CS209269B1 - Manufacturing method of saturated and/or unsaturated aliphatic epoxide compounds having 20up to 80 carbon atoms - Google Patents
Manufacturing method of saturated and/or unsaturated aliphatic epoxide compounds having 20up to 80 carbon atoms Download PDFInfo
- Publication number
- CS209269B1 CS209269B1 CS569079A CS569079A CS209269B1 CS 209269 B1 CS209269 B1 CS 209269B1 CS 569079 A CS569079 A CS 569079A CS 569079 A CS569079 A CS 569079A CS 209269 B1 CS209269 B1 CS 209269B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- epoxidation
- tertiary butyl
- hydroperoxide
- macromolecule
- compounds
- Prior art date
Links
- -1 unsaturated aliphatic epoxide compounds Chemical class 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229920006395 saturated elastomer Polymers 0.000 title claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 title claims description 7
- 238000006735 epoxidation reaction Methods 0.000 claims description 34
- 239000004743 Polypropylene Substances 0.000 claims description 24
- 229920001155 polypropylene Polymers 0.000 claims description 24
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 claims description 21
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 16
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 14
- 239000003054 catalyst Substances 0.000 claims description 14
- 150000001336 alkenes Chemical class 0.000 claims description 13
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 12
- 150000001875 compounds Chemical class 0.000 claims description 12
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 claims description 12
- 150000002432 hydroperoxides Chemical class 0.000 claims description 12
- 229920002521 macromolecule Polymers 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 229920001577 copolymer Polymers 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052794 bromium Inorganic materials 0.000 claims description 9
- 238000004821 distillation Methods 0.000 claims description 8
- 239000000047 product Substances 0.000 claims description 8
- 229920001519 homopolymer Polymers 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 239000011733 molybdenum Substances 0.000 claims description 7
- GQNOPVSQPBUJKQ-UHFFFAOYSA-N 1-hydroperoxyethylbenzene Chemical compound OOC(C)C1=CC=CC=C1 GQNOPVSQPBUJKQ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004593 Epoxy Substances 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 5
- 150000001993 dienes Chemical class 0.000 claims description 5
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- 229910000476 molybdenum oxide Inorganic materials 0.000 claims description 4
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 150000007513 acids Chemical class 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 238000002474 experimental method Methods 0.000 claims description 3
- 230000000737 periodic effect Effects 0.000 claims description 3
- 229920000642 polymer Polymers 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 2
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 2
- 125000003118 aryl group Chemical group 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- 239000012043 crude product Substances 0.000 claims description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 2
- 229910052753 mercury Inorganic materials 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 230000035484 reaction time Effects 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 claims 1
- 239000007864 aqueous solution Substances 0.000 claims 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims 1
- 239000004327 boric acid Substances 0.000 claims 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 11
- OIGWAXDAPKFNCQ-UHFFFAOYSA-N 4-isopropylbenzyl alcohol Chemical compound CC(C)C1=CC=C(CO)C=C1 OIGWAXDAPKFNCQ-UHFFFAOYSA-N 0.000 description 6
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 239000012429 reaction media Substances 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 229920001083 polybutene Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- IAQRGUVFOMOMEM-ARJAWSKDSA-N cis-but-2-ene Chemical compound C\C=C/C IAQRGUVFOMOMEM-ARJAWSKDSA-N 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000012442 inert solvent Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 238000006384 oligomerization reaction Methods 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 150000004967 organic peroxy acids Chemical class 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 150000004965 peroxy acids Chemical class 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- IAQRGUVFOMOMEM-ONEGZZNKSA-N trans-but-2-ene Chemical compound C\C=C\C IAQRGUVFOMOMEM-ONEGZZNKSA-N 0.000 description 2
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 2
- WAPNOHKVXSQRPX-UHFFFAOYSA-N 1-phenylethanol Chemical compound CC(O)C1=CC=CC=C1 WAPNOHKVXSQRPX-UHFFFAOYSA-N 0.000 description 1
- KZDCMKVLEYCGQX-UDPGNSCCSA-N 2-(diethylamino)ethyl 4-aminobenzoate;(2s,5r,6r)-3,3-dimethyl-7-oxo-6-[(2-phenylacetyl)amino]-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid;hydrate Chemical compound O.CCN(CC)CCOC(=O)C1=CC=C(N)C=C1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 KZDCMKVLEYCGQX-UDPGNSCCSA-N 0.000 description 1
- XRXANEMIFVRKLN-UHFFFAOYSA-N 2-hydroperoxy-2-methylbutane Chemical compound CCC(C)(C)OO XRXANEMIFVRKLN-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- UINCSEFCAAJUDB-UHFFFAOYSA-N OO.C(C)C1=CC=CC=C1.C(C)C1=CC=CC=C1 Chemical compound OO.C(C)C1=CC=CC=C1.C(C)C1=CC=CC=C1 UINCSEFCAAJUDB-UHFFFAOYSA-N 0.000 description 1
- SCKXCAADGDQQCS-UHFFFAOYSA-N Performic acid Chemical compound OOC=O SCKXCAADGDQQCS-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- 241001074085 Scophthalmus aquosus Species 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- XPNGNIFUDRPBFJ-UHFFFAOYSA-N alpha-methylbenzylalcohol Natural products CC1=CC=CC=C1CO XPNGNIFUDRPBFJ-UHFFFAOYSA-N 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229940058905 antimony compound for treatment of leishmaniasis and trypanosomiasis Drugs 0.000 description 1
- 150000001495 arsenic compounds Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000007033 dehydrochlorination reaction Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 229940093920 gynecological arsenic compound Drugs 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 150000004966 inorganic peroxy acids Chemical class 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000005078 molybdenum compound Substances 0.000 description 1
- 150000002752 molybdenum compounds Chemical class 0.000 description 1
- KMYNOLMHFFIADC-UHFFFAOYSA-J molybdenum(4+) octadecanoate Chemical compound C(CCCCCCCCCCCCCCCCC)(=O)[O-].[Mo+4].C(CCCCCCCCCCCCCCCCC)(=O)[O-].C(CCCCCCCCCCCCCCCCC)(=O)[O-].C(CCCCCCCCCCCCCCCCC)(=O)[O-] KMYNOLMHFFIADC-UHFFFAOYSA-J 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical group CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000010913 used oil Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Epoxy Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
(54) Spósob výroby nasýtených alebo nenasýtených alifatických epoxizlúčenín s 20 až 80 atómami uhlíka(54) A method for producing saturated or unsaturated aliphatic epoxy compounds having 20 to 80 carbon atoms
Vynález sa týká spósobu výroby nasýtených ί alebo nenasýtených alifatických epoxizlúčenín s 20 • až 80 atómami uhlíka z dostupných petrochemických surovin, připravených oligomerizáciou, poly! merizáciou alebo kopolymerizáciou, predovšet• kým alkénov a diénov, pričom sa dosahuje pomerI ne vysoká rýchlosť epoxidácie i selektivita na alkyloxirany alebo alkenyloxirany.The invention relates to a process for the production of saturated β or unsaturated aliphatic epoxy compounds having from 20 to 80 carbon atoms from available petrochemical raw materials prepared by oligomerization, polyolysis, polyol. by measurement or copolymerization, in particular of the alkenes and dienes, while achieving a relatively high epoxidation rate and selectivity to alkyloxiranes or alkenyloxiranes.
