CS229504B1 - Method for the producing hard polyurethan foams - Google Patents

Method for the producing hard polyurethan foams Download PDF

Info

Publication number
CS229504B1
CS229504B1 CS590680A CS590680A CS229504B1 CS 229504 B1 CS229504 B1 CS 229504B1 CS 590680 A CS590680 A CS 590680A CS 590680 A CS590680 A CS 590680A CS 229504 B1 CS229504 B1 CS 229504B1
Authority
CS
Czechoslovakia
Prior art keywords
parts
polyol
diisocyanate
foam
polyester polyol
Prior art date
Application number
CS590680A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Jozef Ing Csc Stresinka
Jozef Ing Mokry
Vendelin Prof Ing Drsc Macho
Eugen Ing Malcovsky
Original Assignee
Stresinka Jozef
Jozef Ing Mokry
Macho Vendelin
Eugen Ing Malcovsky
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stresinka Jozef, Jozef Ing Mokry, Macho Vendelin, Eugen Ing Malcovsky filed Critical Stresinka Jozef
Priority to CS590680A priority Critical patent/CS229504B1/en
Priority to SU817771975A priority patent/SU1291590A1/en
Priority to DD23238581A priority patent/DD230248A3/en
Priority to DE19813131203 priority patent/DE3131203A1/en
Priority to PL23253081A priority patent/PL132083B2/en
Priority to RO105083A priority patent/RO83485B/en
Priority to AT374281A priority patent/ATA374281A/en
Publication of CS229504B1 publication Critical patent/CS229504B1/en

Links

Landscapes

  • Polyurethanes Or Polyureas (AREA)

Description

Vynález sa týká spůsobu výroby polyuretánov, zvlášť tvrdých polyuretánových pien, na báze technicky 1'ahko dostupných polyesterpolyolov, vyrobených hlavně z vedlejších produktov výroby dvojsýtnych kyse·lín.The invention relates to a process for the production of polyurethanes, in particular rigid polyurethane foams, based on technically readily available polyester polyols, mainly produced from dibasic by-products.

Je známe, že polyuretánové pěny sa vyrábajú reakciou aromatických a/alebo alifatických a/alebo cyikloalifatických izokyanátov s počtomi funkčných skupin v molekule váčším ako 1, so zlúčeninami obsahujúcimi viac ako 1 aktívny vodík v molekule, za přítomnosti katalyzátore, nadúvadla, stabilizátore, emulgátora, retardére horenia a/alebo iných přísad. Možno ich připravovat jednostupňovým alebo predpolymérnym sposobom.It is known that polyurethane foams are produced by reacting aromatic and / or aliphatic and / or cyicloaliphatic isocyanates having a number of functional groups per molecule greater than 1, with compounds containing more than 1 active hydrogen per molecule, in the presence of a catalyst, blowing agent, stabilizer, emulsifier, flame retardants and / or other additives. They can be prepared in a single-stage or prepolymer manner.

Ako izokyanáty sa můžu použit mnohé zlúčeniny obsahujúce —NCO skupiny, predovšetkým však prichádzajú do úvahy surový 4,4‘-difenylmetándiizokyanát alebo toluyléndiizokyanát. Druhů hlavnú zložku tvoří polyolový komponent, ktorý obsahuje zlúčeninu s aktívnym vodíkom — polyéter polyoly a/alebo polyesterpolyoly a pomocné látky pre přípravu pěny (Viewe<g R. Hochtlen A., Kuaststoff-Handbuch, Band VII Polyurethane, Caři Hanser Verlag, Munchen 1966).Many compounds containing —NCO groups can be used as isocyanates, but in particular, crude 4,4‘-diphenylmethane diisocyanate or toluylene diisocyanate are suitable. The second major component is a polyol component which contains a compound with active hydrogen - polyether polyols and / or polyester polyols and foam preparation aids (Viewe &amp; R. Hochtlen A., Kuaststoff-Handbuch, Band VII Polyurethane, Caer Hanser Verlag, Munchen 1966 ).

. V praxi sa prevažne používajú polyéterpolyoly najma z ekonomického hradiska. Nedostatek surovin pre výrobu základných komponentov pre polyuretány a technická náročnost' ich výroby núti hladať a využívat iné dostupné zdroje.. In practice, polyether polyols are mainly used, especially from an economic point of view. The lack of raw materials for the production of basic components for polyurethanes and the technical complexity of their production forces them to look for and use other available resources.

Podlá tohto vynálezu sa spůsob výroby tvrdých polyuretánových pien reakciou aslpoň jedného alifatického alebo aromatického di- až polyizolkyanátu s polyolom za přítomnosti pomocných látok ako katalyzátorov a stabilízátorov uskutečňuje tak, že použitý polyol pozostáva sčasti alebo úplne z polyesterpolyolu pripravitelného esterifikáciou, polyesterifikáciou alebo roesterifikáclou kyselinovej zložky tvorenej sčasti alebo úplné destilačným zvyškom z výroby kyseliny tereftalovej a/alebo dimetyltereftalátu a alkoholickej zložky na báze alifatických di- až tetraolov.According to the present invention, the process for producing rigid polyurethane foams by reacting at least one aliphatic or aromatic di-polyisocyanate with a polyol in the presence of auxiliaries as catalysts and stabilizers is such that the polyol used consists partly or wholly of a polyester polyol obtainable by esterification, polyesterification or roesterification of the acid component partly or wholly by the distillation residue from the production of terephthalic acid and / or dimethyl terephthalate and the alcohol component based on aliphatic di-tetraols.

