produktov, ktoré sú ciefom výroby, využívajú jednostupňové a dvojstupňové procesy so stacionárnymi vrstvami katalyzátora, s fluidným i suspendovaným katalyzátorom. Jednostupňový variant sa používá obvykle, ak ciefom hydrokrakovania sú hlavně dieselové pálivá a dvojstupňový, na získanie fahších produktov.Hydrocracking is also well known to be mainly used to produce supplementary amounts of light petroleum products by catalytic decomposition of a heavier feedstock in the presence of hydrogen. Further, there are numerous modifications of hydrocracking production units. Depending on the raw material and products being manufactured, they employ single-stage and two-stage processes with stationary catalyst layers, both fluidized and suspended catalysts. The one-stage variant is usually used when the hydrocracking is mainly diesel fuels and two-stage to obtain lighter products.

Jeho produktami sú, okrem sírovodíka a amoniaku, ktoré sa starostlivo z recirkulačného plynu odstraňujú, plyny C1-C4,1'ahký benzín, ktorý má izoalkanický charakter a preto aj vysoké oktánové číslo (OČVM = 82—84). Ťažký benzín má obvykle vysoký obsah cykloparafinických uhfovodíkov a preto jo aj vynikajúcou surovinou pre katalytické reformovanie benzínov, ktorým sa získá reformát s obsahom aromátov nad 70 °/o. O petroleji z hydrokrakovania je takisto dobré známe [Spravodčnik neftechimika. „Chimija“, Leningrad (1978), Jurčacko; Ropa a uhlie 27, 69 (1985); jap. pat. 60 08392 (1985 j ], že obsahuje málo aromátov a že prakticky neobsahuje síru a alkény. Podobné i plynový olej má nízký obsah síry a znížený obsah aromátov. Tiež značná pozornost sa venuje katalyzátorom hydrokrakovania [Gofdfarb. a i.: Kinetika i kataliz ,25, 370 (1984); Strobel a i.: Proč. Int. Conf. Coal Sci 1983, s. 216; J. Catal. 22, 226 (1971); 31, 264 (1973); jap, pat. 73 96477 (1973); C. A. 80, 95205 jj], ale mimo pozornosti zostalo skúmanie obsahu n-alkánov v jednotlivých frakciách produktov v závislosti od podmienok a dalších parametrov hydrokrakovania ropných frakcií.Its products are, in addition to hydrogen sulphide and ammonia, which are carefully removed from the recirculation gas, the gases C1-C4,1'light gasoline, which has an isoalkanic character and therefore a high octane number (OCM = 82-84). The naphtha usually has a high content of cycloparaffinic hydrocarbons and therefore is also an excellent feedstock for the catalytic reforming of gasolines, which yields a reformate with aromatics above 70%. It is also well known about kerosene from hydrocracking. "Khimija", Leningrad (1978), Jurchacko; Oil and Coal 27, 69 (1985); jap. pat. 60 08392 (1985 j), which is low in aromatics and virtually free of sulfur and alkenes, and similar gas oil has low sulfur content and reduced aromatics content, as well as attention paid to hydrocracking catalysts [Gofdfarb et al. 25, 370 (1984), Strobel et al., Proc Int Conf Conf Coal Sci 1983, 216, J. Catal. 22, 226 (1971); 31, 264 (1973); (1973); CA 80, 95205 [mu]], but the investigation of the n-alkane content of the individual product fractions remained out of focus depending on the conditions and other parameters of hydrocracking of the petroleum fractions.

Avšak podfa tohto vynálezu sa spQsob výroby n-alkánov odparafinovaním, ako selektívnou adsorpciou na molekulových sitách s následnou desorpciou alebo močovinou cez intermediárne adukty n-alkánov s močovinou uskutočňuje tak, že východiskovou surovinou pre odparafínovanie je frakcia o teplote varu z rozsahu 200 °C až 450 CC s obsahom n-alkánov minimálně 20 % hmot., z produktu hydrokrakovania ropnej frakcie s teplotou varu nad 300 °C a/alebo extraktov zo selektívnej rafinácie olejov a/alebo gáčov.However, according to the present invention, the process for producing n-alkanes by dewaxing such as selective adsorption on molecular sieves followed by desorption or urea via intermediate n-alkane-urea adducts is such that the starting material for dewaxing is a boiling range of 200 ° C to 200 ° C. 450 C with a n-alkane content of at least 20% by weight, from the hydrocracking product of an oil fraction boiling above 300 ° C and / or extracts of selective oil and / or slack refining.

