CS223451B1 - A method for determining the thickness of a tin, a coating and an intermediate layer formed on iron and copper substrates - Google Patents

A method for determining the thickness of a tin, a coating and an intermediate layer formed on iron and copper substrates Download PDF

Info

Publication number
CS223451B1
CS223451B1 CS611178A CS611178A CS223451B1 CS 223451 B1 CS223451 B1 CS 223451B1 CS 611178 A CS611178 A CS 611178A CS 611178 A CS611178 A CS 611178A CS 223451 B1 CS223451 B1 CS 223451B1
Authority
CS
Czechoslovakia
Prior art keywords
tin
thickness
iron
layer
coating
Prior art date
Application number
CS611178A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Pavel Fellner
Alexander Silny
Original Assignee
Pavel Fellner
Alexander Silny
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pavel Fellner, Alexander Silny filed Critical Pavel Fellner
Priority to CS611178A priority Critical patent/CS223451B1/en
Publication of CS223451B1 publication Critical patent/CS223451B1/en

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

Vynález sa týka spôsobu stanovenia hrúbky cínového povlaku a medzivrstvy na železných a medených podložkách. Podstata spôsobu stanovenia spočíva v tom, že sa vzorka anodicky rozpúšťa pri konštantnej teplote a konštantnej anotickej prúdovej hustote v roztoku kyseliny sírovej. Z časových zmien potenciálu sa počíta hrúbka cínovej vrstvy a medzivrstvy tak, že pri aktívnej ploche anody 1 cm rozpustí 1 As vrstvu cínu o konštantnej hrúbke, resp. iné konštantné hrúbky intermetalic-kých zlúčenín medi a cínu a intermetalic-kej zlúčeniny železa a cínu. Vynález má použitie v potravinárskom a elektrotechnickom priemysle.The invention relates to a method for determining the thickness of a tin coating and an intermediate layer on iron and copper substrates. The essence of the assay method is that the sample dissolves anodically at a constant temperature and constant anotic current density in a sulfuric acid solution. From the time variations of the potential, the thickness of the tin layer and the interlayer is calculated so that with an active anode area of 1 cm, 1 As dissolves a layer of tin of constant thickness, respectively. other constant thicknesses of intermetallic copper and tin compounds and intermetallic iron and tin compounds. The invention has applications in the food and electrical industries.

Description

Vynález rieši epdeob stanovenia hrubky cínového povlaku a medzivrstvy, vytvořenoj žiarove, alebo elektrolyticky na železných reep· ocelových a měděných podložkách·The invention solves the epdeob of the determination of the tin coating thickness and the interlayer, formed by heat or electrolytically on iron reep · steel and copper substrates ·

Při vytváření cínových povlakov na železnom a modenou základe, je z hlediska antikoroznych vlastností povlaku ako aj z hlediska ekonomického nevyhnutné poznat hrubku vylučenej cínovej vrstvy a medzivratvy· V sučasnej době sa hrubka cínovej vrstvy stanovuje mikroskopicky a elektrolytickým rozpuštěním· Hrubka medzivratvy sa mčže stanovit pomocou rtg mikroanalyzátora. Nevýhodou mikroskopického stanovením hrubky cínového po*· vlaku je zdíhavost a obtiažnosť přípravy kvalitného nábrusu priečného řezu vzorky· Tenký povlak sa při brúsení deformuje, čo výrazné skresluje výsledky· Pomocou přístroje, pracujúceho na principe coulometrickej metody sa dá stanovit hrubka cínového povlaku len vtedy, ak vzorka neobsahuje medzivrstvu. Rtg mikroanalyzátorom sa hrubka medzivratvy mfiže s dostatočnou přesnost ou stanovit len vtedy, ak je váčšia ako 5 дмп· V technickoj praxi používané pocínované plechy a drfity majú hrubku medzivrstvy podstatné menšiu·When forming tin coatings on an iron and modified basis, it is necessary to know the thickness of the deposited tin layer and the intercoat in terms of both the anticorrosion properties of the coating as well as economically. At present the tin layer thickness is determined microscopically and electrolytically microanalysers. The disadvantage of microscopic determination of the tin train thickness is the sagging and difficulty of preparing a quality cross-section of the sample cross section. · Thin coating deforms during grinding, which significantly distorts the results · Using a coulometric method only tin coating thickness can be determined the sample does not contain an intermediate layer. The X-ray microanalyzer can be determined with sufficient accuracy only if it is greater than 5 days. · In practice tinplate and tinplate used in engineering have a substantially lower interlayer thickness.

