CS214553B1 - Method of galvanic coating of functional layer resisting against the abrasion - Google Patents

Method of galvanic coating of functional layer resisting against the abrasion Download PDF

Info

Publication number
CS214553B1
CS214553B1 CS827479A CS827479A CS214553B1 CS 214553 B1 CS214553 B1 CS 214553B1 CS 827479 A CS827479 A CS 827479A CS 827479 A CS827479 A CS 827479A CS 214553 B1 CS214553 B1 CS 214553B1
Authority
CS
Czechoslovakia
Prior art keywords
abrasion
functional layer
layer
salt
galvanic coating
Prior art date
Application number
CS827479A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Ladislav Herbansky
Ctirad Kubik
Original Assignee
Ladislav Herbansky
Ctirad Kubik
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ladislav Herbansky, Ctirad Kubik filed Critical Ladislav Herbansky
Priority to CS827479A priority Critical patent/CS214553B1/en
Publication of CS214553B1 publication Critical patent/CS214553B1/en

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

Vynález spadá do odboru galvanickej techniky.Rieši spfrsob galvanického naná - šania funkčněj vrstvy odolnéj hlavně proti otěru, vyznačujúci sa tým, že sa nanáša vrstva hrůbky 0,02 až 0,04 mm, s výhodou zo zliatiny chróm-molybdén, vylučovaná z kúpeía obsahujúceho 150 až 250 kg, rn-^ kysličníka chromového, 30 až 75 kg., m molybdenanu amonného, 1,0 az 2,5 kg. -3 m kyseliny fluorokremičitej alebo jej o soli a 0,6 až 1,0 kg.m kyseliny sírovej alebo jej soli pri teplote 45 až 60 °0 a , ' 3 „ 3 —2 prudovej hustotě 3,10 az 5»10 A m ·The invention belongs to the galvanic field Techniques. a functional layer resistant mainly to abrasion, characterized in that it is applied a layer of ridge of 0.02 to 0.04 mm, preferably of molybdenum alloy, excreted from a bath containing 150 to 250 kg chromium oxide, 30 to 75 kg. m ammonium molybdate, 1.0 to 2.5 kg. -3 m of fluorosilicic acid or its O and 0.6 to 1.0 kg of sulfuric acid or a salt thereof at a temperature of from 45 to 60 ° C; , '3' 3 —2 3,10 to 5 »10 A m ·

Description

Vynález spadá do odboru galvanickej techniky.Rieši spfrsob galvanického naná šania funkčněj vrstvy odolnéj hlavně proti otěru, vyznačujúci sa tým, že sa nanáša vrstva hrůbky 0,02 až 0,04 mm, s výhodou zo zliatiny chróm-molybdén, vylučovaná z kúpeía obsahujúceho 150 až 250 kg, rn-^ kysličníka chromového, 30 až 75 kg., m molybdenanu amonného, 1,0 az 2,5 kg.The present invention is in the field of electroplating. It relates to a method of galvanic deposition of a wear-resistant functional layer, characterized in that a thickness of 0.02 to 0.04 mm, preferably of chromium-molybdenum alloy, deposited from a bath containing 150 up to 250 kg, rn - 2 of chromium oxide, 30 to 75 kg, m of ammonium molybdate, 1.0 to 2.5 kg.

m kyseliny fluorokremičitej alebo jej o soli a 0,6 až 1,0 kg.m kyseliny sírovej alebo jej soli pri teplote 45 až 60 °0 a , ' 3 „ 3 —2 prudovej hustotě 3,10 az 5»10 A m ·m of fluorosilicic acid or a salt thereof and 0.6 to 1.0 kg.m of sulfuric acid or a salt thereof at a temperature of 45 to 60 ° 0 and a.

214 553214 553

Vynález sa týká sposobu galvanického nanášania funkčnej vrstvy odolnéj hlavně proti otěru na navzájom sa pohybujúce styčné plochy súčastí zaradení.The present invention relates to a method for the galvanic deposition of a wear-resistant functional layer on mutually moving contact surfaces of the components of the devices.

