CS209102B1 - Preparation method of oxidizing katalyzer - Google Patents

Preparation method of oxidizing katalyzer Download PDF

Info

Publication number
CS209102B1
CS209102B1 CS770479A CS770479A CS209102B1 CS 209102 B1 CS209102 B1 CS 209102B1 CS 770479 A CS770479 A CS 770479A CS 770479 A CS770479 A CS 770479A CS 209102 B1 CS209102 B1 CS 209102B1
Authority
CS
Czechoslovakia
Prior art keywords
cobalt
manganese
acid
mixture
ppm
Prior art date
Application number
CS770479A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Jan Koval
Frantisek Masarovic
Milan Hronec
Milos Revus
Pavol Mokran
Ivan Kopernicky
Vincent Stefanik
Milos Bucko
Frantisek Danilla
Ivan Tatransky
Jan Ilavsky
Original Assignee
Jan Koval
Frantisek Masarovic
Milan Hronec
Milos Revus
Pavol Mokran
Ivan Kopernicky
Vincent Stefanik
Milos Bucko
Frantisek Danilla
Ivan Tatransky
Jan Ilavsky
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jan Koval, Frantisek Masarovic, Milan Hronec, Milos Revus, Pavol Mokran, Ivan Kopernicky, Vincent Stefanik, Milos Bucko, Frantisek Danilla, Ivan Tatransky, Jan Ilavsky filed Critical Jan Koval
Priority to CS770479A priority Critical patent/CS209102B1/en
Publication of CS209102B1 publication Critical patent/CS209102B1/en

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Vynález sa týká zlepšeného špdsobu přípravy kobaltnatého a viaczložkových katalyzátorov, pozostávajúcich z kobaltu, manganu a přísad chrómu a niklu, alebo chrómu a draslíka oxidácie zmesi p-xylénu a metylesteru kyseliny tereftalátovej vzduchom, kyslíkom alebo plynmi obsahujúcimi kyslík na kyselinu toluylovú a monometylester kyseliny tereftálovej.The invention relates to an improved process for the preparation of cobalt and multicomponent catalysts consisting of cobalt, manganese and chromium and nickel or chromium and potassium additives by oxidizing a mixture of p-xylene and terephthalate methyl ester with air, oxygen or oxygen-containing gases and toluic acid monomer.

Zlepsenie podlá vynálezu spočívá v zjednodušenom sposobe přípravy kobaltnatého a viaczložkových katalyzátorov pozostávajúcich z kobaltu a mangánu a přísad chrómu a niklu alebo chrómu a draslika a vo zvysenom výtažku kyselin a vyssej selektivitě oxidáči® p-xy- , lénu ňa kyselinu toluylovú a metylester kyseliny toluylovej na monometylester kyseliny tereftálovej.The improvement according to the invention consists in a simplified process for the preparation of cobalt and multicomponent catalysts consisting of cobalt and manganese and chromium and nickel or chromium and potassium additives and in an increased acid yield and higher selectivity of p-xy-, toluene and toluic acid terephthalic acid monomethyl ester.

Pri výrobě dimetylesteru kyseliny tereftálovej podlá Wittena sa oxiduje p-xylén za přítomnosti katalyzátora v kvapalnej fáze vzduchom na kyselinu toluylovú, ktorá sa v ďalšom stupni esterifikuje metanolom na metylester kyseliny toluylovej. Získaný metylester kyseliny koluylovej sa dalej oxiduje na monometylester kyseliny tereftálovej. Jeho esterif ikáciou metanolom vznikne dimetylester kyseliny tereftálovej.To produce dimethyl terephthalic acid according to Witten, p-xylene is oxidized in the presence of a catalyst in the liquid phase with air to form toluylic acid, which is in the next step esterified with methanol to give methyl toluyl ester. The colloylic acid methyl ester obtained is further oxidized to terephthalic acid monomethyl ester. Its esterification with methanol yields terephthalic acid dimethyl ester.

V praxi sa tento sposob prevádza tak, že p-xylén a metylester kyseliny toluylovej sa ·' oxidujú spolu vzduchom za přítomnosti katalyzátora, ktorý pozostáva zo soli kobaltu, alebo zmesi kobaltu a mangánu. Vzniklé kyseliny sa potom v druhom stupni esterifikujú metanolom na příslušné estery. Vzniklé estery sa des^tilačne spracujú tak, že metylester kyse209 102 • * 'i .ce I ;In practice, this process is carried out by oxidizing the p-xylene and the methyl ester of toluylic acid with air in the presence of a catalyst consisting of a cobalt salt or a mixture of cobalt and manganese. The resulting acids are then esterified in methanol in the second step to the corresponding esters. The resulting esters are distilled off by treating the methyl ester with acid;

R1 C OK + Η.2θ R 1 C OK + 2

--—* / R1 ; C 0 ^2 Me + 2 Rg - C θ.--— * / R1 ; C 0 ^ 2 Me + 2 Rg - C no.

