CS240582B1 - Electrolytic aqueous bath for nickel-phosphorus alloy deposition - Google Patents

Electrolytic aqueous bath for nickel-phosphorus alloy deposition Download PDF

Info

Publication number
CS240582B1
CS240582B1 CS84902A CS90284A CS240582B1 CS 240582 B1 CS240582 B1 CS 240582B1 CS 84902 A CS84902 A CS 84902A CS 90284 A CS90284 A CS 90284A CS 240582 B1 CS240582 B1 CS 240582B1
Authority
CS
Czechoslovakia
Prior art keywords
nickel
concentration
water
per
phosphorus alloy
Prior art date
Application number
CS84902A
Other languages
Czech (cs)
Other versions
CS90284A1 (en
Inventor
Vladimir Holpuch
Ilja Nykl
Original Assignee
Vladimir Holpuch
Ilja Nykl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vladimir Holpuch, Ilja Nykl filed Critical Vladimir Holpuch
Priority to CS84902A priority Critical patent/CS240582B1/en
Priority to DE19853504186 priority patent/DE3504186A1/en
Publication of CS90284A1 publication Critical patent/CS90284A1/en
Publication of CS240582B1 publication Critical patent/CS240582B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Chemically Coating (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

This bath comprises nickel fluoborate in a concentration of from 100 to 600 g per 1000 ml of water, boric acid in a concentration of from 10 to 50 g per 1000 ml of water, and nickel hypophosphite, sodium hypophosphite or ammonium hypophosphite, optionally phosphorous acid, in a concentration of from 1 to 50 g per 1000 ml of water. To eliminate hydrogen-pitting, a wetting agent is added in a concentration of from 0.01 to 1 g per 1000 ml of water.

Description

Lázeň sestává z fluoroboritanu nikelnatého v koncentraci 100 až 600 g na '1 000 ml vody, kyseliny borité v koncentraci 10 až 50 g na 1 000 ml vody a fosfornanu nikelnatého, sodného nebo amonného, případně kyseliny fosfrité v koncentraci 1 až 50 g na 1 000 mi vody. Pro odstranění vodíkového pittingu je použit přídavek smáčedla v koncentraci 0,01 až 1 g na 1000 ml vody.The bath consists of nickel borohydride at a concentration of 100 to 600 g per 1 000 ml of water, boric acid at a concentration of 10 to 50 g per 1 000 ml of water and nickel, sodium or ammonium hypophosphite or phosphite acid at a concentration of 1 to 50 g per 1 000 mi water. Addition of a wetting agent at a concentration of 0.01 to 1 g per 1000 ml of water is used to remove hydrogen pitting.

Vynález se týká složení elektrolytické vodní lázně pro· vylučování slitiny nikl — fosfor.The present invention relates to an electrolytic water bath composition for the precipitation of a nickel-phosphorus alloy.

Elektrolyticky vylučované povlaky nikl — fosfor mají podstatně vyšší mikrotvrdost než mají ostatní vylučované slitiny niklu. Používají se případech, kdy jsou na vyloučený kovový povlak kladeny velké nároky z hlediska otěru a kluzných vlastností. Elektrolyticky vyloučené povlaky slitiny nikl — fosfor mají po tepelném zpracování zvýšenou mikrotvrdost až o 50 % a jejich kvalita se vyrovná povrchům z · tvrdého chrómu.Electrolytically deposited nickel-phosphorus coatings have a significantly higher microhardness than other deposited nickel alloys. It is used when there is a high demand on abrasion and sliding properties on the deposited metal coating. Electrolytically deposited nickel-phosphorus coatings have an increased microhardness of up to 50% after heat treatment and their quality is comparable to hard chrome surfaces.

Dosud používané a v literatuře uváděné elektrolyty pro vylučování slitiny nikl-fosfor pracují při teplotách 80 až 90 °C a nízkém pH 0,5 až 1,5. Obsahují-li nikl ve formě síranů, chloridů a fosfor ve formě kyseliny fosforite.The electrolytes used for the deposition of the nickel-phosphorus alloy to date have been operating at temperatures of 80-90 ° C and low pH of 0.5-1.5. If they contain nickel in the form of sulphates, chlorides and phosphorus in the form of phosphorous acid.

