CS242177B1 - Method of shaped components production from aluminium bronze powder - Google Patents

Method of shaped components production from aluminium bronze powder Download PDF

Info

Publication number
CS242177B1
CS242177B1 CS847148A CS714884A CS242177B1 CS 242177 B1 CS242177 B1 CS 242177B1 CS 847148 A CS847148 A CS 847148A CS 714884 A CS714884 A CS 714884A CS 242177 B1 CS242177 B1 CS 242177B1
Authority
CS
Czechoslovakia
Prior art keywords
powder
crushing
bronze powder
density
temperature
Prior art date
Application number
CS847148A
Other languages
Czech (cs)
Slovak (sk)
Other versions
CS714884A1 (en
Inventor
Marian Tolnay
Michal Podolsky
Marcel Zitnansky
Miloslav Proksa
Original Assignee
Marian Tolnay
Michal Podolsky
Marcel Zitnansky
Miloslav Proksa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marian Tolnay, Michal Podolsky, Marcel Zitnansky, Miloslav Proksa filed Critical Marian Tolnay
Priority to CS847148A priority Critical patent/CS242177B1/en
Publication of CS714884A1 publication Critical patent/CS714884A1/en
Publication of CS242177B1 publication Critical patent/CS242177B1/en

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

Vynález sa týká spůsobu výroby tvarových súčiastok z hliníkového bronzu, najma výroby činných častí tvárniacich nástrojov pre tvárnenie nehrdzavejúcich ocelí. Podstatou vynálezu je, že z odlievaného základného materiálu sa mletím alebo drvením připraví prášok o zrnitosti 0,04 až 0,1 mm, ktorý sa za studená zlisuje na polotovar alebo výlisok hustoty 75 až 80 % a následné dlhodobo žíhá bez přítomnosti tekutej fázy v ochrannom prostředí pri teplote 530 až 570 °C a potom kováním v uzavretej zápustke z teploty 850 až 950 °C dokončí na výsledný tvar so stupňom zhutnenia 98 až 100 %.BACKGROUND OF THE INVENTION The present invention relates to a method for producing shaped articles parts made of aluminum bronze, especially production active parts of forming tools for Forming of stainless steels. The essence of the invention is that of casting of the base material by milling or crushing to prepare a powder of 0.04 to 0.1 mm, which is cold pressed into a blank or a density density of 75 to 80% a subsequent annealing without the presence of liquid phase in a protective environment at temperature 530 to 570 ° C and then closed forging die from 850 to 950 ° C to the final shape with the degree of compaction 98 up to 100%.

Description

Vynález sa týká spósobu výroby tvarových súčiastok z prášku hliníkových bronzov.The invention relates to a method for producing molded parts from aluminum bronze powder.

Hliníkové bronzy s převážným obsahom médi sa používajú na súčiastky s dobrými vlastnosťami v konstrukčněj praxi a tiež na výrobu vložiek činných častí tvárniacich nástrojov, hlavně pri spracovaní nehrdzavejúcich ocelí.Aluminum bronzes with a predominant medium content are used for components with good properties in construction practice and also for the production of inserts of active parts of forming tools, especially in the processing of stainless steels.

V súčasnosti sa výroba tvarových súčiastok z hliníkových bronzov realizuje cez kvapalnú fázu napr. podl'a AO 235 600, kde sa získali výrobky po materiálnej stránke velmi kvalitně. Ukázalo sa však potřebné ďalšie trieskové opracovanie, čo má za následok zhoršenie povodných mechanických vlastností. Ako nevýhoda sa prejavila aj náročná výroba přesných tvarových foriem.At present, the production of aluminum bronze shaped parts is realized through the liquid phase e.g. according to AO 235 600, where the material quality of the products was obtained. However, further chip machining has been shown to result in deterioration of the flood mechanical properties. Another disadvantage was the demanding production of precise molds.

Výroba tvarových súčiastok v spojení so súčasnou výrobou hliníkových bronzov práškovou metalurgiou vykazuje sice výhody spojené so značným znížením nákladov na přípravu a ďalšie spracovávanie materiálu, získaného cez kvapalnú fázu a získali sa výrobky s vysokou chemickou a štruktúrnou homogenitou bez přítomnosti dutin a pórov, so značné zlepšenými mechanickými vlastnosťami. Ako nevýhoda sa ukázala zase nutnost ďalšieho opracovávania alebo následnej plastickej deformácie.The production of shaped parts in conjunction with the current production of aluminum bronze powder metallurgy shows the advantages associated with a considerable reduction in the cost of preparing and further processing the material obtained through the liquid phase and obtaining products with high chemical and structural homogeneity without the presence of cavities and pores. mechanical properties. Again, the need for further processing or subsequent plastic deformation proved to be a disadvantage.

