CS213685B1 - A method of passivating the surface of metallic amorphous magnetic layers - Google Patents
A method of passivating the surface of metallic amorphous magnetic layers Download PDFInfo
- Publication number
- CS213685B1 CS213685B1 CS418580A CS418580A CS213685B1 CS 213685 B1 CS213685 B1 CS 213685B1 CS 418580 A CS418580 A CS 418580A CS 418580 A CS418580 A CS 418580A CS 213685 B1 CS213685 B1 CS 213685B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- silicon
- amorphous magnetic
- magnetic layers
- layers
- passivating
- Prior art date
Links
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Vynález spadá do oboru mikroelektroniky. Rieši sposob pasivácie kovových amorfných magnetických vrstiev s bublinovou doménovou átruktúrou. Postupuje sa tak, že na povrch kovových amorfných magnetických vrstiev sa ve vékuu katódovo jednosměrně alebo vysokofrekvenčně naprašuje křemík, oxinitrid kremíka alebo nitrid kremíka v prostředí plynu, kterým može byť argon, dusík alebo zmes argonu a dusíka a to ve vrstvě hrůbky 0,1 až 1,0 £im.The invention falls within the field of microelectronics. It solves a method of passivation of metallic amorphous magnetic layers with a bubble domain structure. The procedure is that silicon, silicon oxynitride or silicon nitride is sputtered onto the surface of metallic amorphous magnetic layers in a vacuum cathodically unidirectionally or at high frequency in a gas environment, which can be argon, nitrogen or a mixture of argon and nitrogen, in a layer thickness of 0.1 to 1.0 µm.
Description
213 885213 885
Vynález sa týká sposebu pasivácie povrchu kovových amorfných magnetických vrstiev.The present invention relates to a method for passivating the surface of metallic amorphous magnetic layers.
Kovové amorfně magnetické vrstvy, sú chemicky reaktivně najma s vodnými parami a kys-líkem. Po depozícii magnetických vrstiev je nevyhnutelné ich pokryl ihneá bez prerušeniavákua ochrannou pašivadnou vrstvou. Frítemnost pár a plynov z atmosféry V kovových amorf-ných magnetických vrstvách s bublinovou doménovou Strukturou zhoršuje ich magnetické vlast-nosti. Vzhladem k elektrickéj vodivosti kovových materiálov amorfných magnetických vrstievmá pasivačná vrstva tiež funkciu elektrickéj izolácie. Vsúčasnosti sa na pevrchovú pasi-váciu kovových amorfných magnetických vrstiev používajú ochranné vrstvy oxidov kremíkaSiO a S1O2· Pri použití vrstiev oxidov kremíka je poměrně dobré zvládnutá technologie pří-pravy vákuovým naparováním vrstvy SiO, resp. katodovým naprašovaním vrstvy SiOg· Nevýho-dou použitia vrstiev oxidov kremíka je možnost znečistenia kovových amorfných magnetickýchvrstiev počas depozície pasivačných vrstiev při ňalšom spracovaní tenkovrstvových magne-tických štruktúr a počas prevádzky, hlavně následkem slabých bariérových vlastností vrstievoxidov kremíka vodči difúzii rozných nečistol.Metallic amorphous magnetic layers are chemically reactive especially with water vapor and oxygen. After the deposition of the magnetic layers, it is inevitable to cover them immediately without the interruption and the protective layer. Fractionality of vapors and gases from the atmosphere In metallic amorphous magnetic layers with a bubble domain structure, their magnetic properties deteriorate. Due to the electrical conductivity of the metal materials of the amorphous magnetic layer, the passivation layer also functions as an electrical insulation. At present, protective layers of silicon oxide SiO2 and SiO2 are used to solidify the metal amorphous magnetic layers. When using silicon oxide layers, the technology of preparation by vacuum vapor deposition of SiO or SiO2 is relatively good. The disadvantage of using silicon oxide layers is the possibility of contamination of the metallic amorphous magnetic layers during deposition of the passivation layers during the further processing of the thin film magnetic structures and during operation, mainly due to the weak barrier properties of the silicon oxide layers by the diffusion of various impurities.