Je všeobecne známe, že epoxidáciu alkénov : možno uskutečňovat’ chlórhydrináciou s následnou ί dehydrochloráciou, ďalej organickými peroxikyse: linami vopred připravenými [Priležajev N. A.: Ber.It is well known that epoxidation of alkenes can be accomplished by chlorohydrinating followed by dehydrochlorination, followed by organic peroxy acids: lines prepared in advance [Priležajev N.A .: Ber.
! 42, 4811 (1909); V. Brit. pat. 990 883; Švajč. pat. ! 42, 4811 (1909); V. Brit. pat. 990 883; SUI. pat.
481 089; Saranča V. N. a spol.: Kinetika i kataliz 18, 1612 (1977)] alebo vytváranými „in šitu“ z peroxidu vodíka, karbónovej kyseliny alebo jej anhydridu za pósobenia kyslých katalyzátorov, napr. katexu [NSR pat. 1 210 850; Šapilov O. D. a kol.: Ž. prikl. chim. 45, 1578 (1972)], potom kooxidáciou alkénov a aldehydov kyslíkom, resp. vzduchom za vzniku alkénoxidov a z aldehydov odpovedajúcich kyselin [BljumbergE. A., Filipova T. V.: Neftechimija 6, 863 (1966); Andrianov A. A., Čemjak B. I.: Neftechimija 8, 22 (1969); Tavadin L. A. a kol.: Neftechimija 18,667 (1978); austrál. pat. 405 028 a franc. pat. 1 410 985]. Nevýhodou, tak ako v případe epoxidácie peroxikyselinami, je vysoká korózia zariadenia a navýše v poslednom případe aj nízká selektivita. Priama oxidácia vzduchom, resp. kyslíkom sa zatiaí s vysokou selektivitou dokáže aplikovat’ len na epoxidáciu etylénu na etylénoxid. Na přípravu propylénoxidu priamou oxidáciou propylénu je sice známých viac postupov, ale uplatnenie vo výrobě z dóvodov příliš nízkej selektivity ešte žiaden nenašiel [NSR pat. 896 941; V. Brit. pat. 724 207; Mis(rík J. E.: Petrochémia 19, 43 (1979)]. Tak v súčasnosti priemyselne najvýznamnejšie sú epoxidácie olefínov organickými hydroperoxidmi [belg. pat. 644 090; franc. pat. 1 459 796 a 1 460 575; Krjukov S. I., Farberov M. J.: Neftechimija 11, 224 (1971); Sheng Μ. N., Zajacek J. G.: J. Org. Chem. 35, 1839 (1970)], najma terc-butylhydroperoxidom, etylbenzénhydroperoxidom a kuménhydroperoxidom, za katalytického účinku přechodných kovov a ich zlúčenín, najma zlúčenín Mo, V, W, Se, Te, Cr, Ti, Re, Ta, B, Nb a Ni. Najvýznamnejšie katalyzátory sú na báze molybdenu [Ševčíková I., Mistrík J. E.: Petrochémia 18,186 (1978)]. Epoxidácia organickými hydroperoxidmi sa však aplikuje na epoxidáciu alkénov najviac do Ci8. Nevýhodou je však skutečnost’, že ako reakčná voda, tak aj vovedená do reakčného prostredia epoxidácie, najma však alkohol vznikajúci z organických hydroperoxidov, hlavně po ich konveťzii na epoxidáciu alkénov (napr. z tercbutylhydroperoxidu vzniknu2 tý terc-butylalkohol, z etylbenzénhydroperoxidu 1-fenyletanol a z kuménhydroperoxidu kumylalkohol), inhibuje, resp. retarduje epoxidáciou [Farberov, Stožkova, Bondarenko, Glusker: Neftechimija 10, 218 (1970); Howe, Hiatt: J. Org. Chem. 36,2493 (1971); Indiktor, Brill: J. Org. Chem. 30, 2074 (1965); Boeva, Tanieljan, Ivanov: Neftechimija 18, 768 (1978)]. Příčina spočívá vo vytváraní konkurenčných komplexov alkoholov a připadne vody s epoxidačným katalyzátorom. Tieto a ďalšie nedostatky odstraňuje a známe přednosti epoxidácie alkénov hydroperoxidmi i peroxokyselinami analogicky aplikuje na výrobu vysokomolekulárnych epoxizlúčenín spósob podlá tohto vynálezu.481 089; Karanika VN et al .: Kinetics i kataliz 18, 1612 (1977)] or formed "in situ" from hydrogen peroxide, carbonic acid or its anhydride by the action of acid catalysts, e.g. cation exchanger [NSR Pat. 1,210,850; Šapilov OD et al .: Ž. Ex. chim. 45, 1578 (1972)], followed by cooxidation of the alkenes and aldehydes with oxygen, respectively. air to form alkene oxides and aldehydes of the corresponding acids [BljumbergE. A., Filip's TV: Nephtechimija 6, 863 (1966); Andrianov AA, Čemjak BI: Nephtechimija 8, 22 (1969); Tavadin LA et al., Neftechimija 18,667 (1978); Austral. pat. 405 028 and French. pat. 1,410,985]. The disadvantage, as in the case of epoxidation by peracids, is the high corrosion of the device and, in the latter case, also the low selectivity. Direct oxidation with air, resp. while it can only be applied with high selectivity to epoxidize ethylene to ethylene oxide. Although several processes are known for the preparation of propylene oxide by direct oxidation of propylene, none has yet found its application in the manufacture due to too low selectivity [NSR Pat. 896 941; V. Brit. pat. 724 207; Mis (r. JE: Petrochemistry 19, 43 (1979)) Thus, the epoxidation of olefins with organic hydroperoxides is currently the most industrially significant (belg. Pat. 644 090; french pat. 1 459 796 and 1 460 575; Krjuk SI, Farber MJ Neftechimija 11, 224 (1971), Sheng N.N, Zajacek