Výhodou použitia produktov hydrokrakovania ropných frakcií podfa tohto vynálezu, opierajúceho sa o prekvapujúce zistenie, že hydrokrakovaním ropných frakcií, najma vákuových destilátov, sa hlavně v středných frakciách hydrokrakovania dosahuje výrazné vyšší obsah n-alkánov ako v obdobných ropných frakciách a navýše nízký obsah aro252524 mátov a zvlášť velmi nízký obsah síry. Naproti tomu nižšievrúce frakcie z hydrokrakovania majú zase vyšší obsah izoalkánov i cykLíílkánov, než obdobné ropné frakcie. Súvisí to s nižšou pevnostou vázieb C—C a C—H v miestach vetvenia izoalkánov a naviazania alkylov na kruhy, v důsledku indukcnéiio účinku alkylskupín. Na uvedených miestacíb molekuly uhlovodíkov dochádza vo vSčšej miere k. ich kaíalyticko-termickému štioponiu, vrátane hydrogenolýzy. To tiež umožňuje středné i vyššie frakcie z hydrokrakovania bezprostředné využit na výrobu n-alkánov, zvýšit výkon zariadení na výrobu n-alkánov, ale aj dalej znížiť teplotu tuhnutia a tým i kvalitu odalkánovaných frakcií hyd rokrakovania.The advantage of using petroleum fraction hydrocracking products according to the present invention, based on the surprising finding that hydrocracking of petroleum fractions, especially vacuum distillates, results in significantly higher n-alkane content than in similar petroleum fractions and, in addition, low aro252524 m-content. particularly low sulfur content. In contrast, the lower boiling fractions from hydrocracking have a higher content of isoalkanes and cyclohexanes than similar petroleum fractions. This is related to the lower strength of the C-C and C-H bonds at the isoalkane branching sites and the alkyl bonding to the rings due to the inducing effect of the alkyl groups. At these sites, the hydrocarbon molecules occur to a greater extent. their catalytic-thermopiopia, including hydrogenolysis. This also allows the medium and higher hydrocracking fractions to be used immediately for the production of n-alkanes, to increase the performance of the n-alkane production equipment, but also to further lower the freezing point and thus the quality of the odorantized hydrocracking fraction.

Ropnou frakciou sa ruzumie primárný a vakuový plynový olej, vakuový destilát ropy, zvlášt vákuový destilát z parafinickéj ropy, či sírno-parafinickej ropy, ako aj mazut.The petroleum fraction is the primary and vacuum gas oil, the vacuum oil distillate, especially the vacuum distillate from paraffinic oil or sulfur-paraffinic oil, as well as petroleum.

Podřa tohto vynálezu produktom předběžného fyzikálno-chemického spracovania ropy sú extrakty z rafinácie olejov, gáče, ťažké oleje z odasfaltovania zvyškových ropných frakcií, plynové oleje a ťažké destiláty z produktov termálneho krakovania a termálnelio koksovania. Priestorová rýchlosť hydrokrakovania závisí od kvality nástreku na hydrokrakovanie, reakčnej teploty parciálneho tlaku vodíka, druhu a aktivity katalyzátora, tak aj požadovanej híbky hydrokrakovania uhlovodíkových surovin. Pracovat možno pri teplotách 290 až 500 °C, ale obvykle najvhodnejšia je teplota v rozsahu 380 až 430 °C.According to the present invention, the products of the pre-physicochemical crude oil processing are oil refining extracts, slacks, heavy oils from the asphalting of residual petroleum fractions, gas oils and heavy distillates from thermal cracking and thermal coking products. The space velocity of hydrocracking depends on the quality of the hydrocracking feed, the hydrogen partial pressure reaction temperature, the type and activity of the catalyst, and the desired depth of hydrocracking of the hydrocarbon feedstocks. It is possible to work at temperatures of 290 to 500 ° C, but usually in the range of 380 to 430 ° C is most suitable.