Tieto nevýhody sú odstránené u sposobu podlá vynálezu, ktrorého podstatou je, že napovrch kovových amorfných magnetických sa vo výkuu katódovo jednosměrně alebo vysokofrek-venčně naprašuje křemík, oxinitrid kremíka alebo nitrid kremíka v prostředí plynu, ktorýmmaže byl argon, dusík alebo změs argonu a dusíka a to vo vrstvě 0,1 až 1,0 |iin. V případe použitia terčov z nitridov kremíka alebo exinitridov kremíka je potřebnévrstvy nanášel vysokofrekvenčným naprašovaním. Výhody použitia nitridov alebo exinitridov kremíka na pasiváciu kovových amorfnýchmagnetických vrstiev sú v ich vačšej odolnosti voči posobeniu vonkajšej atmosféry, preja-vujúcej sa difundováním iónov do vrstvy. Nitridy kremíka alebo exinitridy kremíka majúvačšiu atemárnu hustotu ako oxidy kremíka a zabraňujú difúzii roznych nečistol, najmaatómov alkalických kovov. Vrstvy nitrodov kremíka alebo oxinitridov kremíka dobře chrániapřed prienikom plynov a voných pár, které sami v óbjeme neebsahujú. Vrstvy nitridov kremí-ka alebo exinitridov kremíka majú dielektrické vlastnosti vhodné pře izoláciu kovověj mag-netickej vrstvy. Použitím vrstiev nitridov kremíka alebo exinitridov kremíka na povrchovúpasiváciu kovových amorfných magnetických vrstiev s bublinovou doménovou štruktúrou sa do-siahne vysoká časová stabilita átrukturálných, magnetických a chemických vlastností tých-to vrstiev, ktorá popísaná v nasledujúcem příklade ilustruje predmet vynálezu bez toho,aby sa i ba naň vzlahovala. Příklad 1These drawbacks are overcome in the process of the present invention by sputtering silicon, silicon oxinitride, or silicon nitride in an environment of gas which has been argon, nitrogen, or a mixture of argon and nitrogen in a cathodic unidirectional or high frequency sample. it in a layer of 0.1 to 1.0 µin. In the case of the use of silicon nitride targets or silicon exinitrides, it is necessary to apply the layers by high-frequency sputtering. The advantages of using silicon nitrides or exinitrides for the passivation of metal amorphous magnetic layers are in their greater resistance to the propagation of the outer atmosphere by diffusion of ions into the layer. Silicon nitrides or silicon exitrides have a higher atomic density than silicon oxides and prevent diffusion of various impurities, the alkali metal atoms. Layers of silicon nitride or silicon oxinitrides are well protected from the penetration of gases and odorous vapors, which are not contained in the oobjeme themselves. The silicon nitride or silicon exinitride layers have dielectric properties suitable for isolating the metallic magnetic layer. By using silicon nitride layers or silicon exinitrides for the surface-passivation of metal amorphous bubble-like magnetic layers, a high time stability of the structural, magnetic and chemical properties of these layers is achieved, which is described in the following example without departing from the invention. to her. Example 1
Amorfně magnetické vrstvy Gd - 0βχ, keá x = 0,75 až 0,81 boli vysokofrekvenčně na-prášené z terča zloženia GdjCo? (Čermák J., Tvarožek V., Harman R., Kaczer J., Phys.Stat.Sol.,/a/ 49« K 81, /1978/). Hrúbka vrstiev Gd Co bola meraná Tolanského metodou interfero-metrem a hustota vrstiev bola určené vážením. Chemické zloženie vrstiev boli zistené po-mocou elektronovéj mikrosendy a výsledky boli kalibrované hodnotami magnetických mémentev.Nasýtená magnetizácia 431*Μθ bola meraná Fenerovým vibračným magnetometrem pomocou Ker-revhe javu a kryštaíická štruktúra vrstiev rentgenovou difrakciou.Amorphous magnetic layers Gd - 0βχ, k and x = 0.75 to 0.81 were high frequency powdered from GdjCo? (Cermak J., Tvarozek V., Harman R., Kaczer J., Phys.Stat.Sol., / A / 49 " K 81, (1978)). The thickness of the Gd Co layers was measured by the Tolan method by interferometer and the density of the layers was determined by weighing. The chemical composition of the layers was determined by electron microsend and the results were calibrated by magnetic values. The saturated magnetization of 431 * Μθ was measured by a Fener vibrator magnetometer using a Ker-revhe phenomenon and a crystal layer structure by X-ray diffraction.