JG: J. Org. Chem. 35, 1839 (1970)], in particular tert-butyl hydroperoxide, ethylbenzene hydroperoxide and cumene hydroperoxide, under the catalytic action of transition metals and their compounds, in particular the most important catalysts are based on molybdenum [Ševčíková I., Mistrík JE: Petrochemistry 18,186 (1978)]. however, it applies to the epoxidation of alkenes up to C 18 at the most. However, the disadvantage is that both the reaction water and the epoxidation reaction medium, in particular alcohol resulting from organic hydroperoxides, mainly after their convection for epoxidation of alkenes (e.g. tert-butyl hydroperoxide) tert-butyl alcohol, ethylbenzene hydroperoxide (1-phenylethanol, and cumene hydroperoxide cumyl alcohol), respectively, is inhibited, respectively. retarding by epoxidation [Farber, Stozkova, Bondarenko, Glusker: Neftechimija 10, 218 (1970); Howe, Hiatt, J. Org. Chem. 36,2493 (1971); Ind., Brill: J. Org. Chem. 30, 2074 (1965); Boeva, Tanieljan, Ivanov: Nephtechimija 18, 768 (1978)]. The reason lies in the formation of competing complexes of alcohols and possibly of water with an epoxidation catalyst. These and other drawbacks are overcome and the known advantages of epoxidation of alkenes with hydroperoxides and peracids are analogously applied to the production of high molecular weight epoxy compounds by the method of the present invention.
Podlá tohto vynálezu sa spósob výroby nasýtených alebo nenasýtených alifatických epoxizlúčenín s 20 až 80 atómami uhlíka a připadne odpovedajúcich kyslíkatých zlúčenín epoxidáciou organickými hydroperoxidmi ako sú terciálny-butylhydroperoxid, etylbenzénový roztok etylbenzénhydroperoxidu a kuménový roztok kuménhydroperoxidu, za katalytického účinku aspoň jedného z prvkov alebo zlúčenín prvkov V.a a Vl.a podskupiny periodického systému prvkov pri teplote 30 až 160 °C, alebo peroxidu vodíka za spolupósobenia organických alebo anorganických kyselin a katalyzátorov na báze katiónaktívnych iónomeničov alebo aspoň jednej zo zlúčenín bóru, molybdenu, volfrámu, ortuti, bizmutu, antimónu a arzénu, s výhodou heterogénnych alebo heterogenizovaných katalyzátorov, pri teplote 20 až 120 °C, připadne za přítomnosti inertných rozpúšťadiel, ktoré za podmienok epoxidácie nepodliehajú oxidačným změnám, najma cyklohexánu, heptánu, 1,2-dichlóretánu, nasýtených aromatických připadne alifatickoaromatických uhlovodíkov, uskutočňuje tak, že sa epoxiduje kopolymér alebo homopolymér alkénov s 2 až 5 atómami uhlíka, pričom jednotlivé zložky v zmesi sú v pomere 0,1 : 1 až 1 : 0,1 hmot. dielov, alebo konjugovaných diénov so 4 až 5 atómami uhlíka obsahujúci priemerne 1 až 4 dvojité vazby v makromolekule, pri celkovom tlaku 0,1 až 200 kPa a celkovom molámom pomere organického hydroperoxidu alebo peroxidu vodíka k epoxidovanému homopolyméru alebo kopolyméru 1 až 5:1, pričom uvolňovaný alkohol alebo voda sa odvádzajú samotné alebo ako azeotrop, spravidla s organickým rozpúšťadlom, pričom epoxidačný katalyzátor sa odstraňuje zo surového produktu a s výhodou regeneruje.According to the present invention, a process for the production of saturated or unsaturated aliphatic epoxy compounds having 20 to 80 carbon atoms and the corresponding oxygenated compounds, respectively, by epoxidation with organic hydroperoxides such as tert-butyl hydroperoxide, ethylbenzene solution of ethylbenzene hydroperoxide and first cumene solution and a Vl.a subgroup of the Periodic Table of the Elements at a temperature of 30 to 160 ° C, or hydrogen peroxide in association with organic or inorganic acids and catalysts based on cationic ion exchangers or at least one of boron, molybdenum, tungsten, mercury, bismuth, antimony and arsenic compounds; preferably heterogeneous or heterogeneous catalysts, at a temperature of 20 to 120 ° C, in the presence of inert solvents which are not subject to oxidative changes under the conditions of epoxidation, in particular cyclohexane, of saturated, aromatic or aliphatic-aromatic hydrocarbons, is carried out by epoxidizing a copolymer or homopolymer of C2 -C5 alkenes, the components in the mixture being in a ratio of 0.1: 1 to 1: 0.1 wt. parts or conjugated dienes of 4 to 5 carbon atoms containing on average 1 to 4 double bonds in a macromolecule, at a total pressure of 0.1 to 200 kPa and a total molar ratio of organic hydroperoxide or hydrogen peroxide to epoxidized homopolymer or copolymer of 1 to 5: 1, wherein the released alcohol or water is discharged alone or as an azeotrope, typically with an organic solvent, wherein the epoxidation catalyst is removed from the crude product and preferably recovered.