Hlavnou a poměrně prekvapujúcou skutočnosťou je, že polyesterpolyol, připravený z esterifikačných, respektívne destilačných zvyškov z výroby dimetyltereftalátu, ako aj kyseliny tereftalovej je bez čistenia, připadne po jednoduchej úpravě vhodný na výrobu hlavně tvrdej polyuretánovej pěny, ktorá má výborné fyzikálno-mechanické vlastnosti, najma rozmerovú stabilitu pri nízkých teplotách. К tejto technickej výhodě a surovinovej dostupnosti přistupuje ešte možnost kombinácie shora uvedených polyesterpolyolov so známými typmi polyesterpolyolov a polyéterpolyolov, v závislosti od požadvaných technických a dalších parametrov finálnych polyuretánových pien.The main and quite surprising fact is that the polyester polyol, prepared from esterification and distillation residues from the production of dimethyl terephthalate as well as terephthalic acid, is without purification or, after a simple treatment, suitable for producing mainly hard polyurethane foam having excellent physico-mechanical properties, in particular dimensional stability at low temperatures. This technical advantage and the raw material availability are combined with the possibility of combining the above-mentioned polyester polyols with known types of polyester polyols and polyether polyols, depending on the required technical and other parameters of the final polyurethane foams.

Vyrobené polyuretánové pěny majú velmi dobré technické a vůbec úžitkové vlastnosti, ktoré si zachovávajú aj pri nízkých a zvýšených teplotách, ako velmi dobrú rozmerovú stabilitu, mechanickú pevnost i vynikajúce teploizolačné vlastnosti.The polyurethane foams produced have very good technical and utility properties, which they retain even at low and elevated temperatures, such as very good dimensional stability, mechanical strength and excellent thermal insulation properties.

Výroba polyuretánov sa zvyčajne robí zmiešavaním dvoch komponentov — polyolového a izokyanátového. Za polyolový komponent sa v tomto iprípade považujú organické zlúčeniny obsahujúce v molekule hydroxyskupiny, ale aj ich zmesi s pomocnými látkami.Polyurethanes are usually made by mixing two components - polyol and isocyanate. In this case, the polyol component is considered to be organic compounds containing a hydroxy group in the molecule, but also mixtures thereof with excipients.

V užšom slova zmysle polyolovým komponentám je jednotlivá zlúčenina alebo zmes organických zlúčenín obsahujúcich v molekule aspoň jednu skupinu s aktívnym vodíkom.In the narrower sense, the polyol components are a single compound or a mixture of organic compounds containing at least one active hydrogen group in the molecule.

Pre přípravu polyuretánov, napr. polyuretánovej pěny, možno použit samotný polyesterpolyol na báze esterifikačných zvyškov, resp. destilačných zvyškov z výroby dimetyltereftalátu ako aj kyseliny tereftalovej alebo zmesi β inými polyesterpolyolmi a/alebo polyéterpolyolmi. Do úvahy prichádzajúco polyesterpolyoly sú produkty kondenzácie, resp. tiež transesterifikácie i. polyesterifikácie na báze iných polykarboxylových kyselin alebo ich anhydridov s· dvoj- alebo viacmocnými alkoholmi, připadne polyglykolmi. Na ich přípravu je vhodná kyselina adipová, dalej to můžu byť kyseliny oxálová, malónová, jantárová, glutárová, pimelová, korková, azelainová. Potom nenasýtené dikarbónové kyseliny, ako např. maleinová, fumarová, itakonová, dalej ftalanhydrid a maleinanhydrid (Trans. Plast. Inst. London 26, 187, 1958; Mod. Plast. 35, 9, 145 1958; Ing. Eng. Chem. 2, 27, 1963; В. I. O. S. Finál Report No 1498; Dombrov E. A., Polyuretány SNTL, Praha 1961, str. 32).For the preparation of polyurethanes, e.g. Polyurethane foam, polyester polyol alone based on esterification residues, respectively. distillation residues from the production of dimethyl terephthalate as well as terephthalic acid or a mixture of β with other polyester polyols and / or polyether polyols. Possible polyesterpolyols are condensation products, respectively. also transesterification i. polyesterifications based on other polycarboxylic acids or their anhydrides with divalent or polyhydric alcohols or polyglycols. Adipic acid is suitable for their preparation, furthermore it can be oxalic, malonic, succinic, glutaric, pimelic, cork, azelaic acids. Then unsaturated dicarboxylic acids, such as e.g. maleic, fumaric, itaconic, phthalic anhydride and maleic anhydride (Trans. Plast. Inst. London 26, 187, 1958; Mod. Plast. 35, 9, 145, 1958; Eng. Chem. 2, 27, 1963; В. IOS Final Report N o 1498; Dombrov EA, Polyurethane SNTL, Prague 1961, p. 32).

Z alkoholov do úvahy prichádzajú etylénglykol, dietylénglykol, trietylénglykol, póly etyléngly koly, propylénglykol, dipropylénglykol, připadne iné polypropylénglykoly, butylénglykoly alebo polybutylénglykoly.Suitable alcohols are ethylene glycol, diethylene glycol, triethylene glycol, ethylene glycol poles, propylene glycol, dipropylene glycol, and optionally other polypropylene glycols, butylene glycols or polybutylene glycols.