liny toluylovej aa oddestiluje od dimetylesteru kyseliny tereftálovej a ópSť spolu s p-xylénom sa oxidujú v prvom stupni. Dimetylester kyseliny tereftálovej sa ďalej spra..cuje na stupeň požadovanej čistoty destilačne, extrakčne a čistý produkt sa získá opdť destilaěne. Pri výrobě dimetylesteru kyseliny tereftálovej sú ako katalyzátory okrem kobaltu známe aj zmesné katalyzátory, pozoetávajúce z kombinácií kobalt-mangán, kobalt a kovy IV. vedlajšej skupiny, z kombinácií kobalt - mangán - med, kobalt - maiigán - nikel (DAS 2010103, DOS 2163031, DOS 2047579, NSR pat. 24 20805, NSR pat. 24 46823). Uvedené viaczložkové katalyzátory sg používajú vo formě naftenátov, oktanoátov a iných solí vyšších mastných kyselin příslušných kovov, alebo ako vodné roztoky dispergované v metylestere kyseliny toluylovej.The toluic acid is distilled off from the terephthalic acid dimethyl ester, and the ol and the p-xylene are oxidized in the first step. The terephthalic acid dimethyl ester is further processed to the degree of purity desired by distillation, extraction and the pure product is recovered by distillation. In the production of dimethyl terephthalic acid ester, mixed catalysts comprising cobalt-manganese combinations, cobalt and metals IV are known as catalysts in addition to cobalt. side group, from combinations cobalt-manganese-honey, cobalt-maiigan-nickel (DAS 2010103, DOS 2163031, DOS 2047579, German Pat. No. 24 20805, German Pat. No. 24 46823). Said multi-component catalysts sg are used in the form of naphthenates, octanoates and other higher fatty acid salts of the metals concerned or as aqueous solutions dispersed in methyl toluyl ester.

Nevýhodou uvedených katalyzátorov je, že sú náročné na přípravu. Naftenáty, oktanoáty a iné soli vyšších mastných kyselin sa pripravujú cez draselná sol prislušnej kyseliny a soli příslušných kovov pódia rovnA disadvantage of said catalysts is that they are difficult to prepare. Naphthenates, octanoates and other salts of higher fatty acids are prepared through the potassium salt of the corresponding acid and the salts of the corresponding

I. R·] “ C qH + Κ0Η r I. R ·] “C q H + Κ0Η r

II. / R2 - C °/ 2 Me + 2 R1 - C °K II. / R 2 - C ° / 2 Me + 2 R 1 - C ° K

Uvedená příprava je náročná na neutralizáciu mastných kyselin, pranie vzniklého katalyzátora a jeho izoláciu.Said preparation is difficult to neutralize fatty acids, wash the resulting catalyst and isolate it.

Katalyzátoy připravené dispergováním vodných roztokov octanov příslušných kovov v metylestere kyseliny toluylovej sú málo stabilné a kovová zložka niekedy vypadává v dal šom procese výroby dimetylesteru kyseliny tereftálovej, čo spSsobuje zanášanie technologického zariadenia,Catalysts prepared by dispersing aqueous solutions of the metal acetates in the methyl ester of toluyl are poorly stable and the metal component sometimes falls off in the next process of the production of dimethyl terephthalic acid, causing fouling of the process equipment,

Zistili sme, že přípravu kobaltnatého katalyzátore a katalyzátqrov, ktoré obsahujú viao zložiek, například kobalt - mangán - chróm - draslík, alebo kobalt - mangán - chróm - nikel je možné zjednodušit a oxidáeia p-xylénu a metylesteru kyseliny toluylovej za přítomnosti týchto katalyzátorov prebieha s vyššími výťažkami a s vyššou oxidačnou rýchlosťou, ako za použitia predtým spomenutých katalyzátorov, pozostávajúcioh. z kombinácií kobalt - mangán, kobalt - mangán - meď, kobalt - mangán - nikel,alebo samotného kobaltnatého katalyzátore.We have found that the preparation of a cobalt catalyst and catalysts containing a number of components, such as cobalt-manganese-chromium-potassium, or cobalt-manganese-chromium-nickel, can be simplified and the oxidation of p-xylene and methyl toluyl ester takes place with these catalysts. higher yields and a higher oxidation rate than using the aforementioned catalysts consisting of. from combinations of cobalt - manganese, cobalt - manganese - copper, cobalt - manganese - nickel, or cobalt catalyst alone.

Použitím zmesnýoh katalyzátorov, připravených podlá vynálezu, pozostávajúcioh z kombinácií kobalt - mangán - chróm - draslík, alebo kobalt - mangán - chróm - nikel zníži sa tvorba vedlejších produktov oxidácie, to znamená kysličníka uhličitého, kysličníka uholnatého, kyseliny ootovej, kyseliny mravčej a vyššie vrúcioh a zvýši sa výťažok požadovaných kyselin.By using the mixed catalysts prepared according to the invention, consisting of combinations of cobalt-manganese-chromium-potassium, or cobalt-manganese-chromium-nickel, the formation of oxidation by-products is reduced, i.e. carbon dioxide, carbon monoxide, ootic acid, formic acid and higher boar. and the yield of the desired acids is increased.