Hydrokrakovacie katalyzátory sú najčastejšie na báze kovov· alebo zlúčenín VI. a VIII. skupiny periodického systému prvkov, spravidla na kyslých nosičoch, ako je alumina, hlinitokremičitany přírodně, ale najma syntetické, dalej oxidy: hlinitý, křemičitý, titaničitý a zirkoničitý. Zlúčeniny kovov sú najčastejšie vo formě oxidov a najma sírnikov. Z kovov (a ich zlúčenín) najdůležitejšie sú nikel, kobalt, molybden, volfrám, urán, chróm, platina a paládium. Menej účinné, ale použitelné je železo a jeho zlúčeniny. Poměrně vysokoúčinné, ale technicko-ekonomicky fažšie dostupné sú vzácné kovy: platina, paládium, ruténium, rénium a rádium.Hydrocracking catalysts are most often based on metals or compounds VI. and VIII. groups of the periodic system of elements, generally on acidic supports such as alumina, aluminosilicates naturally, but in particular synthetic, other oxides: aluminum, silica, titanium and zirconium. The metal compounds are most often in the form of oxides and in particular sulfides. Of the metals (and their compounds), the most important are nickel, cobalt, molybdenum, tungsten, uranium, chromium, platinum and palladium. Less effective but useful is iron and its compounds. Relatively high-performance but technically economically feasible are precious metals: platinum, palladium, ruthenium, rhenium and radium.

Obsah jednotlivého kovu alebo viacerých kovov v katalyzátore hydrokrakovania bývá v rozsahu 0,2 až 35 % hmot. Cím je kovová zložka ušfaóhtilejšia, tým jej menšie množstvo postačuje v katalyzátore. V prípadoch najbežnejších katalyzátorov, akými sú oxidy alebo sulfidy molybdenu,, železa, kobaltu a niklu na nosičoch, obsahujúcich oxid hlinitý, oxid křemičitý, oxid titaničitý a oxid zirkoničitý je například okolo 2,5 % CoO, 8 % M0O3, 15 % S1O2 a okolo 75 % AI2O3. Potom 6 % Ni a 15 °/o W vo formě oxidov aleho sírnikov na aluminosilikáte; oxidy alebo sírniky Ni alebo Co, W a Mo v celkovom množstve 16 % na kryštalickom alumosilikáte ap.The content of the individual metal or more metals in the hydrocracking catalyst is in the range of 0.2 to 35% by weight. The more refined the metal component is, the less is sufficient in the catalyst. For the most common catalysts such as molybdenum, iron, cobalt and nickel oxides or sulphides on supports containing alumina, silica, titanium dioxide and zirconium dioxide, for example, about 2.5% CoO, 8% MoO3, 15% S1O2 and about 75% Al 2 O 3. Then 6% Ni and 15% W in the form of oxides or sulphides on the aluminosilicate; oxides or sulfides of Ni or Co, W and Mo in a total amount of 16% on the crystalline alumosilicate and the like.

Aplikovať možno i ďalšie známe účinné katalyzátory hydrokrakovania. V menšej miere můžu katalyzátory obsahovat aj přísady iných prvkov.Other known effective hydrocracking catalysts may also be applied. To a lesser extent, catalysts may also contain additives of other elements.

Hydrokrakovaním sa tiež produkty zbavujú síry, dusíka vo fcrme sírovodíka a amoniaku, připadne i dalších příměsí, ako fosforu ap. Odstraňujú sa najčastejšie vypieraním recirkulovaného vodíka. Pre výrobu n-alkánov možno využit viaceré frakcie z produktu hydrokrakovania, ale z hladiska obsahu n-alkánov, ako aj obvyklých potrieb, najvhodnejšia je frakciao t. v. 200 až 360 °C, respektive 200 až 340 CC. Z vyšších frakcií ako 360 °C sa dajú n-alkány odstrániť predovšetkým močovinovým odparafínovaním.Hydrocracking also deprives sulfur, nitrogen in hydrogen sulphide and ammonia, as well as other impurities such as phosphorus and the like. They are most often removed by scrubbing recirculated hydrogen. For the production of n-alkanes can be used a number of fractions of the hydrocracking product, but in terms of the content of n-alkanes, and the conventional equipment, the most suitable telephone frakciao 200-360 DEG C., or 200-340 C C. From the fraction of higher than 360 ° C the n-alkanes can be removed primarily by urea dewaxing.