Výhodou spósobu podlá tohto vynálezu je fahká technická dostupnosť východiskových surovin, možnosť výroby v beztlakových alebo nízkotlakových zariadeniach, vyššie výťažky epoxizlúčenín, ako aj skutočnosť, že výparným teplom oddestilovávaného alkoholu, či vody, resp. azeotropov alkoholov a vody s uhfovodíkmi sa technicky nenáročné a účinné odvádza reakčné oxidačně teplo, pričom súěasne sa vykonává ďalšia technologická operácia, oddefovanie vedfajších produktov.The advantages of the process according to the invention are the easy technical availability of the starting materials, the possibility of production in non-pressurized or low-pressure plants, higher yields of epoxy compounds, and the fact that the heat of evaporation of distilled alcohol or water, respectively. The azeotropes of alcohols and hydrocarbon water are technically undemanding and efficient to remove the heat of reaction, while at the same time carrying out another technological operation, separating the by-products.
Regulováním tlaku je možné dalej udržiavať optimálnu teplotu epoxidácie. Přitom sa získajú cenné produkty i medziprodukty pre ďalšie organické syntézy a výroby z dostupných, zatiaf nie prQiš technicky zhodnocovaných východiskových petrochemických surovin. Tak pri výrobě oligomérov eténu, resp. výrobě 1-alkénov oligomerizáciou eténu, pri tzv. Alfol-procese výroby lineámych primárných vyšších mastných alkoholov odpadajú poměrně značné kvantá alkénov nad C20, pre ktoré spravidla chýba príťažlivejšie využitie.By controlling the pressure, it is further possible to maintain an optimum epoxidation temperature. In doing so, valuable products and intermediates for further organic synthesis and production are obtained from available but not yet technically upgraded starting petrochemical raw materials. Thus, in the production of ethene oligomers, resp. production of 1-alkenes by oligomerization of ethene; The process of production of linear primary higher fatty alcohols eliminates relatively large quantities of alkenes above C20 , which generally lack more attractive use.
Okrem toho, oligoméry, či pomeme nízkomolekulárne polyméry a kopolyméry možno 1'ahko vyrábať nielen z rafinovaných, ale aj prakticky technických alkénov C2 až Cs a konjugovaných diénov C4 až C5, individuálnych i zmesí alkénov a diénov, tiež v zmesi s inými nasýtenými a připadne i nenasýtenými uhfovodíkmi s využitím lacných katiónových, aniónových alebo komplexných katalyzátorov, radikálových iniciátorov ap.In addition, oligomers or relatively low molecular weight polymers and copolymers can be produced only from 1'ahko refined, but also practical technical olefins C 2 to C s conjugated diene and C 4 and C 5, individual and mixtures of olefins and diene, also mixed with other saturated and optionally unsaturated hydrocarbons using cheap cationic, anionic or complex catalysts, free radical initiators and the like.
Z organických hydroperoxidov sú vhodné hlavně terciálny butylhydroperoxid, terciálny amylhydroperoxid, etylbenzénhydroperoxid, kuménhydroperoxid, menej sú vhodné viac molekulárně hydroperoxidy, lebo z nich vytvárané odpovedajúce alkoholyOf the organic hydroperoxides, tertiary butyl hydroperoxide, tertiary amyl hydroperoxide, ethylbenzene hydroperoxide, cumene hydroperoxide are particularly suitable, the more molecular hydroperoxides are less suitable, because the corresponding alcohols formed therefrom
ROOH-I-R'CH = CHR”—>ROH +R'CH CHRROOH-I-R'CH = CHR '- > ROH + R'CH CHR
nie je možné technicky jednoduchým spósobom v uvedenom tlakovom rozsahu a pri přibližné optimálnej teplote epoxidácie kontinuálně z reakčného prostredia odstraňovať. Potřeba značných množstiev přísad rozpúšťadiel na vytvorenie azeotropu s uvolňovaným alkoholom tiež podstatné znižuje získanie přednosti spósobu. Přitom možno využívat’ známe epoxidačné katalyzátory na báze prvkov a zlúčenín prvkov V.a a Vl.a podskupiny periodického systému, z nich však hlavně zlúěeniny rpolybdénu, vanádu, volfrámu a chrómu. Zozlúčenín sú to jednak olejorozpustné formy uvedených prvkov, napr. vo formě solí organických kyselin (molybdénnaftenát, molybdénstearát ap.), ktoré sa však z reakčných produktov dosť ťažko odstraňujú, tobóž regenerujú, jednak vo formě kysličníkov, sulfidov, a to či už samotných alebo nanesených na nosičoch. Zvlášť zaujímavé sú formy heterogenizovaných epoxidačných katalyzátorov, ako napr. zlúčenín molybdénu nanesené na polymémych matriciach [Tanieljan S. K. a kol.: Neftechimija 18, 760 (1978)]. Takéto heterogénne alebo heterogenizované epoxidačné katalyzátory, najma ak majú dostatečný měrný povrch, sú zvlášť významné, lebo sa fahko regenerujú a neznečisťujú produkt.it is not possible to continuously remove the reaction medium from the reaction medium in a technically simple manner in the said pressure range and at an approximate optimum epoxidation temperature. The need for substantial amounts of solvent additives to form an azeotrope with the released alcohol also substantially reduces the process preference. It is possible to use known epoxidation catalysts based on elements and compounds of elements V.a and Vl.a of a subgroup of the periodic system, but mainly of rpolybdenum, vanadium, tungsten and chromium. Compounds are, on the one hand, oil-soluble forms of said elements, e.g. in the form of salts of organic acids (molybdenum phthenate, molybdenum stearate, etc.), which, however, are quite difficult to remove from the reaction products, regenerate the capsules, either in the form of oxides, sulfides, either alone or supported on carriers. Of particular interest are forms of heterogenized epoxidation catalysts, such as e.g. molybdenum compounds deposited on polymer matrices [Tanieljan S. K. et al., Neftechimija 18, 760 (1978)]. Such heterogeneous or heterogenized epoxidation catalysts, especially if they have a sufficient specific surface area, are particularly important because they are easy to regenerate and do not contaminate the product.
