CS213611B1 - Nuclear reactor from the cadmium telluride - Google Patents

Nuclear reactor from the cadmium telluride Download PDF

Info

Publication number
CS213611B1
CS213611B1 CS874876A CS874876A CS213611B1 CS 213611 B1 CS213611 B1 CS 213611B1 CS 874876 A CS874876 A CS 874876A CS 874876 A CS874876 A CS 874876A CS 213611 B1 CS213611 B1 CS 213611B1
Authority
CS
Czechoslovakia
Prior art keywords
cadmium telluride
insulating layer
single crystal
detector
nuclear reactor
Prior art date
Application number
CS874876A
Other languages
Czech (cs)
Inventor
Anka A Konova
Original Assignee
Anka A Konova
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anka A Konova filed Critical Anka A Konova
Publication of CS213611B1 publication Critical patent/CS213611B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/119Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation characterised by field-effect operation, e.g. MIS type detectors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

1511410 Semiconductor device INSTITUTE PO PHYSIKA NA TVARDOTO TYLO PRI BAN 30 Dec 1976 [30 Dec 1975] 54340/76 Heading H1K A nuclear radiation detector consists of a body of cadmium telluride with a cathode of platinum electrochemically deposited on one etched face and ananode of aluminium vacuum evaporated over a thin (40-100Š) insulating layer at its opposite face.

Description

Vynález se týká jaderného detektoru z teluridu kademnatého, který je použitelný v lékařství, v armádě a v jaderné technice.The present invention relates to a cadmium telluride nuclear detector for use in medicine, the military and nuclear technology.

Je známý detektor z teluridu kademnatého, jehož kontakty jsou identické. Nevýhodou tohoto detektoru je průrazné napětí na 100 V.v důsledku vysokých svodových proudů.There is a known cadmium telluride detector whose contacts are identical. The disadvantage of this detector is the breakdown voltage to 100 V. due to high leakage currents.

V popisu vynálezu u USA patentu č. 3 563 704 Je popsán dozimetr k měření ionizačního záření a vysokou energií, v němž sitlivý element tvoří struktura MOS. Záření dopadající na strukturu MOS vyvolává v izolační kysličníkové vrstvě vznik párů elektron - díra a kladného prostorového náboje. Aby začal protékat proud, který je měřítkem dávky absorbovaného záření? jé třeba detektor zahřát až na 200 °C. Druhou nevýhodou je skutečnost, že k detekci se nevyužívá celého objemu monokrystalu křemíku, což má za následek nízkou detekční účinnost.U.S. Pat. No. 3,563,704 discloses a dosimeter for measuring ionizing radiation and high energy in which the absorbent element forms the MOS structure. The radiation incident on the MOS structure causes the formation of electron-hole pairs and positive spatial charge in the insulating oxide layer. To start the current, which is a measure of the dose of absorbed radiation? the detector should be heated up to 200 ° C. A second disadvantage is the fact that the entire volume of the silicon single crystal is not used for detection, which results in low detection efficiency.

Předmětem vynálezu, který odstraňuje uvedené nedostatky, je jaderný detektor z teluridu kademnatého s platinovou katodou nanesenou elektrolyticky na naleptanou plochu monokrystalu teluridu kademnatého a s anodovou strukturou MIS. Podstata vynálezu spočívá v tom, že hliníková anoda je vakuově napařena na izolační vrstvu zakrývající plochu monokrystalu teluridu kademnatého, přičemž celý objem monokrystalu teluridu kademnatého tvoří citlivý element detektoru.The object of the invention, which removes the above drawbacks, is a cadmium telluride nuclear detector with a platinum cathode deposited electrolytically on the etched cadmium telluride single crystal surface and with the anode structure of MIS. The principle of the invention is that the aluminum anode is vacuum-vapor deposited on an insulating layer covering the cadmium telluride single crystal surface, the entire volume of the cadmium telluride single crystal being a sensitive detector element.

Výhodou detektoru podle vynálezu je zmenšený svodový proud, zlepšená šumová charakteristika v důsledku sníženého svodového proudu a udržování silného elektrického pole ve velkéThe advantages of the detector according to the invention are reduced leakage current, improved noise characteristics due to reduced leakage current and maintaining a strong electric field in a large

213 611 oblasti ochuzení, což zajiěluje vysokou účinnost a rozlišovací schopnost. Silné elektrické pole potlačuje polarizaci krystalu.213 611 impoverishment, which provides high efficiency and resolution. A strong electric field suppresses polarization of the crystal.

Na výkrese je znázorněn příčný řez detektorem podle vynálezu. Na Jedné straně monokrystalu 1^ teluridu kademnatého Je elektrolyticky nanesená platinová katoda 2 na vyleptané ploše monokrystalu 1. Na druhé straně monokrystalu 1 Je vakuově napařená hliníková anoda £. Mezi hliníkovou anodou £a stěnou monokrystalu 1 Je napařená izolační vrstva která má t.ioněíkuThe drawing shows a cross-section of a detector according to the invention. On one side of the cadmium telluride single crystal 1, a platinum cathode 2 is electrolytically deposited on the etched surface of single crystal 1. On the other side of single crystal 1, an aluminum anode 6 is vacuum-vaporized. Between the aluminum anode 6 and the single crystal wall 1 there is a vaporized insulating layer having

0,006 nm0.006 nm

Když na detektor působí ionizační zářeni, vznikají v celém objemu krystalu 1 polovodiče páry díra - elektron, a působením silného elektrického pole mezi anodou £ a katodou 2. se elektrony pohybují к anodě £ a díry ke katodě 2. Při vhodné volbě kontaktů pro vysokoohmový monokrystal 1 teluridu kademnatého lze k.detektoru přiložit vysoké napětí až 2 000 V. Elektrické signály vznikající při ozáření Jsou úměrné energii absorbovaného ionizujícího záření.When ionizing radiation is applied to the detector, a hole-electron vapor semiconductor is produced throughout the crystal volume 1, and by the strong electric field between the anode 6 and the cathode 2, the electrons move toward the anode 4 and the holes toward the cathode 2. 1 cadmium telluride can be applied to the detector with a high voltage of up to 2,000 V. Electrical signals generated during irradiation are proportional to the energy of the absorbed ionizing radiation.