Uvedené nevýhody v podstatnéj miere odstraňuje spdsob etanovenia hrubky cínového povlaku a medzivratvy vytvorenej na železných a měděných podložkách podlá vynálezu, ktorého podstata spočívá v tom, že vzorka sa anodicky rozpúšťa pri laboratorně j teploto a konátantnej anodickéj prudovej hustotě 15 i až 40 mA/cm v roztoku 10 % kyseliny sírověj a z časových zmien potenciálu ea počítá hrubka cínovej vrstvy a medzivratvy·The above-mentioned disadvantages are substantially eliminated by the method of etching the tin coating thickness and the intermediate gate formed on the iron and copper supports according to the invention, which consists in that the sample dissolves anodically at room temperature and constant anodic current density of 15 to 40 mA / cm solution of 10% sulfuric acid and from time changes of potential e and calculates the thickness of tin layer and intermediate

Na nameranej křivko potenciál - čas zretelne vystupujú dve vlny· Prvá vlna odpovedá rozpušťaniu cínovej vrstvy· Potom sa potenciál pracovnej elektrody /vzorky/ rýchle změní na hodnotu, pri ktorej začne prebiehať další anodický dej, t«j· rozpúšťanie medzivratvy /druhá vlna/· Po skončení tohto procesu začne rozpúšťanie podložky·On the measured potential-time curve, two waves are clearly visible · The first wave corresponds to the tin layer dissolution · Then the working electrode / sample / potential changes rapidly to the value at which the next anodic event begins, i.e. After this process, the pad will start to melt ·

Z nameranej £ - t křivky, známých rozmerov povrchu anody /plocha vzorky, ktorá je ponořená v elektrolyte/ a známej hodnoty použitého prúdu, sa pomocou Faradayovho zákona vypočítá hrubka cínového povlaku a medzivrstvy· Pri výpočte hrubky medzi- 2 —From the measured £ - t curve, the known dimensions of the anode surface (sample area that is immersed in the electrolyte) and the known value of the current used, the tin coating and interlayer thickness is calculated by Faraday's law.

223 451 vrstvy sa beru do úvahy výsledky, ktoré autoři patentu získali pri žtúdiu difúzie v sústave železo-cín a mee-cín·223,451 layers, taking into account the results obtained by the authors of the diffusion study in the iron-tin and mecetin systems.

Pri ' aktivnej ploché.anody 1 cm’ rozpuutí 1 As vrstvu cínu o hrúbke 0,84’. resp· 0,51 ^rnsumy intermeealiekej zlúčeniny medi a cínu o z ložení 39 % hrnoo. médi a 61 % hmol.· cínu a intermstalickej zlúčeniny medi a cínu o’zložení 61,6 % hrnoo. medi a 38,4 % hm<>t. cínu, resp· 0,68 ^um inttrmotalicktj* zlúčeniny železa a cínu o* zložení 19 % hmot· železa a 81 % hm<>t· cínu·With an 'active flat anode of 1 cm', it dissolves a 1 As layer of 0.84 tin. and 0.51 µm of an intermeeal copper-tin compound of 39% loading. medium and 61% by weight of tin and an intermstalic copper and tin compound having a 61.6% by weight composition. copper and 38.4 wt% > tin, respectively, · 0.68 µm of an iron-tin compound of 19% by weight iron and 81% by weight <> t · t ·

Tento epdsob galvanostetického anodického rozpúátania cínových povlakov na železných a medeiných základoeh ' um ož nu je rýclUo, jednoduché a epolTailivé stanovenie hrubky cínovej . vrstvy a meezzvvetvy, ktorej znalost je potřebná jednak ' pri poeudzovaní kvality ochranných vlastností povlaku, ' jednak z hlediska’ekonomického·This method of galvanosthetic anodic dissolution of tin coatings on iron and copper bases is a simple, easy and epolytic determination of tin thickness. layer and cross-industry, whose knowledge is necessary both in assessing the quality of the protective properties of the coating and in terms of