Ďalšia charakteristika i dalšie výhody spůsobu výroby podřa tohto vynálezu sú zřejmé z príkladov.Further characteristics as well as other advantages of the production method according to the invention are evident from the examples.

P r í k 1 a d 1Example 1

Vákuový ropný destilát zo sírno-parafinickej ropy sa vedie na kontinuálně hydrokrakovanie na nikelmolybdénovom katalyzátore (s obsahom Ni + Mo = 18,3 % hmot.) na amorfnom hlinitokremičitanovom nosiči, uskutečňované pri priestorovej rýchlosti 1,3 h '1, teplote 415 + 5 °C za přítomnosti vodíka a tlaku 14,5 MPa. Získávány surový produkt vychádzajúci z reaktora hydrokrakovania (po odpočítaní vodíka] obsahuje 0,12% amoniaku; 2,11 % sírovodíka; 0,40 % plynov Ci—C;; 6,65 % zmesi propánu s butánom a izobutánom; 13,01 % fahkého benzínu; 50,25 percenta fažkého benzínu; 10,25 % petroleje a 17,08 % plynového oleja. Surový produkt, jeho jednotlivé komponenty sa izolujú. Amoniak, sirovodík ako aj plyny Cl—Ca sa_ oddel'ujú z recirkulovaného plynu (vodíka), potom sa odděluje zmes C3—Cr uhlovodíkov a destiláciou, rektifikáciou dalšie frakcie uhřcvodíkov. Tak sa účelove izoluje aj frakcia s teplotou varu 200 až 360 °C, ktorá má tieto vlastnosti: teplotu tuhnutia = —7°C; hustotu pri 20 °C = 781,2 kg.m3; středná mólovú hmotnost — 232,4 g.mól-1; obsah síry = — 1.10~4°/o hmot.; obsah n-alkánov Cu— —Co — 66,4 %; 6,2 % aromátov; zvyšok tvoria izoalkány a cykloalkány.Vacuum petroleum distillate from sulfur-paraffinic oil is fed to continuous hydrocracking on a nickel-molybdenum catalyst (containing Ni + Mo = 18.3% by weight) on an amorphous aluminosilicate carrier carried out at a space velocity of 1.3 h -1 , temperature 415 + 5. ° C in the presence of hydrogen at a pressure of 14.5 MPa. The crude product obtained from the hydrocracking reactor (after deduction of hydrogen) contains 0.12% ammonia; 2.11% hydrogen sulfide; 0.40% C1-C gases; 6.65% propane / butane / isobutane mixture; 13.01% 50.25% naphtha, 10.25% kerosene and 17.08% gas oil The crude product, its individual components are recovered Ammonia, hydrogen sulfide as well as Cl-Ca gases are separated from the recirculated gas (hydrogen) ), then a mixture of C3-Cr hydrocarbons is separated and distilled, by rectification of another hydrocarbon fraction, to isolate the fraction having a boiling point of 200-360 ° C, which has the following properties: pour point = -7 ° C, density at 20 ° C 781.2 kg.m 3, an average molar weight - 232,4 g.mol -1, sulfur content = - 10.1 ~ 4 ° / o by weight of n-.; alkanes -C Cu - 66.4%; 6.2% of aromatics, the rest being isoalkanes and cycloalkanes.