Pri príprave katalyzátorov podlá vyhálezu sa využívá rozdiel medzi bodom varu kyseliny ootovej, mravčej a prislušnej mastnéj kyseliny a tiež poznatok, že katalyzátor v oxi dačnom procese je vo formě komplexných solí.In the preparation of the catalysts according to the invention, the difference between the boiling point of oic acid, formic acid and the corresponding fatty acid is utilized, as well as the knowledge that the catalyst in the oxidation process is in the form of complex salts.

Podl’a vynálezu sa octan, mravčan alebo uhličitan kobaltnatý, alebo zmes octanov, mrav čanov, alebo uhličitanov kobaltu, mangánu, chrómu a niklu, alebo kobaltu, mangánu, chrómu a draslíka zmieša s ekvivalentným množstvom príslušnej mastnej kyseliny s počtom uhlíkov v molekule 4 až 20, Pri teplote 100 až 150 °C atlaku 2,6 až 101,0 kPa vydestiluje sa krystalicky viazaná voda a ekvivalentně množstvo kyseliny octovej alebo mravčej alebo pri použití uhličitanov voda .a kysličník uhličitý. Vzniklý katalyzátor sa rozpustí v p-xyléne, zmesi xylénov alebo zmesi xylénu a alkoholov a poctom uhlíkov v molekule 2 až 8, alebo v inýčh rozpúšťadláoh s počtom uhlíkov v molekule 9 až 11,According to the invention, cobalt acetate, formate or carbonate, or a mixture of cobalt, manganese, chromium and nickel acetates, manganese, or carbonates, or cobalt, manganese, chromium and potassium, is admixed with an equivalent amount of the corresponding fatty acid with carbon numbers 4 At a temperature of 100 to 150 ° C at a pressure of 2.6 to 101.0 kPa, crystalline bound water and an equivalent amount of acetic or formic acid are distilled off, or water and carbon dioxide are used using carbonates. The resulting catalyst is dissolved in p-xylene, a mixture of xylenes or a mixture of xylene and alcohols and a carbon number of 2 to 8, or other solvents having a carbon number of 9 to 11,

Podlá vynálezu je vhodná táto forma přípravy katalyzátore oxidácie j Octan, mravčan alebo uhličitan kobaltnatý, alebo zmes octanov, mravčanov a uhličitanov kobaltu, mangánu, chrómu a niklu alebo kobaltu, manganu, chrómu a draslíka sa zmieša s ekvivalentným množstvom mastnej kyseliny s počtom uhlíkov v molekule 4 až 20, Zmes sa zahřeje na 100 až 150 °C a pri tlaku 2,6 až 101,0 kPa sa za miešania oddestiluje krystalicky viazaná voda a ekvivalentně část kyselin, pri použití uhličitanov uvolní sa ekvivalentně množstvo kysličnika uhličitého. Reakcia výměny sa urýchli'privádzaním vzduchu alebo dusíka do systému. Přidá sa rozpúšťadlo, pozostávajúce z toluénu alebo zmesi xylénov, zmesi xylénov a alkoholov s počtom uhlíkov v molekule 2 až 8, alebo zmesi uhlovodíkov s počtom uhlíkov v molekule 9 až 11. Vznikne homogenný roztok kobaltnatej soli mastných kyselin s počtom uhlíkov v molekule 4 až 20 alebo zmes soli kobaltu, mangánu-, chrómu a niklu, alebo kobaltu, mangánu, chrómu a draslíka, mastných kyselin so 4 až 20 atómanii uhlíka v molekule v použitom rozpúšťadle. Koncentrácia kobaltu, mangánu, chrómu a niklu, alebo kobaltu, mangánu, chrómu a draslíka sa riadi množstvom použitého rozpúšťadla. Poměr rozpúšťadla k produktu je 2 : 1 až 1: 1.According to the invention, this form of preparation of the oxidation catalyst is suitable. Acetate, formate or cobalt carbonate or a mixture of cobalt, manganese, chromium and nickel acetates, formates and carbonates or cobalt, manganese, chromium and potassium is mixed with an equivalent amount of carboxylic acid. The mixture is heated to 100-150 [deg.] C. and crystalline-bound water and, equivalently, part of the acids are distilled off at a pressure of 10-100 mbar, with the use of carbonates, liberating carbon dioxide equivalent. The exchange reaction is accelerated by introducing air or nitrogen into the system. Add a solvent consisting of toluene or a mixture of xylenes, a mixture of xylenes and alcohols having a carbon number of 2 to 8, or a mixture of hydrocarbons having a carbon number of 9 to 11. A homogeneous solution of a cobalt fatty acid salt having a carbon number of 4 to 20 or a mixture of cobalt, manganese, chromium and nickel salts, or cobalt, manganese, chromium and potassium, fatty acids having 4 to 20 carbon atoms per molecule in the solvent used. The concentration of cobalt, manganese, chromium and nickel, or cobalt, manganese, chromium and potassium is controlled by the amount of solvent used. The solvent to product ratio is 2: 1 to 1: 1.