Ako inertně rozpúšťadlá sú vhodné hlavně také, ktoré vytvárajú azeotropy z organického hydroperoxidu uvolňovaným alkoholom. Tak, v případe kuménhydroperoxidu s uvolňovaným kumylalkoholom vhodný azeotrop vytvára kumén, ktorý súěasne bývá aj zrieďovadlom kuménhydroperoxidu, v případe etylbenzénhydroperoxidu etylbenzén, v případe peroxidu vodíka voda ap.Particularly suitable as inert solvents are those which form azeotropes from the organic hydroperoxide released by the alcohol. Thus, in the case of cumene hydroperoxide with released cumyl alcohol, a suitable azeotrope produces cumene, which at the same time is also a diluent of cumene hydroperoxide, in the case of ethylbenzene hydroperoxide ethylbenzene, in the case of hydrogen peroxide water and the like.
Celkový tlak epoxidácie závisí obvykle od druhu epoxidačného činidla, ako aj od teploty epoxidácie. V případe terciálny butylhydroperoxidu je možné pracovat’ pri atmosferickom tlaku, resp. nepatrné žvýšenom, lebo teplota varu terciálny butylalkoholu pri tlaku okolo 101 kPa (a v epoxidačnom prostředí jě trochu vyššia) je takmer totožná s optimálnou pre katalyzovanú epoxidáciu organickými hydroperoxidmi. Pri etylbenzénhydroperoxide, resp. kuménhydroperoxide je zapotreby pracovat pri zníženom tlaku a spravidla ešte s přísadou rozpúšťadiel, potřebných na vytvorenie azeotropu vrúceho v rozsahu optimálnych teplot 70 až 120 °C, pri epoxidačnom systéme kyselin s peroxidom vodíka 40 až 100 °C. Na epoxidáciu možno pravda použit aj vopred připravené organické i anorganické peroxikyseliny, ako kyselinu peroxioctovú, kyselinu peroximravčiu, kyselinu peroxiizomaslovú, kyselinu peroxiboritú ap.The total epoxidation pressure usually depends on the type of epoxidizing agent as well as on the epoxidation temperature. In the case of tertiary butyl hydroperoxide, it is possible to work at atmospheric pressure, respectively. slightly elevated since the boiling point of tertiary butyl alcohol at a pressure of about 101 kPa (and slightly higher in the epoxidizing environment) is almost identical to the optimal for catalyzed epoxidation with organic hydroperoxides. For ethylbenzene hydroperoxide, respectively. cumene hydroperoxide is desirable to operate under reduced pressure and typically with the addition of solvents needed to form an azeotrope boiling in the optimum temperature range of 70 to 120 ° C, in an epoxidation system of acids with a hydrogen peroxide of 40 to 100 ° C. Pre-prepared organic and inorganic peracids, such as peroxyacetic acid, peroxy formic acid, peroxyisobutyric acid, peroxiboric acid and the like can also be used for epoxidation.
Ďalšie podrobnosti spósobu výroby podlá tohto vynálezu sú zřejmé z príkladov.Further details of the production method of the present invention are apparent from the examples.