Tieto nedostatky v značnej miere odstraňuje sposob výroby tvarových súčiastok podlá vynálezu, ktorého podstatou je, že z odlievaného základného materiálu sa mletím alebo drvením zhotoví prášok o zrnitosti 0,04 až 0,1 mm, ktorý sa zlisuje za studená pri tlakoch 1100 až 1200 MPa na polotovar alebo’ výlisok hustoty 75 až 80 % a následné žíhá bez přítomnosti tekutej fázy v ochrannom prostředí po dobu 15 až 20 hodin pri teplote 530 až 570 °C a potom v uzavretej zápustke za teploty v intervale 850 až 950 °C kuje na výsledný tvar s prídavkami od 0,2 až 0,5 mm na rozměr na hustotu zhutnenia 98 až 100 °/o.These drawbacks are largely eliminated by the inventive process for producing molded parts, which consists in producing a powder of 0.04 to 0.1 mm, which is cold pressed at 1100 to 1200 MPa, from the cast base material by grinding or crushing. to a blank or density of 75-80% and subsequently calcined in the absence of a liquid phase in the protective environment for 15-20 hours at 530-570 ° C and then closed in a closed die at 850-950 ° C for the resulting shape with additions from 0,2 to 0,5 mm per dimension to a packing density of 98 to 100 ° / o.

Výhodou spósobu výroby tvarových súčiastok podl'a vynálezu je vysoká štrukturálna homogenita, kde materiál je bez přítomnosti pórov a dutin. Ďalej je to možnost získat zložité tvary súčiastok, resp. častí tvárniacich nástrojov lepších mechanických vlastnosti s možnosťou ich ďalšieho tepelného spracovania.An advantage of the method of making the shaped parts of the invention is the high structural homogeneity where the material is free of pores and voids. Furthermore, it is possible to obtain complex shapes of components, respectively. parts of forming tools with better mechanical properties with the possibility of their further heat treatment.

Vyšší účinok je vo zvýšení produktivity práce v súvislosti s výrobou súčiastok a to rádovo vyššie než to umožňujú doteraz používané technologické postupy. Metóda vedie k vysokému využitiu materiálu.The higher effect is in the increase of labor productivity in connection with the production of components, which is in the order of magnitude higher than the technological procedures used so far. The method leads to high material utilization.

Uvedeným spůsobom boli vyrobené tažné trne pre výrobu rúr z nehrdzavejúcej ocele, kde nástrojový bronz o chemickom zložení 14 % AI, 0,5 % Si, 0,4 % Cr, 0,1 % B, 0,1 % C, 0,8 % Fe, 0,5 % Ti, 0,5 % Co a 2 % Mn, připravený spósobom podl'a AO 235 600 z kvapalnej fázy bol následné drobený a mletý v prúdovom mlýne na prášok o zrnitosti 0,04 ,až ,0,6 mm. Po zlisovaní takto získaného prášku pri tlaku 1200 MPa v hydrostatickom prostředí sa získal polotovar pre kovanie o hustotě 78 %. Získané výrobky sa ďalej dlhodobe žíhali v troch stupňoch po dobu 6 až 8 hod. v ochrannom prostředí pri teplote 550 °C. Požadovaný tvar o priemere 20 nim a výške 20 mm ako aj požadované zhutnenie bolo dosiahnuté zápustkovým kováním z teploty 900 °C. Výsledky šetření potvrdili předpokládané výhodné vlastnosti súčiastky, pričom ku zmene tvrdosti Al-bronzu nedošlo. Výsledná tvrdosť , bola 400 HV.In this way, tensile mandrels were produced for the manufacture of stainless steel tubes, where a tool bronze with a chemical composition of 14% Al, 0.5% Si, 0.4% Cr, 0.1% B, 0.1% C, 0.8 % Fe, 0.5% Ti, 0.5% Co and 2% Mn, prepared according to AO 235 600 from the liquid phase, were then crumbled and milled in a jet mill to a particle size of 0.04 to 0, 6 mm. After pressing the thus obtained powder at a pressure of 1200 MPa in a hydrostatic medium, a forging blank having a density of 78% was obtained. The obtained products were further annealed in three stages for 6 to 8 hours. in a protective environment at a temperature of 550 ° C. The required shape with a diameter of 20 µm and a height of 20 mm as well as the required compaction was achieved by die forging from a temperature of 900 ° C. The results of the investigation confirmed the expected advantageous properties of the component, while the Al-bronze hardness did not change. The resulting hardness was 400 HV.