V reaktore sa oxiduje zmes p-xylénu a metylesteru kyseliny toluylovej vzduchom za přítomnosti kobalt-mangánovej zložky katalyzátore a příměsí chróm-draslík, alebo chróm -nikel, připraveného podl’a vynálezu.In the reactor, a mixture of p-xylene and toluylic acid methyl ester is oxidized by air in the presence of a cobalt-manganese catalyst component and chromium-potassium or chromium-nickel admixtures prepared according to the invention.

Oxiduje sa pri tlaku 0,3 až 2,0 MPa s výhodou 0,45 až 0,9 MPa pri teplote 100 až 200 °C, výhodné 130 až 180 °C.It is oxidized at a pressure of 0.3 to 2.0 MPa, preferably 0.45 to 0.9 MPa at a temperature of 100 to 200 ° C, preferably 130 to 180 ° C.

Vzniknutý oxidát pozostáva z kyseliny toluylovej, z mono.metylesteru kyseliny tereftálovej,_kyseliny tereftálovej, metylesteru kyseliny toluylovej, toluylaldehydu a ostatných produktov oxidácie. Oxidát sa potom esterifikuje metanolom. Vzniklé estery sa rozdelia oxidačně. Metylester kyseliny toluylovej sa vracia spať do oxidácie a dimetylester kyseliny tereftálovej sa spracuje ďalej na produkt požadovánej kvality.The resulting oxidate consists of toluylic acid, terephthalic acid mono-methyl ester, terephthalic acid methyl ester, toluylic acid methyl ester, toluylaldehyde and other oxidation products. The oxidate is then esterified with methanol. The resulting esters are separated by oxidation. The methyl ester of toluylic acid returns to the oxidation and the dimethyl ester of terephthalic acid is further processed to the desired quality product.

Přednost přípravy katalyzátore oxidácie je zřejmá z nasledujúcioh príkladov.The advantage of preparing the oxidation catalyst is evident from the following examples.

Příklad 1 \Example 1 \

Do 500 ml baňky opatrenej chladičom sa přidá 155 g octanu kobaltnatého a 200 g mastnej kyseliny s počtom uhlíkov v molekule 4 až 20. Zmes sa za miešania postupné zahřeje na 100 až 150 °G pri tlaku 2,6 až 101,0 kPa. Vydestiluje ekvivalentně množstvo kyseliny octovej a vody. Potom sa přidá 120 až 150 ml rozpúšťadla, pozostávajúceho zo zmesi p-xylénu a alkoholu s počtom uhlíkov v molekule 2 až 8. Poměr p-xylénu ku alkoholu je 1 s 5. fialším miešaním vznikne homogenný katalyzátor s koncentráciou kobaltu okolo 10,0 % hm.155 g of cobalt acetate and 200 g of fatty acid having a carbon number of 4 to 20 are added to a 500 ml flask equipped with a condenser. The mixture is gradually heated to 100 to 150 ° C at 2.6 to 101.0 kPa with stirring. It equally distills off the amount of acetic acid and water. 120 to 150 ml of a solvent consisting of a mixture of p-xylene and an alcohol having a carbon number of 2 to 8 are then added. The ratio of p-xylene to alcohol is 1 with 5. Violet mixing produces a homogeneous catalyst with a cobalt concentration of about 10.0% hm.