Obsah n-alkánov sa stanovuje známými metodami [Anal. Chem. 34, 82 (1962); Nelson Κ. H., Grimes M. D., Heinrich B. J.: Anal. Chem. 29, 1026 (1957) ], navýše kombinovanými s chromatografiou kvapalina-plyn na zistenie distribúcie jednotlivých n-alkánov vo frakcií. Princip metody spočívá v adsorpci i n-alkánov rozpuštěných v izooktáne, použitom (pridanom k vzorke) ako rozpúšťadlo, na tabletovanom molekulovom site 5A počas 4 h silného refluxovania. Šitá sa odfiltrujú, rozpúšťadlo sa odpaří, zvyšok pozostávajúci z rozvětvených parafínov· sa zváží. Obsah n-alkánov vo vzorke je daný hmotnostným rozdielom medzi, neadsorbovaným zvyškom a původnou vzorkou.The content of n-alkanes is determined by known methods [Anal. Chem. 34, 82 (1962); Nelson Κ. H., Grimes M. D., Heinrich B. J .: Anal. Chem. 29, 1026 (1957)], in addition combined with liquid-gas chromatography to determine the distribution of individual n-alkanes in fractions. The principle of the method is based on adsorption of n-alkanes dissolved in isooctane, used (added to the sample) as a solvent, on a tableted molecular sieve 5A for 4 h of reflux. The sutures are filtered off, the solvent is evaporated, the residue consisting of branched paraffins is weighed. The content of n-alkanes in the sample is given by the weight difference between the unadsorbed residue and the original sample.

Podobné, ale menej přesné výsledky sa do252 sahujú metodami založenými na tvorbě kryštalických aduktov n-alkánov s močovinou [Domask, Kobl.: Petroleum Ref. 34, č. 4, 128 (1955); Zimmerschield a i.: Ind. Chem. Eúg. 42, 1300 (1950); Schliessler, Flitter: J. Am. Chem. Soc. 74, 1720 (1952)]. Tieto metody sú však vhodné pre stanovenie ešte vyšších n-alkánov (nad C24).Similar but less accurate results are obtained by methods based on the formation of crystalline adducts of n-alkanes with urea [Domask, Kobl .: Petroleum Ref. 34, no. 4, 128 (1955); Zimmerschield et al., Ind. Chem. EUG. 42, 1300 (1950); Schliessler, Flitter, J. Am. Chem. Soc. 74, 1720 (1952)]. However, these methods are useful for determining even higher n-alkanes (above C24).

Destilačný zvyšok, t. j. zmes uhlovodíkov nad 360 °C má strednú mól. hmotnost 402,8 gramu. mól-1.The distillation residue, ie the hydrocarbon mixture above 360 ° C, has a mean molar. weight 402.8 grams. mol -1 .

Takto získaná frakcia o t. v. 200 až 360 °C sa vedie na výrobu či získavanie n-alkánov odparafinovaním v kvapalné) fáze na molekulových sitách (procesy: Molex, Parex) miesto ropnej hydrogenovanej frakcíe o t. v. 200 až 360 °'C, získanej z podobnej západosibírskej sírno-parafinickej ropy, ktorá obsahuje 28,3 % n-alkánov, 25,3 % aromátov a síry 0,04 % hmot. Túto navýše, vzhladom na vysoký obsah síry a jej zlúčenín, ako aj aromátov před odparafinovaním v kvapalnej fáze, je zapotreby hydrorafinovať.The fraction thus obtained, m.p. in. 200-360 ° C is used to produce or recover n-alkanes by dewaxing in the liquid) phase on molecular sieves (processes: Molex, Parex) instead of the petroleum hydrogenated fraction of m.p. in. 200-360 ° C, obtained from a similar West Siberian sulfur-paraffinic oil containing 28.3% n-alkanes, 25.3% aromatics and 0.04% sulfur by weight. In addition, due to the high content of sulfur and its compounds, as well as aromatics, prior to dewaxing in the liquid phase, it is necessary to hydrotreat.

Příklad 2Example 2

Vákuový ropný destilát zo západosibírskej sírno-parafinickej ropy sa vedie na kontinuálně hydrokrakovanie na sírnikovom nikel-molybdén-volfrám hlinitokremičitanovom katalyzátore s obsahom kovových zložiekVacuum petroleum distillate from West Siberian sulfur-paraffinic petroleum is fed to continuous hydrocracking on a sulphide-nickel-molybdenum-tungsten aluminosilicate catalyst containing metal constituents

21,3 % hmot. pri priestorovej rýchlosti 1,5 hodiny1, teplote 395+5 °C v prostředí vodíka za tlaku 15 MPa.21.3 wt. at a space velocity of 1.5 hours 1 , a temperature of 395 + 5 ° C in a hydrogen atmosphere at a pressure of 15 MPa.