Z viacmocných alkoholov sú to napr. gly-: cerol, hexántriol, butántriol, trimetylolpropán, trimotyloletán, pemtaerytrltol, manit,, sorbit a ďalšie (В. I. O. S. Finál Report No 1498, No 1166; Brit. pat. 882 603, Brit. pat. 927 175).Among the polyhydric alcohols, e.g. glycerol, hexanetriol, butanetriol, trimethylolpropane, trimethylolethane, pemtaerythltol, mannitol, sorbitol and others (V. IOS Final Report N o 1498, N o 1166; Brit. Pat. 882 603, Brit. Pat. 927 175).

К vhodným polyéterpolyolom, kitoré možno použit na výrobu zmesi s polyesterpolyolom na báze destilačných zvyškov z výroby dimetyltereftalátu i kyseliny tereftalovej patria hlavně produkty reakcie viacmocných alkoholov, polykarboxylových kyselin alebo viacmocných fenolov s jednou nízkomolekulárnou 1,2-epOxyzlúčeninou, ktorá obsahuje v molekule jednu epoxyskupinu, alebo zmesou nízkomolekulárnych 1,2-epoxyzlúčenín. Ako nízkomolekulárne 1,2-epoxyzlúčeniny prichádzajú do úvahy etylénoxid, propylénoxid, butylénoxid, izobutylénoxid,Suitable polyether polyol which can be used to produce a mixture with polyester polyol based on distillation residues from the production of both dimethyl terephthalate and terephthalic acid are mainly products of reaction of polyhydric alcohols, polycarboxylic acids or polyhydric phenols with one low molecular weight 1,2-epoxy compound containing one epoxy group or a mixture of low molecular weight 1,2-epoxy compounds. Suitable low molecular weight 1,2-epoxy compounds include ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide,

2,3-epoxyhexán, ;trietyl-2,3-epoxyoktán, epichlórhydrín, epibrómhydrín, styrénoxid, glycidyléter, metylglycidyléter, fenylglycidyl229504 éter, butylglycidylsulfid, glycidylmetylsulfón, glycidylmetakrylát, glycidylakrylát, glycidylbenzoát, glycidylacetát, glycidyloktoát, glycidylsorbát alebo glycidylalylftalát.2,3-epoxyhexane, triethyl-2,3-epoxyoctane, epichlorohydrin, epibromohydrin, styrene oxide, glycidyl ether, methylglycidyl ether, phenylglycidyl229504 ether, butylglycidylsulfide, glycidylmethylsulfone, glycidyl methacrylate, glycidyl acrylate, glycidyl acrylate, glycidyl acrylate, glycidyl acrylate, glycidyl acrylate, glycidyl acrylate.

Ako epoxidy, používané na přípravu polyéterpolyolov, prichádzajú najviac do úvahy zlúčeniny, ktoré vznikajú substitúciou uhíovodíkov, é-terov, sulfidov, sulfónov alebo esterov monoepoxyskupinou, a ktoré obsahujú najviac 18 uhlíkových atómov v molekule. Na přípravu tvrdej po-lyuretánovej pony sa predovšetikým používajú polyéterpolyoly na báze nízkomolekulárnych alkylénoxidov. Dalej to možu byť polyesteramidy alebo ich zmesi s polyestermi, připravenými známými sposobmi z viacsýtnych kyselin, alkoholov, připadne amínov, dalej známe polytioétery (NSR pat. 1 105 156) alebo polyacetály (NSR pat. 1 039 744 a 1 045 095).The epoxides used for the preparation of the polyether polyols are, in particular, compounds which are formed by substitution of hydrocarbons, ethers, sulfides, sulfones or esters by a monoepoxy group and which contain at most 18 carbon atoms per molecule. In particular, polyether polyols based on low molecular weight alkylene oxides are used to prepare the hard polyurethane pony. They may furthermore be polyesteramides or mixtures thereof with polyesters prepared by known processes from polyhydric acids, alcohols, optionally amines, other known polythioethers (NSC Pat. 1,105,156) or polyacetals (NSC Pat. 1,039,744 and 1,045,095).

Ako di- až polyizokyanáty podlá tohto vynálezu prichádzajú do úvahy organické polyizokyanáty, napr. arylpolyizokyanáty benzenového alebo naftalénového radu, ktoré sú reaktívnejšie a menej toxické ako alifatické diizokyanáity a polyizokyanáty.Suitable di- to polyisocyanates according to the invention are organic polyisocyanates, e.g. arylpolyisocyanates of the benzene or naphthalene series, which are more reactive and less toxic than aliphatic diisocyanates and polyisocyanates.