Do nerezového reaktora o objeme 1,5 1 sa dá 650 g zmesi pozostávajúcej z p-xylénu a metylesteru kyseliny toluylovej v pomere 1 s 1 a 100 ppm kobaltu vo formě katalyzátora, připraveného vyššie uvedeným spdsobom. Zmes sa zahřeje na 156 °C a privádza sa pri tlaku 686 kPa vzduch v množstve 90 1 za hodinu. Pri pokusoch s katalyzátormi kobált-mangán, kobalt-mangán-meď, kobalt-mangán-chróm-draslík, alebo kobalt-wangán-chróm-nikel sa tieto privádzajú v zhode s kvantitativnými údajmi v tabuTke 1. Oxiduje sa 13 hodin. Odplyn z oxidácie sa odvádza cez chladiace zariadenie a prietokomer do ovzdušia. Každé dve hodiny sa v odplyne stanovuje chromátografioky koncentrácia kysličníka uhličitého a kysličníka uhoTnatého. Vzniklá reakčná voda sa odděluje a zachytává v odlučovači, po skončení pokusu sa v nej stanovuje obsah kyseliny octovej a kyseliny mravčej. Oxidačná zmes sa po oxidácii homogenizuje a chromátografioky sa v nej metodou vnútorného Standardu stanoví množstvo p-xylénu, kyseliny toluylovej, monometylesteru kyseliny tereftálovej a ostatných produktov oxidácie. Kyselina tereftálová sa stanoví ako v acetone nerozpustný podiel.A 1.5 L stainless steel reactor was charged with 650 g of a mixture consisting of p-xylene and toluylic acid methyl ester in a 1: 1 ratio and 100 ppm of cobalt as a catalyst prepared as described above. The mixture is heated to 156 [deg.] C. and 90 l of air are supplied at 90 l / h. In the experiments with cobalt-manganese, cobalt-manganese-copper, cobalt-manganese-chromium-potassium, or cobalt-manganese-chromium-nickel catalysts, these are supplied in accordance with the quantitative data in Table 1. Oxidized for 13 hours. The oxidation effluent is discharged through a cooling device and a flow meter to the atmosphere. Every two hours, the concentration of carbon dioxide and carbon monoxide is determined by chromatography. The resulting water of reaction was separated and collected in a separator, after which the acetic acid and formic acid contents were determined. After oxidation, the oxidation mixture is homogenized and the amount of p-xylene, toluylic acid, terephthalic acid monomethyl ester and other oxidation products are determined by chromatography using an internal standard method. Terephthalic acid is determined as the acetone insoluble fraction.

V porovnaní s katalyzátormi uvedenými v tabuTke 1 vzniká pri oxidáoii s katalyzátorom.připraveným podía vynálezu o 3 až 4 % viao kyselin, o 4,2 až 5,1 % menej vyššie vrúcich a o 1,6 až 2,3 % menej vedlejších produktov.Compared to the catalysts shown in Table 1, the oxidation with the catalyst prepared according to the invention results in 3 to 4% more acids, 4.2 to 5.1% less higher boilers and 1.6 to 2.3% less by-products.

Tabulka 1Table 1

Čís- lo po- kusu cis lo after- piece Katalyzátor catalyst g kyseliny g of acid Spo- lu P Com- lu P g vyššie vrúcich g higher boiling g vyššie vrúcich 100 g kyselin g above boiling 100 g acids g kysličníka g oxide g kyseliny g of acid toluy- lovej toluy- acid methyl monometyleste tereftálovej a ; tereftálovejterephthalic monomethyl ester and ; terephthalic uhli- čitého coal- dioxide uhoT- natého uhoT- Nate octo- vej , acetic vej mrav- čej mrav- whomsoever 1. First Nuodex 100 ppm kobaltu Nuodex® 100 ppm cobalt 162,90 162.90 107,00 107.00 269,90 269,90 32,60 32.60 12,07 12.07 9,20 9.20 1,98 1.98 1,20 1.20 0,21 0.21 2. Second Soligen 100 ppm kobaltu Soligen 100 ppm cobalt 163,10 163.10 107,80 107.80 270,90 270.90 27,37 27.37 10,10 10.10 9,15 9.15 1,95 1.95 1,21 1.21 0,25 0.25 3. Third podTa vynálezu 100 ppm kobaltu according to the invention 100 ppm cobalt 163,20 163.20 108,10 108.10 271,30 271.30 28,06 28,06 10,34 10.34 9,22 9.22 1,97 1.97 1,20 1.20 l 0,23 l 0.23 4. 4th podía vynálezu 100· ppm kobaltu 10 ppm mangánu 2 ppm chrómu 0,9 ppm draslíka according to the invention 100 ppm cobalt 10 ppm manganese 2 ppm of chromium 0.9 ppm of potassium 160,10 160.10 135,70 135.70 295,80 295.80 28,10 28.10 9,49 9.49 9,76 9.76 1,36 1.36 0,53 0.53 0,12 0.12

Příklad 2Example 2

Do 500 ml baňky opatrenej chladičom sa dá 137,5 g mravčanu kobaltnatého, 28,34 g mravčanu manganatého, 6,0 g mravčanu dhromitého a 1,6 g octanu draselného a 220 g mastných kyselin s počtom uhlikov 4 až 20. Zmes sa jsa miešania zahřeje postupné na 100 až 150 °0 pri tlaku 2,6 až 101,0 kPa. Vydestiluje ekvivalentně množstvo kyseliny mravčej, octovej a vody. Přidá sa 150 ml n-butylalkoholu. Ďalším miešaním vznikne homogenný katalyzátor, obsahujúci 10 % hm. kobaltu, 2 % hm. mangánu, 0,4 % hm. chrómu a 0,18 % hm. draslíka.A 500 ml flask equipped with a condenser was charged with 137.5 g of cobalt formate, 28.34 g of manganese formate, 6.0 g of potassium formate and 1.6 g of potassium acetate and 220 g of fatty acids having 4 to 20 carbons. of stirring is heated gradually to 100 to 150 ° 0 at a pressure of 2.6 to 101.0 kPa. It equally distills off the amount of formic acid, acetic acid and water. 150 ml of n-butyl alcohol are added. Further mixing produces a homogeneous catalyst containing 10 wt. cobalt, 2 wt. Manganese, 0.4 wt. % of chromium and 0.18 wt. potassium.