Příklad 1Example 1

Vzorka pocínovaného ocelového. drOtu sa ponoří do roztoku 10 % k^eeliny sírověj· Plocha ponorenej vzorky je 0,276 cm’· Spolu so vzorkou sa do roztoku ponoří uhlíková elektroda, ktorej plocha je 4 cm2· Skumaná vzorka- sa propojí ku kladnému pólu zdroja stejnosměrného prúdu a uhlíková elektroda k zápornému pólu. Medzi elektrodami sa nechá přetékat elektrický prúd 5'nA, čo zodpovedá.anodickej prúdovej hustoto ( t.j· prúdovej hustoto na . testovanoj vzorke) 18,1 mA cm’2· Na zapisovači sa zaznamenáva rozdiel napátia mmdzi elektrodami· čas od.počiatku elektrolýzy do *ekokovsj změny elektrického potenciálu ea nameral 78,38 s, To zodpovedá hrubko cínovej vrstvy 1,2 <m· Druhá vlna zaznamenaná na . zapisovači trvala 36,98 i· Nakolko vrstva inttrmeetlických zlúčenín obsahuje 19 hmotn· % . železa a 81 hmotn· % cínu, zodpovedá nameraný ’ Čae druhej vlny hrúbko intermeealickej vrstvy. 0,46 ^um·Sample of tinned steel. wire is immersed in 10% sulfuric acid solution · Submerged sample area is 0.276 cm -1 · Together with the sample the carbon electrode is immersed in the solution, p p h h is 4 cm 2 · S cumulated sample is connected to the positive pole of the source direct current and carbon electrode to the negative pole. An electrical current of 5'nA is allowed to flow between the electrodes, which corresponds to an anodic current density (i.e., current density per test sample) of 18.1 mA cm @ 2 · The voltage difference between the electrodes is recorded on the recorder. * ekokovsj changes in electrical potential ea measured 78.38 s, This corresponds to a tin layer thickness of 1.2 <m · Second wave recorded at. It took 36.98% to the extent that the layer of inthermic compounds contains 19% by weight. % of iron and 81 wt.% tin, the measured second wave corresponds to the thickness of the intermeeal layer. 0.46 ^ um ·

Příklad 2Example 2

Stanovenie hrubky cínovej vrstvy a medzzvrstvy na medencm základe sa stanoví experimentálně podobným spdsobom, aký je uvedený v přiklade 1·Determination of the tin layer thickness and the intermediate layer on the copper base is determined experimentally in a similar manner to that described in Example 1.

223 451223 451

Anodickým rozpúš taním' cínového povlaku na mede.no m základe s aktívrym povrchom 0,251 cmfc v 10 % kyselina sírovej při anodickej ^lúdovej hustotě 19*92 mA^cm2 a Čase rozpúSUani a ' cínovej vrstvy tx = 66,88 s a meeziivcrstvy skladajúcej sa i intermatalických zlúčenín médi a cínu o zložení 61*6 % hmot, médi a 38,4 % hmoo.' cínu a intermeetQickej zlúceniny médi a cínu o uložení 39 % hmot, médi a 61 í hmt. cínu, t's 88*48 s sa stanovila hrúbka cínovej vrstvy 2,8^2 a meezlivstvy 0,90 μυη.Anodic solvent-melting "of the tin coating on the basis of the m mede.no therein an active surface area of 0.251 cm fc 10% sulfuric acid, the anodically j ^ People's density of 1 * 9 ^ 92 mA cm 2 and a case rozpúSUani" tin layer t x = 66, 88 is an intermediate consisting of intermatal compounds of medium and tin having a composition of 61% by weight, medium and 38.4% by weight. tin and an intermediate compound of the medium and tin containing 39% by weight of the medium and 61% by weight. tin, t's 88 * 48 s, the thickness of the tin layer was 2.8 µm and the resistance was 0.90 μυη.