Nevýhodou těchto · elektrolytů je vysoká provozní teplota a tím i značná energetická náročnost. Přitom při dlouhodobém provozu je technicky velmi náročné udržet nízkou hodnotu pH v rozmezí 0,5 až 1,5.The disadvantage of these electrolytes is the high operating temperature and thus the considerable energy consumption. However, it is technically very difficult to maintain a low pH value in the range of 0.5 to 1.5 during long-term operation.

Další známé, · avšak méně používané typy elektrolytů obsahují karbonové kyseliny, jako například ' kyselinu citrónovou. Tyto látky sice umožňují pracovat s provozní teplotou lázně podstatně nižší, v rozmezí 40 až 60 stupňů · Celsia, , při ,dlouhodobém provozu však dochází k rozkladu karbonových kyselin. Rozkladné produkty · pak zvyšují vnitřní pnutí vyloučených povlaků a tím dochází ke vzniku trhlin a destrukci vyloučených povlaků.Other known, but less used types of electrolytes include carbon acids, such as citric acid. Although these materials allow to operate at a substantially lower bath temperature, in the range of 40 to 60 degrees Celsius, carbon dioxide decomposes in long-term operation. The decomposition products then increase the internal stress of the deposited coatings, causing cracks and destruction of the deposited coatings.

Vynález odstraňuje nedostatky dosud známých elektrolytických lázní pro vylučování slitiny nikl —. fosfor a jeho podstata spočívá ve složení elektrolytu, který sestává z fluoroboritanu nikelnatého v koncentraci 100 až 600 g na 1 000 ml vody, kyseliny borité v koncentraci 10 až 50 g na 1000 ml vody a fosfornanu nikelnatého, sodného, nebo amonného, případně kyseliny fosforite v koncentraci 1 až 50 g na 1 000 ml vody.The present invention overcomes the drawbacks of the prior art electrolytic baths for the nickel-alloy deposition. phosphorus and its essence consists of an electrolyte consisting of nickel borohydride at a concentration of 100 to 600 g per 1 000 ml of water, boric acid at a concentration of 10 to 50 g per 1000 ml of water and nickel, sodium or ammonium hypophosphite in a concentration of 1 to 50 g per 1000 ml of water.

Pro další zlepšení kvality a odstranění · vodíkového pittingu je · výhodný přídavek ethylenoxidových smáčedel, případně alkylsulfonanových smáčedel v koncentraci 0,1 až 1 g na 1 000 ml vody.The addition of ethylene oxide surfactants or alkylsulfonate surfactants in a concentration of 0.1 to 1 g per 1000 ml of water is preferred to further improve the quality and remove hydrogen pitting.

Elektrolyt pracuje při provozních teplotách 30 až 50 °C v oblasti 2 až 3,5 pH. Katodová proudová hustota se pohybuje v rozmezí 1 až 16 A/dm2. Hlavní výhodou elektrolytu podle vynálezu je velmi nízká hodnota vnitřního pnutí a jeho dobrá životnost. Mikrotvrdost povlaků je vysoká, 900 až 1200 HM a není nutné další tepelné zpracování. Mikrotvrdost se v · rozmezí teplot 20 až 40 °C nemění. Vyloučené, povlaky obsahují 1 . až 20 % hmotnostních fosforu v závislosti , na koncentraci fosforu v elektrolytické lázni. Vzhledem k nízkému vnitřnímu pnutí jsou · vyloučené povlaky vhodné v oblasti galvanoplastiky.The electrolyte operates at operating temperatures of 30 to 50 ° C in the range of 2 to 3.5 pH. The cathode current density is in the range of 1 to 16 A / dm2. The main advantage of the electrolyte according to the invention is the very low value of the internal stress and its good service life. The microhardness of the coatings is high, 900 to 1200 HM, and no further heat treatment is required. The microhardness does not change in the temperature range of 20 to 40 ° C. Excluded coatings contain 1. up to 20% by weight of phosphorus depending on the concentration of phosphorus in the electrolytic bath. Due to the low internal stress, the deposited coatings are suitable in the field of electroforming.