Získávaný surový produkt vychádzajúci z reaktora hydrokrakovania obsahuje po odpočítaní vodíka 0,12 % amoniaku; 2,11 % sírovodíka; 0,31 % plynov Ci—C2; 3,00 % zme24 si propánu s n-butánom a izobutánom; 5,69 percenta 1'ahkého benzínu; 23,85 % ťažkého benzínu; 25,34 % petroleja a 39,66 % plynového oleja.The crude product obtained from the hydrocracking reactor contained 0.12% ammonia after deduction of hydrogen; 2.11% hydrogen sulfide; 0.31% of C1-C2 gases; 3.00% change of propane with n-butane and isobutane; 5.69 percent 1'light naphtha; 23.85% naphtha; 25.34% kerosene and 39.66% gas oil.

Okrem odstraňovania amoniaku, sírovodíka, izolácie metánu, etánu, ďalej propán-butánovej frakcie, ktorá sa dá tiež využiť ako hodnotný nástrek na pyrolýzy, najma po oddělení izobutánu, 1'ahkého benzínu, ktorý má izoalkanický charakter a oktánové číslo výskumnou metódou 83, ďalej ťažkého benzínu, ktorý po katalytickom reformovaní pri teplote 508 °C obsahuje 73 % aromátov a má oktanové číslo stanovené výskumnou metódou 101, sa dalej izoluje frakcia o teplote varu 200 až 360 cC/101 kPa, ktorá má strednú mól. hmotnost 233 g . mól-1; teplotu tuhnutia —8°C; obsah síry = 1,4.10-4 % hmot.; obsah n-alkánov 52,6 °/o, aromátov 7,2 °/o, pričom zvyšok tvoria izoalkány a cykloalkány.In addition to the removal of ammonia, hydrogen sulphide, the isolation of methane, ethane, the propane-butane fraction, which can also be used as a valuable pyrolysis feed, in particular after separation of isobutane, 1'-light naphtha having isoalkanic character and octane number by research method 83, The naphtha fraction, having a catalytic reforming at 508 DEG C. of 73% aromatics and having an octane number as determined by Research Method 101, is further isolated from a boiling point of 200-360 c / 101 kPa having a mole. weight 233 g. mol -1 ; pour point —8 ° C; sulfur content = 1.4.10 -4 % by weight; content of n-alkanes 52.6%, aromatics 7.2%, the remainder being isoalkanes and cycloalkanes.

Táto frakcia sa priamo vedie na výrobu, respektive získavanie n-alkánov pomocou molekulových sít — zeolitov CaA alebo NaX ako adsorbentov a zmesi n-alkánov Cg—CÝ ako desorbentu a amoniaku (teplota 320 + + 5 °C, tlak 0,17 MPa), pričom výťažok n-alkánov dosahuje 91 %.This fraction is directly led to the production or recovery of n-alkanes by means of molecular sieves - CaA or NaX zeolites as adsorbents and a mixture of n-alkanes Cg-CÝ as desorbent and ammonia (temperature 320 ± 5 ° C, pressure 0.17 MPa) wherein the yield of n-alkanes is 91%.

Destilačný zvyšok z produktu hydrokrakovania, t. j. s teplotou varu nad 360 °C/101 kPa má strednú mól. hmotnost 404 g . mól-1; hustotu pri 20 °C = 860 kg . m-3; obsah síry = = 1,8.10-4 %; elementárnou analýzou: C = = 85,51 %, H = 14,15 %; alkánocykloalkánov = 96,4 % hmot.: monoaromátov = 1,5 % hmot.; di- a triaromátov =0,43% hmot.; živice a zvyšok = 0,5 % hmot.The distillation residue from the hydrocracking product, i.e. boiling point above 360 ° C / 101 kPa, has a mean mol. weight 404 g. mol -1 ; density at 20 ° C = 860 kg. m -3 ; sulfur content = 1.8.10 -4 %; elemental analysis: C = 85.51%, H = 14.15%; alkanocycloalkanes = 96.4% by weight: monoaromatics = 1.5% by weight; di- and triaromates = 0.43% by weight; % resin and residue = 0.5 wt.