Najvhod-nejšie súThe best are

2.4- toluyléndiizokyanát, 2,6-toluyléndiizokyanát a ich zmesi, dalej fenyléndiizokyanát, alfa-naftyléndiizokyanát, 4-toluyléndiizokyanát, n-hexyléndiizokyanát, mety lén-bis- (4-f eny lénizokyanát), 3‘-<ditoluylén-4,4‘-díizokyaná!t, S^-dimetoxy-^^-difenyléindiizokyanát, 4,4‘-metándifenyldiizokyanát,2,4-toluylenediisocyanate, 2,6-toluylenediisocyanate and mixtures thereof, further phenylenediisocyanate, alpha-naphthylenediisocyanate, 4-toluylenediisocyanate, n-hexylenediisocyanate, methylene-bis- (4-phenylene) 4,4'-phenylene diisol, 4-phenylene diisole, 4,4'-phenylene diisocyanate. 1'-diisocyanate, 5'-dimethoxy-4'-diphenylindiisocyanate, 4,4'-methanediphenyl diisocyanate,

1.5- naftyléndiizokyanát, 2,4-chlórfenyléndiizokyanát, hexametyléndiizokyanát,1,5-naphthylene diisocyanate, 2,4-chlorophenylene diisocyanate, hexamethylene diisocyanate,

1.3- cyklopentyléndiizakyanát,1.3- cyclopentylene diisacyanate,

1.2- cyklohexyléndiizokyanát,1,2-cyclohexylenediisocyanate,

1.4- cyklohexyléndiizokyanát, cyklopentylidéndiizokyanáit, cyklohexylídéndiizofkyanát, p-fenyléndiizokýanát, mHfenyléndiizokyanát, 4,4‘-difenylpropándiizokyanát, diifenylmetán-4,4‘-diizokyanát, l-metyl-2,4-fenyléndiizokyanát, 4,4‘-difenyléndiizokyanát,1.4-cyclohexylene diisocyanate, cyklopentylidéndiizokyanáit, cyklohexylídéndiizofkyanát, p-phenylene diisocyanate, mHfenyléndiizokyanát, 4,4 difenylpropándiizokyanát, di-phenyl methane and 4,4'-diisocyanate, l-methyl-2,4-phenylene diisocyanate, 4,4 & apos difenyléndiizokyanát,

1.2- propyléndiizokyanát,1.2- propylene diisocyanate,

1.2- butyléndiizoikyanát, etylidéndii-zokyanát, propylidéndiizokyanát, butylidéndiizokyanáit,1,2-butylene diisocyanate, ethylidene diisocyanate, propylidene diisocyanate, butylidene diisocyanate,

1.3.5- triizokyanátbenzen,1.3.5- triisocyanatebenzene,

2.4.6- triizokyanáttoluen,2.4.6- triisocyanate toluene,

2.4.6- triizokyanátochlórbenzén, 4,4‘,4“-trifenylmetántrnzokyanát, polymetylénpolyfenylizokyanát alebo ich zmesi.2,4.6-triisocyanato-chlorobenzene, 4,4 ‘, 4'-triphenylmethane trisocyanate, polymethylene polyphenylisocyanate or mixtures thereof.

Vysokomolekulárne polyizokyanáty sú kvapalné produkty reakcie diizokyanátov a polyhydroxyzlúčenín alebo polyamínov. Okrem toho možu sa použiť polyizotiokyanáty alebo zmesi polyizokyanátov. Rovnako sa možu použít technické nečištěné alebo surové eHigh molecular weight polyisocyanates are the liquid reaction products of diisocyanates and polyhydroxy compounds or polyamines. In addition, polyisothiocyanates or mixtures of polyisocyanates may be used. Technical uncleaned or crude e

polyizokyanáty, napr. surová zmes metylén-bis [ 4-f enylizokyanátu).polyisocyanates, e.g. crude mixture of methylene-bis [4-phenylisocyanate).

Okrem toho v niektorých prípadoch je vhodné aiko di- až polyizokyanátový komponent použiť predpolymér, produkt po čiastočnom zreagovaní polyesterpolyolu alebo jeho zmesi s diizokyanátmi. Volba druhu použitého diizokyainátu závisí od vlastností východiskových surovin a požadovaných vlastností produktu.In addition, in some cases, it is appropriate to use as a di- to polyisocyanate component a prepolymer, a product after partially reacting the polyester polyol or a mixture thereof with diisocyanates. The choice of the type of diisocyanate used depends on the properties of the starting materials and the desired properties of the product.

Na vlastnosti tvrdých polyuretánových pien má značný vplyv druh a množstvo pomocných látok, medzi ktoré patria katalyzátory, resp. aktivátory, stabilizátory, emulgátory, nadúvadlá, rozpúšťadlá, zhášadlá, plnidla a pod.The nature and amount of auxiliaries, such as catalysts and catalysts, have a considerable influence on the properties of rigid polyurethane foams. activators, stabilizers, emulsifiers, blowing agents, solvents, quenching agents, fillers and the like.

Ako aktivátory možno použiť mnohé známe zlúčeniny (J. H. Saunders а К. C. Frish v knihe Polyurethanes, překlad: Chimija polyuretanov, Izdatelstvo „Chimija“, Moskva 1938).Many known compounds can be used as activators (J. H. Saunders and C. Frish in Polyurethanes, translation: Khimija polyurethanes, Izdatelstvo "Khimija", Moscow 1938).