Přístroj popísaný v příklade 1 sa naplní 650 g zmesi, pozostávajúcej z.p-xylenu a metylesteru kyseliny toluylovej v pomere 1 : 1,5, přidá sa 100 ppm kobaltu, 20 ppm mangánu, 4 ppm chrómu a 1,8 ppm draslíka vo formě katalyzátora připraveného vyššie uvedeným sposobom. Zmes sa zahřeje ha 156 °C a privádza sa pri tlaku 686 KPa vzduch v množstve 90 1 za hodinu. Množstvá vedlejších produktov a vzniklých kyselin sú uvedené analogicky ako v příklade 1 v tabulke 2.The apparatus described in Example 1 is charged with 650 g of a 1: 1.5 mixture of p-xylene and methyl toluyl ester, 100 ppm of cobalt, 20 ppm of manganese, 4 ppm of chromium and 1.8 ppm of potassium are added as catalyst prepared as described above. The mixture is heated to 156 [deg.] C. and 90 l of air are supplied at 90 l / h. The amounts of by-products and the resulting acids are given in analogy to Example 1 in Table 2.

Z výsledkov uvedených v tabulke 2 vyplývá, že pri oxidácii podlá vynálezu sú výťažky: kyselin o 2,7 až 3,6 % vyššie, vyššie vrúce sú o 2,1 až 3,0 % a vedlajšie produkty o 1,8 až 2,0 % nižšie ako pri katalytických- systémoch uvedených v tabulke 2.The results shown in Table 2 show that in the oxidation according to the invention, the yields of acids are 2.7 to 3.6% higher, the higher boilers are 2.1 to 3.0% and the by-products are 1.8 to 2, 0% lower than the catalytic systems listed in Table 2.

Tabulka 2Table 2

Čís- lo po- kusu cis lo after- piece Katalyzátor catalyst g kyseliny g of acid Spolu Together g vyššie vrúcich g higher boiling g vyššie vrúcich 100 g kyseliny g above boiling 100 g of acid g kysličnika g of oxygen g kyseliny g of acid toluy- lovej toluy- acid methyl monometylestei tereftálovej a tereftálovej terephthalic and terephthalic monomethyl esters uhliči- tého uhliči- th uholna- tého uholna- th octovej acetate mravčej formic 1. First 100 ppm kobaltu 100 ppm cobalt 162,90 162.90 107,00 107.00 269.9C 269.9C 32,61 32,61 12,07 12.07 9,20 9.20 1,98 1.98 1,20 1.20 0,21 0.21 2. Second podlá vynálezu 100 ppm kobaltu 20 ppm mangánu 4 ppm chrómu 1,8 ppm draslíka according to the invention 100 ppm cobalt 20 ppm manganese 4 ppm chromium 1.8 ppm potassium 162,30 162.30 136,80 136.80 299,10 299.10 27,10 27,10 9,06 9.06 6,02 6.02 1,30 1.30 0,55 0.55 . v 0,12 . in 0.12 3. Third podlá vynálezu according to the invention 100 ppm kobaltu 20 ppm mangánu 0,1 ppm chró mu 0,05 ppm dra líka 100 ppm cobalt 20 ppm manganese 0.1 ppm chromium him 0.05 ppm carbon 155,90 155.90 133,20 133.20 289,1 289.1 28,4 28.4 9,82 ' 9,82 ' 6,40 6.40 1,27 1.27 0,52 0.52 0,14 0.14

Přiklaď 3.Example 3.

Do 500- ml baňky opatrenej chladičom aa dá 75,83 g uhličitanu manganatého, 35 g ootanu chromitého, 8 g ootanu draselného a 200 g mastných kyselin s počtom atómov uhlíka 4 až 20. Zmes sa za miešania zahřeje postupné na 100 až 150 °C pri tlaku 2,6 až 101,0 kPa. Vydestiluje sa ekvivalentně množstvo vody, kysličníka uhličitého a kyseliny octovej. Přidá sa 150 ml alifatických uhlovodíkov s počtom uhlíkov v molekule 6 až 11. Ďalšim miešaním vznikne homogenný katalyzátor.In a 500 ml flask fitted with a condenser, 75,83 g of manganese carbonate, 35 g of chromium ootane, 8 g of potassium ootane and 200 g of fatty acids with carbon numbers 4 to 20 are added. The mixture is gradually heated to 100 to 150 ° C at a pressure of 2.6 to 101.0 kPa. The amount of water, carbon dioxide and acetic acid is distilled off equivalently. 150 ml of aliphatic hydrocarbons having a carbon number of 6 to 11 are added. Further mixing produces a homogeneous catalyst.