Claims (1)

Spdsob stanovenia hrůbky cínovej vrstvy a meezivrstvy na železných a mdaných podložkách, vyznačujúci sa tým* Ž^. vzorka sa anodicky rozpúáťa pri . . teplete^*' k°nítantnej an°dlckej prúSovej hus teta 15 až 40 mA^cm2 v roztoku 10 J kyseliny sír ověj, a z Časových zmien potenciálu sa^poMta hrúbka. cínovej. vrstvy a meedzvrstvy»Method for determining the thickness of the tin layer and the interlayer on iron and copper substrates, characterized in that it is characterized by &lt; 1 &gt; the sample dissolves anodically at. . teplete ^ * 'to tne ° affinities n j n ° dlckej Průšová geese theta 1 5-40 mA cm ^ 2 in a solution of 10 J broad, ester, and the temporal changes of the potential of the ^ Pomt thickness. tin. layers and layers »
CS611178A 1978-09-22 1978-09-22 A method for determining the thickness of a tin, a coating and an intermediate layer formed on iron and copper substrates CS223451B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS611178A CS223451B1 (en) 1978-09-22 1978-09-22 A method for determining the thickness of a tin, a coating and an intermediate layer formed on iron and copper substrates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS611178A CS223451B1 (en) 1978-09-22 1978-09-22 A method for determining the thickness of a tin, a coating and an intermediate layer formed on iron and copper substrates

Publications (1)

Publication Number Publication Date
CS223451B1 true CS223451B1 (en) 1983-10-28

Family

ID=5407381

Family Applications (1)

Application Number Title Priority Date Filing Date
CS611178A CS223451B1 (en) 1978-09-22 1978-09-22 A method for determining the thickness of a tin, a coating and an intermediate layer formed on iron and copper substrates

Country Status (1)

Country Link
CS (1) CS223451B1 (en)

Similar Documents

Publication Publication Date Title
Böhni et al. Environmental factors affecting the critical pitting potential of aluminum
Baldwin et al. The corrosion resistance of electrodeposited zinc-nickel alloy coatings
El-Mahdy et al. AC impedance study on corrosion of 55% Al–Zn alloy-coated steel under thin electrolyte layers
Parks et al. Ionic migration through organic coatings and its consequences to corrosion
Notter et al. Porosity of electrodeposited coatings: its cause, nature, effect and management
Jones et al. Electrochemical corrosion studies on zinc-coated steel
Broli et al. Determination of characteristic pitting potentials for aluminium by use of the potentiostatic methods
Ross et al. Anti-corrosion properties of zinc dust paints
France et al. Comparison of chemically and electrolytically induced pitting corrosion
Cho et al. The effect of electrolyte properties on the mechanism of crevice corrosion in pure iron
Vu et al. In situ investigation of sacrificial behaviour of hot dipped AlSi coating in sulphate and chloride solutions
Kerr et al. Porosity and corrosion rate measurements for electroless nickel deposits on steel using electrochemical techniques
CS223451B1 (en) A method for determining the thickness of a tin, a coating and an intermediate layer formed on iron and copper substrates
Popov et al. Electroplating of thin films of bismuth onto type 4340 steel and Alloy 718 to prevent hydrogen embrittlement
Worsley et al. Influence of remote cathodes on corrosion mechanism at exposed cut edges in organically coated galvanized steels
Baldwin et al. Cathodic protection of steel by electrodeposited zinc-nickel alloy coatings
Gu et al. The influence of Al substrate intermetallic precipitates on zinc electrodeposition
ALBU-YARON et al. A tentative evaluation of the potentiokinetic polarization technique in studies of localized corrosion of lacquered tinplate
Duffek et al. New method of studying corrosion inhibition of iron with sodium silicate
Dayal et al. Measurement of Crevice Corrosion Resistance of Stainless Steels using a Potentiodynamic Method
Court et al. Electrochemical measurements of electroless nickel coatings on zincated aluminium substrates
Das et al. Effect of microstructure of ferrous substrate on porosity of electroless nickel coating
Qingdong A novel electrochemical testing method and its use in the investigation of underfilm corrosion of temporarily protective oil coating
Huang et al. Application of cyclic thermal-oxidized IrOx electrode in pH detection of Zn/steel galvanic process in 3.5 wt.% NaCl solution
Kerr et al. Electrochemical techniques for the evaluation of porosity and corrosion rate for electroless nickel deposits on steel