Povrch funkčných plóbh súčiastok, ktoré sú v prevádzke vystavené treniu a dynamickému namáhaniu, pričom súčasne moža pracoval v extrémnych podmienkach z híadiska teploty alebo agresivity prostredia, ako sú například piestne krúžky, piesty, ventily, čapy, funkčně časti vačkových a lomených hriadeíov u spaíovacích motorov a kompresorov, časti prevódoviek ako sú hriadele, ozubené kolesá a synohronizačné krúžky atá, sa doteraz vyrábal tromi sposobmi· Pri prvom sposobe sa súčiastky vyrábali z kusá zušíachteného materiálu, čo bolo náročné na spotřebu vysokolegovaných materiálov. Pri obrábaní boli spravidla potřebné veíké odběry zle obrobiteíného materiálu, čo bolo nevýhodné Z híadiska pracnosti, spotřeby energie, nástrojov a návaznosti na strojové vybavenie. Pri druhom spÓsobe sa na funkčné plochy navárala vrstva materiálu požadovaných vlastností a potom sa povrch obrábal ha konečný tvar a rozměry. Aj pri tomto sposobe bolo zhotovovanie funkčných ploch obrábaním prácne a nákladné najma z dovodov nerovnoměrného přídavku na obrábanie a vlastností návaru, najma jeho povrchových vrstiev. Nevýhodou tohoto sp<5sobu bolo tiež to, že sa nedá dodržaí přesná a rovnoměrná hrubka návaru ani po obrobení, ako aj vysoké zostatkové napatia medzi návarom a základným materiálom. Pri trefom sposoba sa galvanicky vylučovala na funkčné plochy súčiastok vrstva tvrdého kovu, najčastejšie chróm, a to zvyčajne vo vačších hrubkách, pričom sa povrch dodatočne opracúval na požadované tolerancie. Nevýhodou tohto spŮsobu bola nutnosí najprv vylučovaí málo produktívnou technológiou hrubú vrstvu povlaku, ktorá sa v áalšom musela tiež prácne obrábaí, čo vytváralo značné předpoklady poškodzovania povrchu už pri samotnéj výrobě. Aj v případe možnosti vylučovania vrstvy s přesnou toleranciou sa prejavoval základný nedostatok oteruvzdomých chrómových vrstiev vyrábaných doterajšími spósobmi, ktorý spočíval v ich neschopnosti udrža£ na funkčnom povrchu súčiastky film mazadla,ktorý je potřebný na zmensenie trenia.The surface of functional parts of components that are subject to friction and dynamic stress in operation, while operating under extreme conditions in terms of temperature or environmental aggressiveness, such as piston rings, pistons, valves, pins, functionally camshaft and crankshaft parts in internal combustion engines and compressors, parts of gearboxes such as shafts, gears and synchronous rings etc. have so far been produced in three ways. · In the first mode, the components were manufactured from pieces of refined material, which required the consumption of high-alloy materials. As a rule, large quantities of poorly machined material were required during machining, which was disadvantageous in terms of labor, power consumption, tools and machine equipment. In a second method, a layer of material of desired properties was welded onto the functional surfaces, and then the surface was machined to its final shape and dimensions. Even in this manner, the machining of the functional surfaces was laborious and expensive, in particular due to the uneven machining allowance and the properties of the weld deposit, in particular its surface layers. A disadvantage of this method was also the fact that an accurate and uniform deposition thickness cannot be maintained even after machining, as well as high residual stresses between the deposition and the base material. In the correct manner, a hard metal layer, most commonly chromium, was usually galvanically deposited on the functional surfaces of the components, usually in larger thicknesses, and the surface was subsequently machined to the required tolerances. The disadvantage of this method was the necessity to first deposit a thin layer of coating by a low-productivity technology, which in the following had to be laboriously worked, which created considerable conditions for surface damage during production. Even in the case of the possibility of deposition of a layer with an exact tolerance, there was a fundamental lack of abrasion-resistant chrome layers produced by the prior art, which consisted in their inability to maintain a lubricant film on the functional surface of the component required to reduce friction.

Uvedené nedostatky v podstatnej miere odstraňuje sposob galvanického nanášania funkčně j vrstvy odolnéj hlavně proti otěru, ktorého podstata spočívá vtom, že sa na funkčné plochy súčiastok galvanicky nanáša vrstva do hrubky 0,02 áž 0,04 mm, zo zliatiny chrómmolybdén, vylučovaná z kúpeía obsahujúceho 150 až 250 kgm-'1 kysličníka chrómového, 30 až 75 kg nT^ molybdežanu amonného, 1,0 až 2,5 kg m”^kyseliny fluorokromičitej alebo jej soli a 0,6 až 1,0 kg kyseliny sírovéj alebo jej soli pri teplote 45 až 60°C a prúdovej hustotě 3,10^ až 5,10^ A m“2 .The above-mentioned deficiencies are substantially eliminated by the method of galvanic deposition of a wear-resistant functional layer, which consists in the fact that a layer of 0.02 to 0.04 mm, of chromium molybdenum, precipitated from a bath containing 150 to 250 kgm - 'one oxide of chromium, 30-75 kg ^ nT molybdežanu solution, 1.0 to 2.5 kg m "^ fluorokromičitej acid or a salt thereof and 0.6 to 1.0 kg of sulfuric acid or a salt thereof in 45 ° to 60 ° C; and a current density of 3.10 to 5.10 µm m 2 .