Přístroj popísaný v příklade 1 sa naplní 650 g zmesi, pozostávajúcej z p-xylenu a metylesteru kyseliny toluylovej v pomere 1 : 1,5 a přidá sa 100 ppm kobaltnatého katalyzátore vo formě xylenického roztoku soli mastnej kyseliny. Zmes sa zahřeje na 156 °C a privádza sa pri tlaku 686 kPa vzduch v množstve 90 1 za hodinu. Pri pokusoch s katalyzátormi kobalt-mangán, kobalt - mangán - meď, kobalt - mangán - ohrom - draslík a kobalt - mangán - chróm - nikel sa ďalšie zložky ku kobaltnatej zložke pridávajú až po 2 až 3 hodinách oxidácie a to v súlade s kvantitativnými údajmi v tabulke 3. Množstvá vzniklých kyselin a vedlajšíoh produktov sú uvedené analogicky ako v příklade 1. v tabulke 3.The apparatus described in Example 1 is charged with 650 g of a 1: 1.5 mixture of p-xylene and methyl toluyl ester and 100 ppm of cobalt catalyst in the form of a xylene fatty acid salt solution are added. The mixture is heated to 156 [deg.] C. and 90 l of air are supplied at 90 l / h. In experiments with cobalt-manganese catalysts, cobalt-manganese-copper, cobalt-manganese-ohr-potassium and cobalt-manganese-chromium-nickel, additional components are added to the cobalt component only after 2 to 3 hours of oxidation, in accordance with quantitative data in Table 3. The amounts of acids and by-products formed are given in analogy to Example 1 in Table 3.

Z výsledkov uvedených v tabulke 3 vyplývá, že pri oxidácii s katalyzátorom připraveným podlá vynálezu sú výtažky kyselin o 3,1 až 3,8 % vyššie, vyššie vrúoe sú o 2,2 až 2,3 % a vedlajšie produkty o 1,9 až 2,5 % nižšie ako pri uvedených katalytických systémooh v tabulke 3.The results shown in Table 3 show that in the oxidation with the catalyst prepared according to the invention, the acid yields are 3.1 to 3.8% higher, the higher boilers are 2.2 to 2.3% and the by-products are 1.9 to 3.8%. 2.5% lower than the above catalyst systems in Table 3.

Čís- lo poku su cis lo poku They are Katalyzátor catalyst g kyseliny g of acid Spolu Together e vyššie vrúoioh e higher vrúoioh & vyššie vrúoioh / 100 g kyselil® & Above 100 g / 100 g kyselil® g kysličníka g oxide g kyseliny g of acid toluy- lovej toluy- acid methyl monometyles- ter tereftálovej a tereftálove; monometyles- ter terephthalic and terephthalic; uhli- čitého coal- dioxide uhol’- natého uhol'- Nate octovej acetate mravčej formic 1. First 100 ppm kobaltu 100 ppm cobalt 162,90 162.90 107,00 107.00 269,9 269.9 ) 32,60 ) 32.60 12,07 12.07 9,20 9.20 1,98 1.98 1,20 1.20 0,21 0.21 2. Second podlá vynálezu 100 ppm kobaltu 50 ppm mangánu 10 ppm chró· mu 3,6 ppm ďraslíka according to the invention 100 ppm cobalt 50 ppm manganese 10 ppm chromium 3.6 ppm of potassium 163,60 163.60 139,00 139.00 302,6( 302.6 ( I 26,00 I 26,00 8,59 8.59 5,30 5.30 1,23 1.23 0,52 0.52 0,29 0.29

/ τ/ τ

Příklad 4·Example 4 ·

Do 500 ml baňky opatrenej chladičom sa dá 160 g octanu manganatého,/35 g octanu chromitého, 7,6.g uhličitanu nikelnatého a 200 g mastných kyselin s počtom atómov uhlíka 4 až 20. Zmes sa za miešania zahřeje postupné na 100 až 150 °C pri tlaku 2,6 až 101,0 kPa. Vydestiluje sa ekvivalentně množstvo kyseliny octovej, vody a kysličníka uhličitého. Přidá sa 150 ml toluenu. Dalším miešaním vznikne homogénný katalyzátor.160 g of manganese acetate, 35 g of chromium acetate, 7.6 g of nickel carbonate and 200 g of fatty acids having a carbon number of 4 to 20 are placed in a 500-ml flask equipped with a condenser. The mixture is gradually heated to 100 to 150 ° with stirring. C at a pressure of 2.6 to 101.0 kPa. The amount of acetic acid, water and carbon dioxide is distilled off equivalently. Toluene (150 ml) was added. Further mixing produces a homogeneous catalyst.