Zo známých zlúčenín prichádzajú do úvahy najma terciárně aminy, napr. N,N‘-dimetylcyklohexylamín, dimetyletanolamín, trietyléndiamín, dime-tylanilín, pyridin, etylmorfolín, chinolín a pod., alebo organokovové zlúčeniny ako dibutylcínlaurát, n-butylcíntrichlorid, trimetylcínhydroxid, dimetylcínchlorid, octan ortuťnatý, soli antimonu, bizmutu a pod. Pri použití nečištěných destilačných, esterifikačných zvyškov na přípravu polyesterpolyolu nutno počítat pri přípravě polyuretánovej pěny s katalytickým vplyvom přítomných kovov, najma solí Mn, CoL Mo, Fe, Cr, Ni a iných kovov.Among the known compounds, in particular tertiary amines, e.g. N, N'-dimethylcyclohexylamine, dimethylethanolamine, triethylenediamine, dimethylaniline, pyridine, ethylmorpholine, quinoline and the like, or organometallic compounds such as dibutyltin laurate, n-butyltin trichloride, trimethyltin orthohydroxide, dimethyltututin hydrochloride, dimethyltutin tin. When using unpurified distillation, esterification residues for the preparation of polyester polyol, it is necessary to take into account in the preparation of the polyurethane foam with the catalytic influence of the metals present, in particular the salts Mn, Co L Mo, Fe, Cr, Ni and other metals.

Učinok katalyzátorov sa často správnou volbou množsitiev jednotlivých komponentov zvýši, pričom dochádza к synergickému účinku najímá pri použití solí cínu a terciárnych amínov. Vhodnou volbou koncentrácie, druhu a vzájomného poměru katalyzátorov možno ovplyvniť nielen priebeh reakcie hydroxylovej skupiny s izokyanátovou, ale aj tvorbu a vlastnosti pěny.The effect of the catalysts is often increased by the correct choice of the amounts of the individual components, with a synergistic effect being obtained by using tin salts and tertiary amines. By suitable choice of concentration, type and ratio of catalysts it is possible to influence not only the reaction of the hydroxyl group with the isocyanate, but also the formation and properties of the foam.

Z dostupných inadúvadiel sa používajú zvyčajne také zlúčeniny, ktoré při zahriatí alebo premene s izokyanátom uvolňujú plynné zlúčeniny. Přednostně sa používajú pri pěnění nízkomolekulárne kvapaliny a voda. Reakčné teplo a reaikcia vody s diizokyanátom sposobuje penenie zmesi za tvorby dostatočne stabilně j pěny, ktorá si udržuje svoju formu, kým hmota nezgelovatie. Vhodné nízkomolekulárne kvapaliny sú fluórchlóruhlovodíky, ktoré majú teplotu varu približíne medzi 20 až 50 °C alebo ich zmesi, napr. trichlórfluórmetán, trichlórfluóretán, dichlórmonofluórmetán, monochlóretán, mtonochlórfluóretán, difluórmonochlóretán, alebo difluórdichlóretán. Možu sa však použiť zlúčeniny s teplotou varu —50 a/ž 110 °C, připadne i vyššou teplotou varu (USA pat. 2 865 869).Of the available blowing agents, those which generally release gaseous compounds upon heating or conversion with the isocyanate are generally used. Low molecular weight liquids and water are preferably used in foaming. The reaction heat and the reaction of water with diisocyanate causes foaming of the mixture to form a sufficiently stable foam which maintains its form until the mass gels. Suitable low molecular weight liquids are fluorochlorohydrocarbons having a boiling point of approximately 20 to 50 ° C or mixtures thereof, e.g. trichlorofluoromethane, trichlorofluoroethane, dichlormonofluoromethane, monochloroethane, mtonochlorofluoroethane, difluoromonochloroethane, or difluorodichloroethane. However, compounds having a boiling point of 5050 to ž 110 ° C and possibly higher boiling points may be used (U.S. Pat. No. 2,865,869).

Stabilizátory zabezpečujú tvorbu, velkost a rovnoměrnost buniek pěny. Sú to spravidla organosilany, napr. zmesné polysiloI xán-polyoxyalkylénové polyméry (USA pat. 2 834 748 a 2 917 480).The stabilizers ensure the formation, size and uniformity of the foam cells. They are generally organosilanes, e.g. mixed polysiloxane-polyoxyalkylene polymers (U.S. Pat. Nos. 2,834,748 and 2,917,480).

Význam emulgátorov spočívá v zlepšení rozpustnosti, resp. homogenizácie reakčných komponentov, připadne pomocných látek. Vhodné sú mnohé beižne známe iónové a najma neiónové emulgátory, ďalej dioktylftalát, dibutylítalút a pod.The importance of emulsifiers is to improve solubility, respectively. homogenization of the reaction components or auxiliary substances. Many of the commonly known ionic and especially nonionic emulsifiers are suitable, furthermore dioctyl phthalate, dibutyl lithium and the like.

Spdsob podl'a vynálezu sa může realizovat známými postupmi vylievaním alebo striekaním na běžných zariadeniach, používaných na výrobu polyuretánových maiteriálov. V závislosti od druhu vypeňovacieho zariadenia . sa volí sposob dávkovania jednotlivých komponentov. Sposob sa může tak uskutočňovať diskontinuálne, polopretržiite i kontinuálně.The process according to the invention can be carried out by known processes by pouring or spraying on conventional equipment used for the production of polyurethane materials. Depending on the type of foaming device. the dosage mode of the individual components is selected. The process can thus be carried out batchwise, semi-continuously and continuously.

Ďalšie podrobnosti spbsobu podlá tohto . vynálezu, ako aj ďalšie výhody sú zřejmé z príkladov.Further details of the method according to this. The invention as well as other advantages are evident from the examples.