Galvanickým nanášaním funkčněj vrstvy podía vynálezu na dielec, ktorý má vopred upravené rozměry častí s funkonými plochami tak, aby po pokovaní mali přesné rozměry, sa vy lúči potřeba následného obrábania íažkoobrobiteíného materiálu.Vrstva hrůbky 0,02 až 0,04 mm rastie pri galvanickom nanášaní dostatočně rovnoměrně a zabezpečuje dlhodobú ochranu prpti opotrebeniu. Punkčná vrstva zliatiny chróm-molybdén, nanesená z kúpeía uvedeného zloženia a za uvedených podmienok má přitom kopčekovitú štruktúru s oblými výstupkami.Takáto štruktúra sa doteraz pužívanými spí?sobmi nedosahovala. Kopčekovitá struktura umožňuje udržanie vrstvy mazadla na funkčnom povrchu súčiastky. Jej áalšou výhodou je aj to, že pri pohybe súčiastok dochádza ku vzájomnému kontaktu len na oblých výstupkoch povrchu, čo podstatné obmedzuje možnosf zadrenia súčastí.The galvanic deposition of the functional layer according to the invention on a part having pre-adjusted dimensions of the parts with functional surfaces so as to have precise dimensions after metering eliminates the need for subsequent machining of the difficult-to-machine material. A thickness of 0.02 to 0.04 mm increases sufficiently uniform and ensures long-term protection prpti opotrebeniu. The puncture layer of the chromium-molybdenum alloy deposited from the bath of the above-mentioned composition and under the mentioned conditions has a hilly structure with rounded protrusions. This structure has not been achieved by the methods used hitherto. The hilly structure allows the lubricant layer to be maintained on the functional surface of the component. Another advantage is that when moving the parts, only the rounded projections of the surface interact with each other, which considerably limits the possibility of seizing the parts.

Příklad <1.Example <1.

Ná krúžky synehronizačných kúželov pre prevodovú skrinu osobného automobilu sa naniesla vrstva zliatiny ohróm-molybdén hrubky 0,03 mm z kúpeía o zložení 200 gA kysličník vhromitý, 40 gA AH^/gMoyOg^. 41^0, 10 g A Na2SiPg a 0,8 gA H2S°4. Praeovné podmienky pri pokovovaní boli nasledovné s teplota 48°C, prúdová hustota 35 A/dm2. Výsledky skúšky životnosti na skúšobnom stave ukázali, že po 200 000 zaradení funkčné plochy nevykazovali žiadne známky opotrebovania.A 0.03 mm thick chrome-molybdenum alloy layer from a 200 gA bromine dioxide bath, 40 gA AH4 / gMoyOg4 was applied to the rings of the synhronizing cones for the gearbox of a passenger car. 41 ^ 0, and 10 g of Na 2 Si PG as used and 0.8 gA of H2S ° 4th The plating conditions were as follows with a temperature of 48 ° C, a current density of 35 A / dm 2 . The durability test results showed that after 200,000 function areas, there were no signs of wear.

Příklad 2Example 2

Na zuby ozubených kolies prevodovéj skrine sa naniesla vrstva zliatiny chrom-molybdén hrůbky 0,04 mm z kúpefa o uložení, popísanom v příklade 1. Pracovné podmienky pri pokovaní bolí následovně i teplota 55°C, prúdová hustota 50 A/dm2.A 0.04 mm chrome-molybdenum alloy layer from the bearing bath described in Example 1 was applied to the gear-box teeth of the gearbox. The working conditions for the coating were subsequently temperature 55 ° C, current density 50 A / dm 2 .

Claims (1)