Příklad 1Example 1
Do trojhrdlej reakčnej nádoby o objeme 500 cm3 opatrenej utěsněným miešadlom, teplomerom a spatným chladičom sa naváži 200 g polypropylénového oleja o priemernej molekulo ve j hmotnosti 495 (brómovéčíslo = 57,05 gBr2/100 g; cl/1 = 846 kg . m-3; na 1 makromolekulu připadá priemerne 1,77 dvojitej vazby; nD = 1,4700; viskozita pri 20 °C = 504 mPas; teplota = —1,5 až 42 °C) a vyhřeje sa za neustálého miešania na teplotu 90 °C. Potom sa přidá 1,5 g práškového molybdénového oxidu a počs 1 h 120 g terciálneho butylalkoholového roztoku terciálneho butylhydroperoxidu o konc. 61 % hmot. (mol. poměr polypropylénového oleja k terciálnemu butylhydroperoxidu je 1:2). Za miešania a refluxovania sa udržuje reakčná zmes ešte počas dalších 4 h, potom sa ochladí, suspendovaný molybdénový katalyzátor sa odfiltruje a terciálny butylalkohol, ako aj neskonvertovaný terciálny butylhydroperoxid sa vytrepe vodou a oddělí. Epoxidovaný a neskonvertovaný polypropylénový olej sa ešte dočistí na rotačnej odparke. Brómové číslo produktu je 40 g Br2/100 g, takže konverzia polypropylénového oleja činí 29 %, resp. 52,8 %, ak počítáme epoxidovatelnosť jednej dvojitej vazby v makromolekule polypropylénového oleja, konverzia terciálneho butylhydroperoxidu 62,1 % a selektivita na epoxidovaný polypropylénový olej 29,0 %, výťažok epoxidovaného polypropylénového oleja (počítané na epoxidáciu 1 dvojitej vazby) je 20,5 %.A three-necked flask having a volume of 500 cm 3 equipped with a sealed stirrer, thermometer and reflux condenser was weighed 200 g of polypropylene oil on the average of the molecular weight of 495 J (brómovéčíslo = 57.05 gBr2 / 100 g; cl / 1 = 846 kg. M - 3 ; per macromolecule, there is an average of 1.77 double bonds; nD = 1.4700; viscosity at 20 ° C = 504 mPas; temperature = -1.5 to 42 ° C) and heated to 90 ° C with stirring . Then 1.5 g of molybdenum oxide powder and 120 g of tert-butyl alcohol solution of tertiary butyl hydroperoxide with conc. 61% wt. (mole ratio of polypropylene oil to tertiary butyl hydroperoxide is 1: 2). While stirring and refluxing, the reaction mixture is maintained for an additional 4 h, then cooled, the suspended molybdenum catalyst is filtered off and the tertiary butyl alcohol as well as the unconverted tertiary butyl hydroperoxide are shaken with water and separated. The epoxidized and unconverted polypropylene oil is further purified on a rotary evaporator. The bromine number of the product was 40 g Br 2/100 g, so that the conversion of polypropylene is 29% oil, respectively. 52.8% when calculating the epoxidability of one double bond in the macromolecule of polypropylene oil, conversion of tertiary butyl hydroperoxide 62.1% and selectivity to epoxidized polypropylene oil 29.0%, yield of epoxidized polypropylene oil (calculated for epoxidation of 1 double bond) is 20.5 %.
Avšak za inak podobných podmienok, ale s přidáváním terciálneho butylhydroperoxidu prikvapkávaním do reakčného prostredia počas lha súčasne oddestilovávania terciálneho butylalkoholu pri celkovom tlaku 101,3 kPa (jednak přidávaného spolu s terciálnym butylhydroperoxidom, jednak vytváraného z terciálneho butylhydroperoxidu, hlavně po epoxidácii polypropylénového oleja) a súčasne s jeho oddestilovávaním počas dalších h pri teplote 90 ± 0,5 °C, získaná zmes epoxidovaného a východiskového polypropylénového oleja má brómové číslo 27,1 g Br2/100g a obsah epoxyskupín 2,4 %. Konverzia polypropylénového oleja je 52,5 %, resp. 92,8 % (ak sa počítá epoxidovatefnosť 1 dvojitej vazby) a konverzia terciálneho butylhydroperoxidu 87,1 %. Selektivita na epoxidovaný polypropylénový olej jeHowever, under otherwise similar conditions, but with the addition of tertiary butyl hydroperoxide by dropwise addition to the reaction medium during 1h, simultaneously distilling off the tertiary butyl alcohol at a total pressure of 101.3 kPa (both added together with tertiary butyl hydroperoxide with its distillation for a further hour at a temperature of 90 ± 0.5 ° C, the obtained mixture of epoxidized and starting polypropylene oil has a bromine number of 27.1 g Br 2 / 100g and an epoxy group content of 2.4%. The conversion of polypropylene oil is 52.5%, respectively. 92.8% (if the epoxidability of 1 double bond is calculated) and the conversion of tertiary butyl hydroperoxide 87.1%. The selectivity for epoxidized polypropylene oil is
58,9 %.58.9%.
Příklad 2Example 2
Postupuje sa podobné ako v příklade 1, len s tým rozdielom, že miesto 1,5 g suspendovaného práškového oxidu molybdenového ako katalyzátora sa na každý pokus aplikuje po 0,5 g nafténanu molybdénového s obsahom 2,9 % hmot. molybdénu. Ďalej, z produktu epoxidácie sa katalyzátor neregeneruje a celková reakčná doba miesto 5 h je 6 h. Brómové číslo produktu bez oddestilovania terciálneho butylalkoholu je 27,2 a s oddestilovávanímThe procedure is similar to that of Example 1, except that 0.5 g of molybdenum naphthenate, containing 2.9% by weight, is applied per experiment instead of 1.5 g of suspended molybdenum trioxide catalyst. molybdenum. Further, from the epoxidation product the catalyst is not regenerated and the total reaction time instead of 5 h is 6 h. The bromine number of the product without distillation of tertiary butyl alcohol is 27.2 and with distillation
21,7 g Br2/100g. Konverzia terciálneho butylalkoholu v prvom případe je 95 a v druhom 92,3 %. Konverzia polypropylénového oleja bez oddestilovávania terciálneho butylalkoholu je 58,3, resp.21.7 g Br 2 / 100g. The conversion of tertiary butyl alcohol in the first case is 95 and 92.3%, respectively. The conversion of the polypropylene oil without distilling off the tertiary butyl alcohol was 58.3, respectively.
92,5 % asoddestilovávaním62,resp. 109,5 %,pri počítaní epoxidácie 1 dvojitej vazby (z priemerného počtu 1,77) v makromolekule polypropylénového oleja. Obsah epoxiskupín v prvom případe je 2,19 % a v druhom 3,5. Výťažok epoxidovaného polypropylénového oleja v případe epoxidácie bez oddestilovávania terciálneho butylalkoholu je92.5% and by distilling62, resp. 109.5%, when calculating the epoxidation of 1 double bond (from an average of 1.77) in the macromolecule of polypropylene oil. The content of epoxy groups in the first case is 2.19% and in the second case 3.5. The yield of epoxidized polypropylene oil in the case of epoxidation without distilling off tertiary butyl alcohol is
49,1 % a s oddestilovávaním 79,8 %. Zvyšok do 100 % tvoria hlavně dioly polypropylénového oleja a bližšie neidentifikované kyslíkaté organické zlúčeniny.49.1% and with distillation 79.8%. The remainder to 100% are mainly diols of polypropylene oil and unidentified oxygenated organic compounds.