Příklad. 1Example. 1

Na .přípravu tvrdej polyuretánovej pěny sa použije polyesiterpolyol, připravený reesterilfikáciou destilačných zvyškov, resp. esterifikaěných zvyškov z výroby dimetyltereftalátu dietylénglykolom a pentaerytritolom· v mólovom pomere 3 : 7 : 1. K 100 g takto . připraveného polyesterpolyolu o hydroxylovom čísle 460 mg KOH/g a číslo kyslosti 0,6 mg KOH/g s,a · přidá 1 g silikonového stabilizátora Tegostab B 1903, 1 g dimetylcyklohexylamínu, 0,1 g oktoátu cínatého, 1 gram vody, 30 g trichlórfluórmetánu (Ledon—11).For the preparation of the rigid polyurethane foam, polyesiterpolyol, prepared by re-esterification of the distillation residues, respectively, is used. esterified residues from the production of dimethyl terephthalate diethylene glycol and pentaerythritol in a molar ratio of 3: 7: 1. To 100 g as follows. prepared polyesterpolyol having a hydroxyl number of 460 mg KOH / g and an acid number of 0,6 mg KOH / gs, and · add 1 g of Tegostab B 1903 silicone stabilizer, 1 g of dimethylcyclohexylamine, 0,1 g of stannous octoate, 1 g of water, 30 g of trichlorofluoromethane ledon-11).

Zmes sa turbínkovým miešadlom důkladné zamieša a potom sa přidá 135 g surového 4,4‘-metándifenyldiizokyanátu, ktorý je známy pod komerčným označením Desmodur 44 V. Startovací čas pěny je 23 s a čas rastu pěny 45 s. Připravená pěna .o objemovej hmotnosti 30 kg/m3 má jemnú rovnoměrná štruktúru a· výbornú dimenznú stabilitu pri teplotách —30 až 90 °C.The mixture is thoroughly mixed with a turbine stirrer, and then 135 g of crude 4,4'-methanediphenyl diisocyanate, known under the commercial designation Desmodur 44 V, are added. The foam start time is 23 s and the foam growth time 45 s. The prepared foam having a density of 30 kg / m 3 has a fine uniform texture and excellent dimensional stability at temperatures of -30 to 90 ° C.

P r i ik 1 a d 2Example 1 a d 2

Na přípravu tvrdej polyuretánovej pěny sa použije polyesterpolyol, opísaný v příklade 1. Polyolový komponent sa připravuje zmiešaním: 100- g polyesterpolyolu, 1,5 g silikonového stabilizátora LK—221, 0,4 g dimetyltereftalátu, 10 · g retardéra horenia Phosgard XA 995, 2 g emulgátora Disperglermittel EM a 30 hmot, častí trichlórfluórmetánu. Po zhomogenizovaní sa · přidá za miešania k polyolovému komponentu 135 g diizokyanátu Tedimon 31. Charakteristické časy -přípravy pěny sú tieto: . startovací čas 110 s, sieťovací· čas 300 s, koniec lepenia 400 s. Získá -sa tvrdá . pěna s objemovou hmotnosťou 38 kg/m3 a so zničenou horlavosťou ako aj výbornou rozměrovou stabilitou pri tepláte —30 °C.The polyester polyol described in Example 1 is used to prepare the rigid polyurethane foam. The polyol component is prepared by mixing : 100 g of polyester polyol, 1.5 g of LK-221 silicone stabilizer, 0.4 g of dimethyl terephthalate, 10 g of Phosgard XA 995 flame retardant, 2 g of the emulsifier Disperglermittel EM and 30 parts by weight of trichlorofluoromethane. After homogenization, 135 g of Tedimon 31 diisocyanate are added to the polyol component with stirring. The foam preparation times are as follows. start time 110 s, cross-link time 300 s, end of gluing 400 s. It gets -that hard. foam with a density of 38 kg / m3 and with destroyed flammability as well as excellent dimensional stability at a temperature of -30 ° C.

Příklad 3Example 3

Transesterifíkáciou, resp. reesterifikáciou destilačných zvyškov z výroby dimetyltereftalátu dietylénglykolom a trlmetylpropánom pri hmot, pomere 1,8 : . 1,6 : 1 sa získá polyesterpolyol o hydroxylovom čísle 435 mlligramov KOH/g a čísle kyslosti 1,1 mg KOH/g. Polyolový komponent sa připravuje zmiešaním 60 g připraveného polyesterpolyolu, 40 g polyéterpolyolu na báze sacharózy a propylénoxidu (Slovaprop T—450) o hydroxylovom čísle 440 mg KOH/g, 1 g silikónového stabilizátora Tegostab B 1903, 1 g trietyléndiamínu, 0,1 g dibutylcíndilaurátu, 45 g dichlóřflliórnietánu — Ledonu 11 a 0,5 g emulgátora Slovasolu SF.Transesterification, respectively. reesterification of the distillation residues from dimethylterephthalate production with diethylene glycol and trimethylpropane at a mass ratio of 1.8:. 1.6: 1, a polyester polyol having a hydroxyl value of 435 mlligrams of KOH / g and an acid number of 1.1 mg KOH / g is obtained. The polyol component is prepared by mixing 60 g of prepared polyester polyol, 40 g of sucrose-based polyetherpolyol and propylene oxide (Slovaprop T-450) having a hydroxyl value of 440 mg KOH / g, 1 g of Tegostab B 1903 silicone stabilizer, 1 g triethylenediamine, 0.1 g dibutyltin dilaurate , 45 g of dichlorofluoronethane-Ledon 11, and 0.5 g of Slovasol SF emulsifier.