Claims (1)

PREDMETSUBJECT Sposob výroby tvarových súčiastok z prášku hliníkového bronzu, najmá výroby činných častí tvárniacich nástrojov pre tvárnenie nehrdzavejúcich ocelí vyznačený tým, že z odlievaného' základného materiálu sa mletím alebo drvením připraví prášok o zrnitosti 0,04 až 0,1 mm, ktorý sa za studená zlisuje pri tlakoch 100 až 1200 MPa na poVYNALEZU lotovar alebo výlisok hustoty 75 až 80 % a následné žíhá bez přítomnosti tekutej fázy v ochrannom prostředí po dobu 15 až 20 hodin za teploty V intervale 530 až 570 °C a potom sa kove za teploty v intervale 850, až 950 °C, dokončí sa výsledný tvar s príďavkami od 0,2 až 0,5 mm na rozměr so stupňom žhutiienía 98 až'100 %. 'Method for producing aluminum bronze powder moldings, in particular for producing active parts of forming tools for forming stainless steels, characterized in that a powder having a granularity of 0.04 to 0.1 mm is prepared by grinding or crushing, which is cold pressed by means of grinding or crushing. at pressures of 100 to 1200 MPa on the invention, a lottery or molding of a density of 75 to 80% and subsequently calcined in the absence of a liquid phase in the protective environment for 15 to 20 hours at a temperature of 530 to 570 ° C and then metal at a temperature of 850 to 950 [deg.] C., the resulting shape is completed with additions of from 0.2 to 0.5 mm to a dimension with an annealing degree of 98 to 100%. '
CS847148A 1984-09-24 1984-09-24 Method of shaped components production from aluminium bronze powder CS242177B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS847148A CS242177B1 (en) 1984-09-24 1984-09-24 Method of shaped components production from aluminium bronze powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS847148A CS242177B1 (en) 1984-09-24 1984-09-24 Method of shaped components production from aluminium bronze powder

Publications (2)

Publication Number Publication Date
CS714884A1 CS714884A1 (en) 1985-08-15
CS242177B1 true CS242177B1 (en) 1986-04-17

Family

ID=5420070

Family Applications (1)

Application Number Title Priority Date Filing Date
CS847148A CS242177B1 (en) 1984-09-24 1984-09-24 Method of shaped components production from aluminium bronze powder

Country Status (1)

Country Link
CS (1) CS242177B1 (en)

Also Published As

Publication number Publication date
CS714884A1 (en) 1985-08-15

Similar Documents

Publication Publication Date Title
AU2003245820B2 (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
US6334882B1 (en) Dense parts produced by uniaxial compressing an agglomerated spherical metal powder
JPH0297652A (en) How to shape a penetrating bullet
JPH024904A (en) Method for producing heat-resistant uncompleted product having high ductility in lateral direction made of aluminum alloy from half-finished product produced by powder metallurgy
US3785038A (en) Process of working a sintered powder metal compact
CS242177B1 (en) Method of shaped components production from aluminium bronze powder
US4770850A (en) Magnesium-calcium-nickel/copper alloys and articles
JPS62224602A (en) Production of sintered aluminum alloy forging
RU2287404C2 (en) Method for making iron-base sintered tool for working metal
JPS6360265A (en) Method for manufacturing aluminum alloy parts
US6315935B1 (en) Low pressure injection molding of knife blades from metal feedstocks
JP2001316706A (en) Method for manufacturing material having improved mechanical property
JPS6144107A (en) Production of main plate for timepiece
JPH032335A (en) Method for manufacturing titanium powder or titanium alloy powder sintered product
Makarov et al. Additive technologies in the production of products by hot isostatic pressing
EP4620597A1 (en) Method for manufacturing an article from a consolidated metallic powder composition
CN106834957A (en) Double-deck extrusion molding dies steel
CS225181B1 (en) Production of objects of metal powders
JPH0390542A (en) Cylindrical ferrous sintered slag for plastic working and its manufacture
SU865530A1 (en) Method of making sintered articles
RU2195387C2 (en) Method for producing chrome-base alloy for making forging tools
CS234979B1 (en) Method of tool material compacting from dispersion particles
CN120696415A (en) Method for making articles from consolidated metal powder compositions
JP2515322B2 (en) Sintered member manufacturing method
JPS6216266B2 (en)