Claims (1)

PREDMETSUBJECT Spósob výroby n-alkánov odparafinovaním, ako selektívnou adsorpciou na molekulových sitách s následnou desorpciou alebo močovinou cez intermediárne adukty n-alkánov s močovinou, vyznačený tým, že východiskovou surovinou pre odparafinovanieProcess for the production of n-alkanes by dewaxing, such as by selective adsorption on molecular sieves followed by desorption or urea via intermediate adducts of n-alkanes with urea, characterized in that the starting material for dewaxing VYNALEZU je frakcia o teplote varu z rozsahu 200 °C až 450 °C s obsahom n-alkánov minimálně 20 % hmot., z produktu hydrokrakovania ropnej frakcie s teplotou varu nad 300 °C a/alebo extraktov zo selektívnej rafinácie olejov a/ /alebo gáčov.BACKGROUND OF THE INVENTION is a fraction boiling in the range of 200 ° C to 450 ° C, containing at least 20% by weight of n-alkanes, from the hydrocracking product of the petroleum fraction boiling above 300 ° C and / or selective oil refining extracts and / or Slack.
CS857474A 1985-10-19 1985-10-19 Method of n-alkanes production CS252524B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS857474A CS252524B1 (en) 1985-10-19 1985-10-19 Method of n-alkanes production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS857474A CS252524B1 (en) 1985-10-19 1985-10-19 Method of n-alkanes production

Publications (2)

Publication Number Publication Date
CS747485A1 CS747485A1 (en) 1987-01-15
CS252524B1 true CS252524B1 (en) 1987-09-17

Family

ID=5423950

Family Applications (1)

Application Number Title Priority Date Filing Date
CS857474A CS252524B1 (en) 1985-10-19 1985-10-19 Method of n-alkanes production

Country Status (1)

Country Link
CS (1) CS252524B1 (en)

Also Published As

Publication number Publication date
CS747485A1 (en) 1987-01-15

Similar Documents

Publication Publication Date Title
CA1165262A (en) Catalytic hydroconversion of residual stocks
US10927314B2 (en) Process for the conversion of crude oil to petrochemicals
US10131853B2 (en) Process for producing BTX from a mixed hydrocarbon source using pyrolysis
US11643608B2 (en) Process for C5+ hydrocarbon conversion
EA034700B1 (en) Process and installation for the conversion of crude oil to petrochemicals having an improved ethylene yield
JPH0514756B2 (en)
US2289716A (en) Catalytic motor fuel production
SG190410A1 (en) Method for producing high-added-value aromatic products and olefinic products from an aromatic-compound-containing oil fraction
EA030559B1 (en) Method of producing aromatics and light olefins from a hydrocarbon feedstock
WO2017093056A1 (en) Process for producing lpg and btx from a heavy aromatic feed
EP3017028A1 (en) Process for the production of light olefins and aromatics from a hydrocarbon feedstock.
US11807818B2 (en) Integrated FCC and aromatic recovery complex to boost BTX and light olefin production
US20080249341A1 (en) Method for preparing high energy fuels
EP0082555B1 (en) Process for the production of hydrocarbon oil distillates
IL35865A (en) High octane gasoline production
CS252524B1 (en) Method of n-alkanes production
RU2176661C2 (en) Method of motor fuel production from oil
US10131854B2 (en) Process for producing BTX from a mixed hydrocarbon source using coking
US20190359897A1 (en) Hydrocracking process for making middle distillate from a light hydrocarbon feedstock
JP5099896B2 (en) Gasoline composition
US10526551B2 (en) Process for producing C2 and C3 hydrocarbons
US3929430A (en) Process for making synthetic fuel gas from crude oil
CN114736711B (en) Production method of high-viscosity index hydrocracking tail oil
NL8400074A (en) Processing oil residues into lighter hydrocarbon fractions - by sepn. into high and low asphalt fractions, cracking low asphalt fraction and partially combusting high asphalt fraction
SU399144A1 (en) In P T B