PREDMET V Y NÁ LEZUOBJECT OF THE FINISH Sposob galvanického nanášania funkčněj vrstvy odolhej hlavně proti otěru, vyznačujúci sa tým, že sa nanáša vrstva do hrůbky 0,02 až. 0,04 mm, zo zliatiny chrom-molybdén., vylučovaná z kúpeía obsahujúceho 150 až 250 kg m-3 hysličníka chrómového, 30 až 75 kg m3 molybdénanu amonného, 1,0 až 2,5 kg m“3 kyseliny fluorokremioitej alebo jej soli a 0,6 až 1,0 kg m“3 kyseliny sírovej alebo jej soli pri teplote 45 až 60°C a průdovej hustotě 3,1O3 až 5,1O3 A m“2 .Method of galvanic application of a functional layer mainly resistant to abrasion, characterized in that the layer is applied to a depth of 0.02 to. 0,04 mm, of chromium-molybdenum alloy, excluded from a bath containing 150 to 250 kg m -3 of chromium oxide, 30 to 75 kg m 3 of ammonium molybdate, 1,0 to 2,5 kg m 3 of fluorocremioic acid or its salt and 0.6 to 1.0 kg m "3 sulfuric acid or a salt thereof at 45 to 60 ° C and a current density of 3 to 3,1O 5,1O 3 and m '2. Vytiskly Tiskařské závody, provoz 75, Mladá BoleslavPrinted works, plant 75, Mlada Boleslav Cena: 2,4 0 KčsPrice: 2,4 0 Kčs
CS827479A 1979-11-30 1979-11-30 Method of galvanic coating of functional layer resisting against the abrasion CS214553B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS827479A CS214553B1 (en) 1979-11-30 1979-11-30 Method of galvanic coating of functional layer resisting against the abrasion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS827479A CS214553B1 (en) 1979-11-30 1979-11-30 Method of galvanic coating of functional layer resisting against the abrasion

Publications (1)

Publication Number Publication Date
CS214553B1 true CS214553B1 (en) 1984-02-28

Family

ID=5433113

Family Applications (1)

Application Number Title Priority Date Filing Date
CS827479A CS214553B1 (en) 1979-11-30 1979-11-30 Method of galvanic coating of functional layer resisting against the abrasion

Country Status (1)

Country Link
CS (1) CS214553B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038835A1 (en) * 2000-11-11 2002-05-16 Enthone, Inc. Method for the deposition of a chromium alloy
WO2004050960A1 (en) * 2002-11-29 2004-06-17 Federal-Mogul Burscheid Gmbh Production of structured hard chrome layers
US8110087B2 (en) 2004-04-21 2012-02-07 Federal-Mogul Burscheid Gmbh Production of a structured hard chromium layer and production of a coating
US8337687B2 (en) 2008-04-04 2012-12-25 Federal-Mogul Burscheid Gmbh Structured chrome solid particle layer and method for the production thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002038835A1 (en) * 2000-11-11 2002-05-16 Enthone, Inc. Method for the deposition of a chromium alloy
WO2004050960A1 (en) * 2002-11-29 2004-06-17 Federal-Mogul Burscheid Gmbh Production of structured hard chrome layers
US7699970B2 (en) 2002-11-29 2010-04-20 Federal-Mogul Burscheid Gmbh Production of structured hard chrome layers
US8277953B2 (en) 2002-11-29 2012-10-02 Federal-Mogul Burscheid Gmbh Production of structured hard chrome layers
US8110087B2 (en) 2004-04-21 2012-02-07 Federal-Mogul Burscheid Gmbh Production of a structured hard chromium layer and production of a coating
US8337687B2 (en) 2008-04-04 2012-12-25 Federal-Mogul Burscheid Gmbh Structured chrome solid particle layer and method for the production thereof

Similar Documents

Publication Publication Date Title
CN101461030B (en) Abrasion resistant and etching-resistant coating
US6869690B1 (en) Zinc-diffused alloy coating for corrosion/heat protection
AT509459B1 (en) anti-fretting
CN102124238A (en) Sliding element having a multiple layer
DE3727468A1 (en) COMPOSITE SLIDING BEARING
JPS63518B2 (en)
JP5735363B2 (en) Stainless steel wire for phosphate film cold heading and direct screw using it
CS214553B1 (en) Method of galvanic coating of functional layer resisting against the abrasion
EP0892088B1 (en) Method of making iron electroplated aluminium materials
US5073213A (en) Process for applying a phosphate sliding layer to a bearing metal layer
EP0059273A1 (en) Composite bearing
JP3255862B2 (en) Sliding member and manufacturing method thereof
Das et al. Electroless nickel-phosphorus deposits
DE2415327A1 (en) SLIDING BEARINGS AND METHOD FOR MANUFACTURING THEM
Strafford et al. Electroless nickel coatings: Their application, evaluation & production techniques
JP3249059B2 (en) Surface treatment liquid for metal sliding member and surface treatment method
JPH02180993A (en) Lubrication-treated iron part and production thereof
US2830015A (en) Chromium electrodeposit and method of plating
Hyde et al. Piston ring coatings for high performance diesel engines
Bidmead Engineering Plating
Timmins PREVENTING FASTENER CORROSION
Totten Friction and Wear of Sliding Bearing Materials
DE102015208644A1 (en) Component, use of the component and method for producing the component
JP3272546B2 (en) Manufacturing method of aluminum engine cylinder
Zhong et al. Selective brush plating a tin-zinc alloy for sacrificial corrosion protection