P říklldlP said

200 g/1 000 ml HžO .200 g / 1000 ml H2O.

fluoroboritanu nikelnatého, g/1 000 ml H2O kyseliny borité, · g/1 000 ml H2O fosfornanu nikelnatého,nickel fluoroborate, g / 1 000 ml H2O boric acid, · g / 1 000 ml H2O nickel hypophosphite,

0,2 g/1 000 ml H2O ethylen-oxidového smáčedla, katodová proudová hustota 1 až 5 A/dm2, provozní teplota 50 °C,0.2 g / 1000 ml H2O ethylene oxide surfactant, cathode current density 1 to 5 A / dm 2 , operating temperature 50 ° C,

PH 2,5, mikrotvrdost 1150 HM, obsah fosforu v povlaku 7,5 % hmotnostních.PH 2.5, microhardness 1150 HM, phosphorus content in coating 7.5% by weight.

Příklad 2 ,Example 2,

400 g/1 000 ml H2O fluoroboritanu nikelnatého, · g/1 000 ml H2O kyseliny borité, g/1 000 ml H2O fosfornanu sodného,400 g / 1 000 ml H2O nickel borohydride, · g / 1 000 ml H2O boric acid, g / 1 000 ml H2O sodium hypophosphite,

0,1 g/1 000 ml H2O lauryl-síranu sodného, katodová proudová hustota 1 až 8A/dm2, provozní teplota 50 °C, pH 2,4, ...........0.1 g / 1000 ml H2O sodium lauryl sulfate, cathode current density 1 to 8A / dm 2 , operating temperature 50 ° C, pH 2.4, ...........

mikrotvrdost 950 HM, obsah fosforu v povlaku 5,4 % hmotnostních.microhardness 950 HM, phosphorus content in coating 5.4% by weight.

Příkladě. 3Example. 3

400 g/1 000 ml H2O .;400 g / 1000 ml H2O.

fluoroboritanu nikelnatého · g/1 000 · ml H2O·.'· kyseliny borité ?20 g/1 000 ml H2O kyseliny fosforitůnickel fluoroborate · g / 1000 · ml H2O · · · boric acid 20 g / 1000 ml H2O phosphorous acid

0,1 g/1 000 ml H2O diisopropyl-naftalen-sulfonanu sodného katodová proudová hustota 1 až 10A'dm2 provozní teplota ' 50 °C pH 2,1 mikrotvrdost 1010 HM obsah fosforu v · povlaku 9,5 °/o hmotnostních0.1 g / 1000 ml H2O sodium diisopropyl-naphthalene sulfonate cathode current density 1 to 10A'dm 2 operating temperature '50 ° C pH 2.1 microhardness 1010 HM phosphorus content · coating 9.5% / w / w

Claims (2)

předmětSubject 1. Elektrolytická vodní lázeň pro vylučování slitiny nikl-fosfor, vyznačující se tím, že sestává · z fluoroboritanu nikelnatého v koncentraci 100 až 600 g na 1 000 ml vody, kyseliny borité v koncentraci 10 až 50 g naElectrolytic water bath for the precipitation of a nickel-phosphorus alloy, characterized in that it consists of nickel borohydride in a concentration of 100 to 600 g per 1000 ml of water, boric acid in a concentration of 10 to 50 g per 1 000 ml vody a fosforitanu nikelnatého, sodného 'nebo amonného, případně kyseliny fosVynalezu forité v koncentraci 1 až 50 g na 1000 ml vody.1000 ml of water and nickel, sodium or ammonium phosphate or phosphate of forite at a concentration of 1 to 50 g per 1000 ml of water. 2. Elektrolytická vodní lázeň podle bodu2. Electrolytic water bath according to item 1, vyznačující se tím, že obsahuje přídavek ethylenoxidových smáčedel, případně alkylsulfonanových smáčedel· v koncentraci 0,01 až 1 g na 1000 ml vody.1, characterized in that it contains the addition of ethylene oxide surfactants or alkylsulfonate surfactants in a concentration of 0.01 to 1 g per 1000 ml of water.
CS84902A 1984-02-08 1984-02-08 Electrolytic aqueous bath for nickel-phosphorus alloy deposition CS240582B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CS84902A CS240582B1 (en) 1984-02-08 1984-02-08 Electrolytic aqueous bath for nickel-phosphorus alloy deposition
DE19853504186 DE3504186A1 (en) 1984-02-08 1985-02-07 Electrolytic water bath and process for depositing a nickel-phosphorus alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS84902A CS240582B1 (en) 1984-02-08 1984-02-08 Electrolytic aqueous bath for nickel-phosphorus alloy deposition