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS418580A CS213685B1 (en) | 1980-06-13 | 1980-06-13 | A method of passivating the surface of metallic amorphous magnetic layers |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS418580A CS213685B1 (en) | 1980-06-13 | 1980-06-13 | A method of passivating the surface of metallic amorphous magnetic layers |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS213685B1 true CS213685B1 (en) | 1982-04-09 |
Family
ID=5384017
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS418580A CS213685B1 (en) | 1980-06-13 | 1980-06-13 | A method of passivating the surface of metallic amorphous magnetic layers |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS213685B1 (en) |
-
1980
- 1980-06-13 CS CS418580A patent/CS213685B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Reynolds et al. | Mean free paths of electrons in evaporated metal films | |
| Ishizaka et al. | Si SiO2 interface characterization by ESCA | |
| Liau et al. | Influence of atomic mixing and preferential sputtering on depth profiles and interfaces | |
| Baglin et al. | Absolute cross section for hydrogen forward scattering | |
| Maniv et al. | Oxidation of an aluminum magnetron sputtering target in Ar/O2 mixtures | |
| Van de Riet et al. | Incongruent transfer in laser deposition of FeSiGaRu thin films | |
| Dufour et al. | Ion beam mixing effects induced in the latent tracks of swift heavy ions in a Fe/Si multilayer | |
| Miyake et al. | Formation of iron film by ion beam deposition | |
| Hata et al. | High rate deposition of thick piezoelectric ZnO films using a new magnetron sputtering technique | |
| Chamberlain et al. | Lattice and grain boundary diffusion of copper in thin aluminum films | |
| Hues et al. | Oxygen-induced segregation effects in sputter depth-profiling | |
| Muhl et al. | Aluminium nitride films prepared by reactive magnetron sputtering | |
| Wie et al. | Two types of MeV ion beam enhanced adhesion for Au films in SiO2 | |
| Sockel et al. | Investigations of slow exchange processes at metal and oxide surfaces and interfaces using secondary ion mass spectrometry | |
| CS213685B1 (en) | A method of passivating the surface of metallic amorphous magnetic layers | |
| Winter et al. | Wall conditioning of TEXTOR | |
| Besenbacher et al. | Stopping power of solid argon for helium ions | |
| Uchida et al. | Preparation and characterization of (Tb, Dy) Fe2 giant magnetostrictive thin films for surface acoustic wave devices | |
| Mozetic et al. | AES characterization of thin oxide films growing on Al foil during oxygen plasma treatment | |
| Hou et al. | Distribution of ion-implanted yttrium in Cr2O3 scales and in the underlying Ni-25wt.% Cr alloy | |
| Maissel et al. | Sputter-etching of heterogeneous surfaces | |
| La Marche et al. | Crystallographic contrast due to primary ion channelling in the scanning ion microscope | |
| Cohen et al. | Characterization of the surface oxidation and magnetic properties of MnFe thin films | |
| Möller et al. | Accuracy of film thickness determination in electron probe microanalysis | |
| Muralidhar et al. | Structural and compositional studies of magnetron-sputtered Nd–Fe–B thin films on Si (100) |