Příklad 3Example 3
Do trojhrdlej reakčnej nádoby špecifikovanej v příklade 1, opatrenej miesto spatného chladiča vodným chladičom a odlučovačom, připojeným na olejová vývevu sa naváži 100 g polypropylénového oleja specifikovaného v příklade 1 a 1,5 g práškového oxidu molybdénového. Potom sa obsah banky za miešania vyhřeje na teplotu 90 °C, zapne sa výveva a počas 1 hodiny sa nadávkuje 92,2 g kuménového roztoku kuménhydroperoxidu o konc. 50 % hmot. (mol. poměr polypropylénového oleja ku kuménhydroperoxidu je tak 1 : 1,5). Súčasne pri celkovom tlaku 1,6 kPa oddestilováva azeotrop kuménu s kumylalkoholom. Pri uvedenom tlaku sa ešte reakčná zmes udržuje pri teplote 100 až 110 °C počas dalších 6 h. Oddestiluje sa100 g of the polypropylene oil specified in Example 1 and 1.5 g of molybdenum oxide powder are weighed into a three-necked reaction vessel specified in Example 1, equipped with a water condenser and a separator attached to an oil pump instead of a bad condenser. The contents of the flask are then heated to 90 ° C with stirring, the pump is switched on and 92.2 g of cumene hydroperoxide solution with conc. 50 wt. (mole ratio of polypropylene oil to cumene hydroperoxide is thus 1: 1.5). At the same time, at a total pressure of 1.6 kPa, the azeotrope of cumene with cumyl alcohol distills off. At this pressure, the reaction mixture is maintained at a temperature of 100 to 110 ° C for a further 6 h. Distilling off
81,3 g zmesi kuménu (46 g) s kumylalkoholom (29 g) a kuménhydroperoxidom (6,3 g); 10,9 g sa odlúči v ochranných zariadeniach vývevy. Případný zvyškový kuménhydroperoxid a kumylalkohol sa móže vyprat’ vodou nasýtenou butanolom.81.3 g of a mixture of cumene (46 g) with cumyl alcohol (29 g) and cumene hydroperoxide (6.3 g); 10.9 g are collected in the pump protective equipment. Any residual cumene hydroperoxide and cumyl alcohol may be washed with water saturated with butanol.
Brómové číslo produktu je 28,06 g Br2/100 g a množstvo epoxyskupín 2,51 %. Konverzia kuménhydroperoxidu dosahuje 69,3 % a polypropylénového oleja 50,8 %, resp. 89,8 % a výťažok epoxidovaného polypropylénového oleja (počítá4 né na epoxidáciu 1 dvojitej vazby) je 57 %. Za inak podobných podmienok, ale bez oddestilovávania kumylalkoholu, sa dosahuje konverzia polypropylénového oleja len 28,8, resp. 50,9 %.The bromine number of the product was 28.06 g Br 2/100 g and the amount of epoxy groups 2.51%. The conversion of cumene hydroperoxide reached 69.3% and polypropylene oil reached 50.8%, respectively. 89.8% and the yield of epoxidized polypropylene oil (calculated for epoxidation of 1 double bond) is 57%. Under otherwise similar conditions, but without distilling off the cumyl alcohol, the conversion of the polypropylene oil is only 28.8%, respectively. 50.9%.
iand
Příklad 4Example 4
Postupuje sa podobjíů ako v příklade 1, len miesto po 200 g polypropylénového oleja sa použije po 100 g polybuténov, připravených katiónovou ( polymerizáciou, resp. kopolymerizáciou olefinicky í nenasýtených uhlovodíkov takmer pdbutadienizovanej pyrolýznej C4-frakcie (izobutón = 43,58 % : hmot.; 1-butén = 33,50% hmot.: 1,3-butadién = 1,53 % hmot; cis-2-butén = 2,39 % hmot.; ; trans-2-butén = 6,8 % hmot.; propen = 0,15 % [ hmot.; izobután = 2,2 % hmot.; n-bután = 8,49 % , hmot.) pri teplote 60 °C pódia čs. aut. osvedčenia č. 193 855. Priemerná mol. hmotnost’ polybuténov . po rafinácii je 590 a brómové číslo 71,21 g ! Br2/100 g. Na 1 makromolekulu tak připadá prie- i merne 2,63 dvojitej vazby. Pri epoxidácii pri . teplote 90 °C a s terciálnym butylhydroperoxidom ako epoxidačným činidlom a práškovým oxidom j molybdénovým pri oddestilovávaní terc-butylal- ; koholu sa dosiahne (prámové číslo =i 23,79 g Br2/100 g) konverzia polybuténov, resp. kopolymérov 66,6 % a bez oddestilovávania (brómové číslo = 30,3 g pr2/100 g) 57,5 %.An podobjíů that in Example 1, except that instead of 200 g of polypropylene is used oil, 100 g of polybutene prepared cationic (polymerization, respectively. EXAMPLE copolymerization of olefinically unsaturated hydrocarbon pyrolysis almost pdbutadienizovanej C 4 -fractions (izobutón = 43.58%: wt 1-butene = 33.50% by weight: 1,3-butadiene = 1.53% by weight; cis-2-butene = 2.39% by weight; trans-2-butene = 6.8% by weight; propen = 0.15% (w / w; isobutane = 2.2% w / w; n-butane = 8.49%, w / w) at 60 ° C on the basis of the Czech Certificate No. 193 855. Average mol. weight polybutenes. after purification was 590, and 71.21 g bromine number? Br2 / 100 g. in one macromolecule event of default as a measure 2,63 double bond. when epoxidation at. 90 ° C and the tertiary butyl hydroperoxide as the epoxidizing agent and a molybdenum oxide powder j at distilling off t-butylal-, alcohols are obtained the (ID = prámové and 23.79 g Br2 / 100 g) conversion of the polybutene enes, respectively. 66.6% copolymer, and distilling off free (bromine number = kr 2 30.3 g / 100 g) 57.5%.