Publications (2)

Publication Number Publication Date
CS90284A1 CS90284A1 (en) 1985-07-16
CS240582B1 true CS240582B1 (en) 1986-02-13

Family

ID=5342071

Family Applications (1)

Application Number Title Priority Date Filing Date
CS84902A CS240582B1 (en) 1984-02-08 1984-02-08 Electrolytic aqueous bath for nickel-phosphorus alloy deposition

Country Status (2)

Country Link
CS (1) CS240582B1 (en)
DE (1) DE3504186A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032464A (en) * 1986-10-27 1991-07-16 Burlington Industries, Inc. Electrodeposited amorphous ductile alloys of nickel and phosphorus
US4801947A (en) * 1987-06-25 1989-01-31 Burlington Industries, Inc. Electrodeposition-produced orifice plate of amorphous metal
JP3498919B2 (en) * 1993-05-14 2004-02-23 清川メッキ工業株式会社 Metal film resistor having fuse function and method of manufacturing the same
US6099624A (en) * 1997-07-09 2000-08-08 Elf Atochem North America, Inc. Nickel-phosphorus alloy coatings

Also Published As

Publication number Publication date
DE3504186A1 (en) 1985-08-08
CS90284A1 (en) 1985-07-16

Similar Documents

Publication Publication Date Title
US4461680A (en) Process and bath for electroplating nickel-chromium alloys
US2525942A (en) Electrodepositing bath and process
US3966564A (en) Method of electrodepositing an alloy of tin, cobalt and a third metal and electrolyte therefor
US2926124A (en) Tin nickel alloy plating process and composition
US3161575A (en) Copper pyrophosphate electroplating solutions
US4234396A (en) Chromium plating
US5620583A (en) Platinum plating bath
CS240582B1 (en) Electrolytic aqueous bath for nickel-phosphorus alloy deposition
US2728720A (en) Method of producing an electroplate of nickel on magnesium and the magnesium-base alloys
Ward et al. The Electrodeposition of Chromium from Trivalent Salts
US3003933A (en) Electro-plating of metals
US2594933A (en) Process for electrodepositing hard nickel plate
CS195657B2 (en) Process for preparing active cathods for using at the electrochemical processes
CA1244374A (en) Electroplating bath containing palladium amine complex and stress reducing agent
JP2522101B2 (en) Nickel-molybdenum alloy plating bath and plating method
US2802779A (en) Electrodeposition of nickel and nickel alloys
US3374154A (en) Electroforming and electrodeposition of stress-free nickel from the sulfamate bath
US2418970A (en) Process of electrolytically depositing iron and iron alloys
Savchuk et al. Examining the effect of electrosynthesis conditions on the Ni-P alloy composition
SU116447A1 (en) The method of applying copper coatings by electrolysis of non-cyanic electrolytes
US3457147A (en) Chromium plating bath and process
SU145102A1 (en) The method of electrodeposition of indium-nickel alloys
US2361720A (en) Nickel electroplating bath
RU2133305C1 (en) Electrolyte for brilliant nickel plating
US3867267A (en) Chromium plating