Skutečnost, že tenká izolační vrstva tvoří mezilehlou vrstvu mezi monokrystalem 1 a anodou £ z hliníku, drasticky snižuje závěrný proud.The fact that the thin insulating layer forms an intermediate layer between the single crystal 1 and the aluminum anode 6 drastically reduces the reverse current.

Claims (3)

1. Jaderný detektor z teluridu kademnatého s platinovou katodou nanesenou elektrolyticky na naleptanou plochu monokrystalu teluridu kademnatého a s anodovou strukturou MIS, vyznačený tím, že hliníková anoda (4) Je vakuově napařena na izolační vrstvu (3) zakrývající plochu monokrystalu Cl), téluridu kademnatého, přičemž celý objem monokrystalu (1) teluridu kademnatého tvoří citlivý element detektoru.A cadmium telluride nuclear detector with a platinum cathode deposited electrolytically on an etched cadmium telluride monocrystal surface and an MIS anode structure, characterized in that the aluminum anode (4) is vacuum-vapor deposited on an insulating layer (3) covering the monocrystalline surface C1). wherein the entire volume of cadmium telluride single crystal (1) constitutes a sensitive detector element. 2. Jaderný detektor podle bodu 1, vyznačený tím, že izolační vrstva (3) má tlouŽikuNuclear detector according to claim 1, characterized in that the insulating layer (3) has a thickness 0,004 až 0,01 .0.004 to 0.01. 3. Jaderný detektor podle bodu 1, vyznačený tím, že ploch monokrystalu (1) pokrytá izolační vrstvou (3) je vyleštěná.Nuclear detector according to claim 1, characterized in that the surfaces of the single crystal (1) covered by the insulating layer (3) are polished.
CS874876A 1975-12-30 1976-12-29 Nuclear reactor from the cadmium telluride CS213611B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
BG3197375 1975-12-30

Publications (1)

Publication Number Publication Date
CS213611B1 true CS213611B1 (en) 1982-04-09

Family

ID=3901839

Family Applications (1)

Application Number Title Priority Date Filing Date
CS874876A CS213611B1 (en) 1975-12-30 1976-12-29 Nuclear reactor from the cadmium telluride

Country Status (5)

Country Link
JP (1) JPS5292577A (en)
CA (1) CA1080372A (en)
CS (1) CS213611B1 (en)
FR (1) FR2337435A1 (en)
GB (1) GB1511410A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57149983A (en) * 1981-03-12 1982-09-16 Yokogawa Hokushin Electric Corp Radiation detector
JPS62115391A (en) * 1985-11-13 1987-05-27 Nippon Mining Co Ltd Cdte radiant ray detector
JPS62226082A (en) * 1986-03-28 1987-10-05 Yokogawa Electric Corp Beta ray detecting device
FR2738080B1 (en) * 1995-08-24 1997-10-31 Commissariat Energie Atomique SEMICONDUCTOR-BASED X-RAY DETECTION DEVICE
WO2000003266A1 (en) * 1998-07-09 2000-01-20 Mitsubishi Denki Kabushiki Kaisha Radiation detector

Also Published As

Publication number Publication date
GB1511410A (en) 1978-05-17
CA1080372A (en) 1980-06-24
FR2337435A1 (en) 1977-07-29
JPS5292577A (en) 1977-08-04
FR2337435B3 (en) 1979-08-31

Similar Documents

Publication Publication Date Title
Sasaki pin junction in the anodic oxide film of tantalum
Kemmer et al. Performance and applications of passivated ion-implanted silicon detectors
US6350989B1 (en) Wafer-fused semiconductor radiation detector
GB1241379A (en) Improvements in or relating to target structures for cathode ray tubes
US7060523B2 (en) Lithium-drifted silicon detector with segmented contacts
US2885562A (en) Photoelectric device
CS213611B1 (en) Nuclear reactor from the cadmium telluride
US3390449A (en) Method for preparation and encapsulation of germanium gamma ray detectors
US4056726A (en) Coaxial gamma ray detector and method therefor
CN112071945A (en) Spiral ring electrode silicon array detector
US3863072A (en) Semiconductor localization detector
Kuwabara et al. Photoconductivity of some alkali halide crystals in the fundamental absorption range
GB916402A (en) Photoelectric power generator
CN110611009B (en) Nested three-dimensional groove electrode silicon detector
WO2014015285A2 (en) Field-shaping multi-well avalanche detector for direct conversion amorphous selenium
JPS6174375A (en) Semiconductor radiation detector
JPS6161708B2 (en)
US4122345A (en) Semiconductor detector for detecting ionizing radiation
US3320495A (en) Surface-barrier diode for detecting high energy particles and method for preparing same
RU2061282C1 (en) Semiconductor ionizing-radiation detector
Drummond High purity germanium radiation detectors
Dearnaley Semiconductor nuclear radiation detectors
JP2000292544A (en) Radiation detector
JP3644306B2 (en) Radiation detector
Williams et al. Electron Emission from The Schottky Barrier Structure ZnS: Pt: Cs