Znamená tó, že priemerne vychádza na 1 makromolekulu1 skóiivertovaných 1,75 dvojitej vazby v pokusoch s oddestilovávaním a 1,51 dvojitej vazby bez oddestilovávania terciálneho butylalko- l holu. iThis means that, on average, 1 macromolecule of 1 scored-1.75 double bond in the distillation experiments and 1.51 double bond without distillation of tertiary butyl alcohol is based on 1 macromolecule. and
Příklad 5Example 5
Na epoxidáciu sa použije zmes homopolymérov ' a kopolymérov, připravená pri teplote 70 °C zo , zmesi uhlovodíkov surověj (obsahuje okrem nasýtených uhlovodíkov 34,26 % hmot. 1,3-butadié- , nu; 25,57 % hmot. izobuténu; 18,35 % hmot. 1-buténu; 3,42 % hmot. cis-2-buténu; 4,6 % hmot. trans-2-buténu; 0,36 % hmot. metylacetylénu a 0,2 % hmot. propénu) a odbutadienizovanej (Specifikovaná v příklade 4) pyrolýznej C4-frakcie podlá čs. aut. osvedčenia č. 193 855. Priemerná mol. hmotnosť rafinovanej zmesi je 433; brómové číslo = 102,47 g Br2/100 g; index lomu nD 20 = 1,478.A mixture of homopolymers and copolymers prepared at 70 ° C from a crude hydrocarbon mixture (containing, in addition to saturated hydrocarbons, 34.26% by weight of 1,3-butadiene; 25.57% by weight of isobutene; 35% by weight of 1-butene, 3.42% by weight of cis-2-butene, 4.6% by weight of trans-2-butene, 0.36% by weight of methylacetylene and 0.2% by weight of propene), and odbutadienized (Specified in Example 4) pyrolysis C 4 -fraction according to MS. aut. Certificate No. 193 855. Average mol. the weight of the refined mixture is 433; bromine number = 102.47 g Br2 / 100 g; refractive index n D 20 = 1.478.
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS569079A CS209269B1 (en) | 1979-08-21 | 1979-08-21 | Manufacturing method of saturated and/or unsaturated aliphatic epoxide compounds having 20up to 80 carbon atoms |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS569079A CS209269B1 (en) | 1979-08-21 | 1979-08-21 | Manufacturing method of saturated and/or unsaturated aliphatic epoxide compounds having 20up to 80 carbon atoms |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS209269B1 true CS209269B1 (en) | 1981-11-30 |
Family
ID=5402228
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS569079A CS209269B1 (en) | 1979-08-21 | 1979-08-21 | Manufacturing method of saturated and/or unsaturated aliphatic epoxide compounds having 20up to 80 carbon atoms |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS209269B1 (en) |
-
1979
- 1979-08-21 CS CS569079A patent/CS209269B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US2181640A (en) | Process and products relating to production of valuable hydrocarbons | |
| AU724930B2 (en) | Heteropolyacid catalyzed polymerization of olefins | |
| US2744928A (en) | Oxidation of unsaturated aldehydes to acids | |
| JPH0242084B2 (en) | ||
| KR101822607B1 (en) | Process for Producing a t-Butyl Phenol from a C4 Raffinate Stream | |
| US3337646A (en) | Hydrogenation of cumyl alcohol to cumene | |
| DK150592B (en) | PROCEDURE FOR PREPARING A SOLID CATALYST FOR USING THE PREPARATION OF OXIRAN COMPOUNDS BY REVERSING AN OLEPHINICALLY UNSATURATED COMPOUND WITH AN ORGANIC HYDROPEROXIDE | |
| US6346585B1 (en) | Ammonium heteropolyacid catalized polymerization of olefins | |
| US6384154B1 (en) | Preparation of halogen-free, reactive polyisobutene | |
| US4046784A (en) | Boride catalyst for epoxidizing olefinic compounds | |
| JP2004529241A (en) | Method for post-treating liquid reaction effluent of cationic polymerization of isobutene | |
| US3860662A (en) | Process for treating the product mixture from the epoxidation of olefinic hydrocarbons | |
| US7745554B2 (en) | Method for producing a polyisobutene | |
| CS209269B1 (en) | Manufacturing method of saturated and/or unsaturated aliphatic epoxide compounds having 20up to 80 carbon atoms | |
| US3947500A (en) | Process for treating reaction mixtures by chemical reduction | |
| US3452055A (en) | Process for the recovery of epoxides wherein alkylaromatic compound is removed in two distillation zones | |
| US3475498A (en) | Process for preparing ethyl benzene hydroperoxide | |
| US4038291A (en) | Boride catalyst for epoxidizing olefinic compounds | |
| US2572019A (en) | Catalytic process for alkylating aromatic compounds using a metal molybdite catalyst | |
| US3956407A (en) | Alkenol production | |
| SU1498765A1 (en) | Method of producing aliphatic saturated or unsaturated epoxy compounds with 20-80 atoms of carbon | |
| US4077986A (en) | Boride catalyst for epoxidizing olefinic compounds | |
| US3947501A (en) | Process for treatment of reaction mixtures by hydrogenation | |
| US4215060A (en) | Boride catalyst for epoxidizing olefinic compounds | |
| KR101818277B1 (en) | Process and assembly for producing alkylene oxides and glycol ethers |