Po zhomogenizovaní sa přidá 115 g 4,4‘-metándifenyldiizokyanátu (Desmodur 44). Charakteristické časy penenia majú tieto hodnoty: štartovací čas 20 s, sieťovací čas 50 s, doba lepenia 50 s. Získá sa pěna s rovnoměrně výraznou drobnou štruktúrou o objemovej hmotnosti 35 kg/m3 a. výbornou dimenznou stabilitou pri teplote —30 °C.After homogenization, 115 g of 4,4'-methanediphenyl diisocyanate (Desmodur 44) are added. The characteristic foaming times have the following values: start time 20 s, crosslink time 50 s, gluing time 50 s. A foam having a uniformly pronounced fine structure and having a bulk density of 35 kg / m 3 a is obtained. excellent dimensional stability at -30 ° C.

Příklad 4Example 4

Na přípravu tvrdej polyuretánovej pěny sa použije zmes polyesierpolyolov, pozostávajúea zo 60 hmot, častí polyesterpolyolu, připraveného podl'a příkladu 3 a 40 hmot, častí polyesterpolyolu, připraveného z etylénglykolu, kyseliny adipovej a trimetylolpropánu v mól. pomere 1 : 0,8 : 0,8. Polyolový komponent sa připraví přidáním do zmesi polyesterpolyolov 1,5 hmot, častí stabilizátora LK 221, 1,5 hmot, častí dimetyletanolamínu, 2 hmot. častí emulgátora Di-spergiermittel EM, 10 hmot, častí retardéra horenia Phosgard XA 995 a 35 hmot, častí trichlórfluórmetánu. Po zhomogenizovaní reaguje 100 hmot, častí polyolového komponentu so 135 hmot, časťami diizokyanátu Tedimonu 31. Reakčné časy sú tieto: štartovací čas 40 s, sieťovací čas 105 s, koniec lepenia 145 s.For the preparation of a rigid polyurethane foam, a mixture of polyesierpolyols consisting of 60 parts by weight of parts of polyester polyol prepared according to Example 3 and 40 parts by weight of parts of polyester polyol prepared from ethylene glycol, adipic acid and trimethylolpropane per mole is used. ratio 1: 0.8: 0.8. The polyol component is prepared by adding to the blend of polyester polyols 1.5 wt. Parts of stabilizer LK 221, 1.5 wt. Parts of dimethylethanolamine, 2 wt. parts of the emulsifier Di-spergiermittel EM, 10 parts by weight, parts of the Phosgard XA 995 flame retardant and 35 parts by weight, parts of trichlorofluoromethane. After homogenization, 100 parts by weight of polyol component with 135 parts by weight of parts of Tedimone diisocyanate 31 are reacted.

Získá sa tvrdá pěna s velmi dobrou rozměrovou stálosťou pri teplote 70 °C a —25 stupňov Celsia.A hard foam having a very good dimensional stability at 70 ° C and —25 degrees Celsius is obtained.

Příklad 5Example 5

Na přípravu tvrdej integrálnej polyuretánovej pěny sa. použije polyesterpolyol, opísaný v příklade 1. Polyolový komponent sa připravuje zmiešaním 100 g polyesterpolyolu, 1,5 g silikónového stabilizátora Tegostav B 1903, 7 g . 1,4-butylénglykolu, 1,5 g trietylamínu, 0,15 g dibutylcíndilaurátu, 1 g emulgátora Slovasolu SF a 30 g trichlérfluórmetánu.For the preparation of a rigid integral polyurethane foam is used. Polyester component is prepared by mixing 100 g of polyester polyol, 1.5 g of Tegostav B 1903 silicone stabilizer, 7 g. 1,4-butylene glycol, 1.5 g triethylamine, 0.15 g dibutyltin dilaurate, 1 g emulsifier Slovasol SF and 30 g trichlorofluoromethane.

Po zhomogenizovaní sa za miešania přidá 135 g surového 4,4‘-metándifenyldiizokyanátu a zamiešaná zmes sa vyleje do na229504 separovanej kovověj formy, vyhriatej na teplotu 50 °C. Vznikne pěna s výborným kompaktným integrálnym povrchom o objemovej hmotnosti 450 kg/m3.After homogenization, 135 g of crude 4,4 &apos; -methanediphenyldiisocyanate was added with stirring, and the stirred mixture was poured into 22504 separated metal mold heated to 50 [deg.] C. A foam with an excellent compact integral surface with a density of 450 kg / m 3 is formed.

Claims (1)

Sposob výroby tvrdých polyuretánových pien reaikciou aspoň jedného alifatického alebo aromatického di- až polyizokyanátu s polyolom, za přítomnosti pomocných látok ako katalyzátorov a stabilizátorov, vyznačujúci sa tým, že použitý polyol pozostáva sčasti alebo úplné z polyesterpolyolu připraví zmiešava/ním 100 hmot, častí polyesterpolyolu, vyrobeného podřa příkladu 3, s 2 hmot, časťami emulgá/tora Slovasol SF, 1 hmot, častí trietyléndiamínu. Zmiešaním so 115 g 4,4‘-difenylmetándiizokyanátu vznikne tvrdá polyuretánová hmota s vysokou pevnosťou.Process for producing rigid polyurethane foams by reacting at least one aliphatic or aromatic di- to polyisocyanate with a polyol, in the presence of auxiliaries as catalysts and stabilizers, characterized in that the polyol used consists partly or completely of polyester polyol by mixing 100 parts by weight of polyester polyol, produced according to Example 3, with 2 wt. parts of an emulsifier / Slovasol SF, 1 wt. parts of triethylenediamine. Mixing with 115 g of 4,4‘-diphenylmethane diisocyanate produces a high-strength, rigid polyurethane mass. vynalezu pripravitelného esterifikáciou, polyesterifikáciou ale>bo reesterifikáciou kyselinovej zložky tvorenej sča9ti alebo úplné destilačným zvyškom z výroby kyseliny tereftalovej a/alebo dimetyltereftalátu a alkoholické) zložky na báze alifatických di- až tetraolov.of the invention obtainable by esterification, polyesterification or re-esterification of an acid component consisting of a total or total distillation residue from the production of terephthalic acid and / or dimethyl terephthalate and an alcoholic component based on aliphatic di-tetraols.
CS590680A 1980-08-08 1980-08-29 Method for the producing hard polyurethan foams CS229504B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CS590680A CS229504B1 (en) 1980-08-29 1980-08-29 Method for the producing hard polyurethan foams
SU817771975A SU1291590A1 (en) 1980-08-29 1981-07-30 Method of producing foam polyurethans
DD23238581A DD230248A3 (en) 1980-08-29 1981-07-31 PROCESS FOR PREPARING POLYURETHANEHARTIC CHEMICALS
DE19813131203 DE3131203A1 (en) 1980-08-08 1981-08-06 Process for the preparation of polyurethanes and polyurethane isocyanurates
PL23253081A PL132083B2 (en) 1980-08-29 1981-08-07 Method of manufacture of polyurethanes or polyurethaneisocyanurates
RO105083A RO83485B (en) 1980-08-29 1981-08-12 Process for preparing polyurethanes and polyurethaneisocyanurates
AT374281A ATA374281A (en) 1980-08-29 1981-08-28 METHOD FOR PRODUCING POLYURETHANES OR POLYURETHANISOZYANURATES, AND IN PARTICULAR OF CORRESPONDING HARD FOAMS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS590680A CS229504B1 (en) 1980-08-29 1980-08-29 Method for the producing hard polyurethan foams

Publications (1)

Publication Number Publication Date
CS229504B1 true CS229504B1 (en) 1984-06-18

Family

ID=5404907

Family Applications (1)

Application Number Title Priority Date Filing Date
CS590680A CS229504B1 (en) 1980-08-08 1980-08-29 Method for the producing hard polyurethan foams

Country Status (3)

Country Link
CS (1) CS229504B1 (en)
DD (1) DD230248A3 (en)
SU (1) SU1291590A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1577332A1 (en) * 2004-03-15 2005-09-21 Huntsman International Llc Process for making rigid polyurethane foams

Also Published As

Publication number Publication date
DD230248A3 (en) 1985-11-27
SU1291590A1 (en) 1987-02-23

Similar Documents

Publication Publication Date Title
US6420443B1 (en) Additives for enhanced hydrocarbon compatibility in rigid polyurethane foam systems
US4209609A (en) Toluene diamine initiated polyether polyols
EP2970571B1 (en) Polyester polyols imparting improved flammability properties
AU592649B2 (en) A process for the production of oligoesters containing hydroxy groups and their use
US20040059011A1 (en) Aromatic polyester polyols
US4506090A (en) Aromatic polyols made from polyethylene terephthalate scrap, glycols and aromatic carbonyl-containing compounds
US4439551A (en) Packaging foam polyurethane composition employing novel polyol blend
EP0152915A2 (en) Digestion products of polyalkylene terephthalate polymers and polycarboxylic acid-containing polyols and polymeric foams obtained therefrom
US5397810A (en) Polyol, polyurethane resin and utilization thereof
US4439546A (en) Scrap rim polyurethane modified extender polyols
US4469821A (en) Low smoke, halohydrocarbon-compatible urethane-isocyanurate foam compositions
EP0112627B1 (en) Aromatic amido polyols and rigid polyurethane and polyisocyanurate foams obtainable therefrom
US5418258A (en) Process for the production of substantially closed-cell rigid foams containing urethane, urea and biuret groups showing excellent adhesion to solid surfaces and their use
US5070115A (en) Substantially closed-cell rigid foams containing urethane, urea and biuret groups and a process for their production
EP0192325B1 (en) Polyester polyols, their manufacture and use in polyurethane production
WO2021092100A1 (en) Imide-containing polyester polyols and intumescent rigid foams
US7087657B2 (en) Stable polyol dispersions, polyurethane moldings produced therefrom, and their use
CS229504B1 (en) Method for the producing hard polyurethan foams
GB1592534A (en) Polyester polyols suitable for use in the manufacture of rigid polyurethane foams
US4853419A (en) Distilled products of polyethylene terephthalate polymers and polycarboxylic acid-containing polyols and polymeric foams obtained therefrom
US20060069175A1 (en) Aromatic polyester polyols
JPH05500985A (en) Rigid polyurethane foam with low thermal conductivity
JP2002114840A (en) Method for producing polyester polyol, apparatus for producing polyester polyol, polyester polyol and polyurethane foam
EP3740522B1 (en) Polyester-polyol compositions for polyurethane foam with improved hydrolytic stability
JPS59500968A (en) Ester and halogen-containing polyols