Přístroj popisaný v příklade 1, sa naplní 650 g zmesi pozostávajúcej z p-xylénú a metylesteru kyseliny toluylovej v pomere 1 i 1,5 a přidá sa 200 ppm kohaltnatého katalyzátora vo formě xylenického roztoku soli mastnej kyseliny. Zmes sa zahřeje na 150 °C a privádza sa pri tlaku 686 KPa vzduch v množstve 90 1 za hodinu. Pri pokusooh s katalyzátormi kobalt. - mangán, kobalt - mangán - med, kobalt - mangán - chróm - nikel sa ďal'šie zložky ku kobaltnatej zložke pridajú po dvoch až troch hodinách oxidácie a to v súlade s kvantitativnými údajmi v tabulke 4. Množstvá vzniklých kyselin a vedlejších produktov sú uvedené analogicky ako v příklade 1. v tabulke 4. 'The apparatus described in Example 1 is charged with 650 g of a mixture consisting of p-xylene and methyl toluyl ester in a ratio of 1 and 1.5, and 200 ppm of a cocatalyst catalyst in the form of a xylenic fatty acid salt solution are added. The mixture is heated to 150 ° C and 90 l of air are introduced at 90 l / h. When attempting cobalt catalysts. - manganese, cobalt - manganese - honey, cobalt - manganese - chromium - nickel, the other components are added to the cobalt component after two to three hours of oxidation, in accordance with the quantitative data in Table 4. The amounts of acids and by-products formed are given in analogy to Example 1 in Table 4. '

Z výsledkov uvedených v tabulke 4. vyplývá, že pri oxidácii s katalyzátorom připraveným podlá vynálezu sú výtažky kyselin o 2,6 až 3,5 % vyššie, vyššie vrúce sú o 2,1 až 3,0 a vedlajšie produkty o 1,85 až 2,21 % nižšie ako pri uvedených katalytických systémooh v tabulke 4.The results shown in Table 4 show that in the oxidation with the catalyst prepared according to the invention the acid yields are 2.6 to 3.5% higher, the higher boilers are 2.1 to 3.0 and the by-products are 1.85 to 3.5%. 2.21% lower than the above catalyst systems in Table 4.

Tabulka 4Table 4

Čís- lo po- kusu cis lo after- piece íatalyzátor íatalyzátor g kyseliny g of acid S pólu Together δ ; vyššie : vrúcich δ; above: boiling g vyššie vrúcich /100 g kyselin g higher boiling / 100 g acids g kysličníka g oxide *;g kyseliny * g of acid toluy- lovej toluy- acid methyl Tionometylester tereftálovej a tereftálovej Thionomethyl ester of terephthal and terephthal uhli- čitého coal- dioxide uhel- natého angled- Nate octovej acetate mravčej formic 1. First 100 ppm kobaltu 100 ppm cobalt 162,90 162.90 107,00 107.00 269,9 269.9 0 32,60 0 32.60 12,07 12.07 9,20 9.20 1,98 1.98 1,20 1.20 0,21 0.21 2. Second podlá vynálezu 200 ppm Co 10 ppm Mn 0,1 ppm Cr 0,05 ppm Ni according to the invention 200 ppm Co 10 ppm Mn 0.1 ppm Cr 0.05 ppm Ni 159,40 159.40 131,28 131.28 290,6 290.6 3 28,30 3 28.30 9,75 9.75 . 5,60 . 5.60 1,30 1.30 0,54 0.54 0,11 0.11 3. Third podlá vynálezu 200 ppm Co 20 ppm Mn 4 ppm Cr 2 ppm Ni according to the invention 200 ppm Co 20 ppm Mn 4 ppm Cr 2 ppm Ni 161,90 161.90 134,70 134.70 296,6 296.6 i) 26,90 i) 26.90 • 9,00 • 9.00 6,13 6.13 1,34 1.34 0,51 0.51 0,40 0.40 4. 4th podlá vynálezu 100 ppm Co 50 ppm Mn 10 ppm Cr 5 ppm Ni according to the invention 100 ppm Co 50 ppm Mn 10 ppm Cr 5 ppm Ni 164,00 164.00 140,10 140.10 304,1 304.1 0 26,60 0 26.60 8,74 8.74 5,45 5.45 1,30 1.30 0,54 0.54 0,33 0.33

Claims (2)

PREDMET VYNÁLEZUOBJECT OF THE INVENTION 1. Spósob přípravy oxidačného katalyzátora na báze soli mastných kyselin kobaltu alebo zmesi soli kobaltu, mangánu, chrómu, niklu alebo zmesi soli kobaltu, mangánu, chrómu, draslíka, vyznačujúoi sa tým, že mravoany a/alebo uhličitany příslušných kovov sa zmie šajú s ekvivalentným množstvom mastnéj kyseliny s počtem uhlíkov v molekule 4 až 20, zmes sa zahřeje na teplotu 100 až 150 °G pri tlaku 2,6 až 101,0 kPa, pričom sa odstrá ni krystalická voda a reakoiou vzniklá kyselina mravčia a/alebo kyselina octová a/alebo voda s kysličníkom uhličitým, vzniknutý produkt sa rozpustí v· toluéne alebo v p-xyláne alebo v zmesi xylénov a alkoholov s počtom uhlíkov v molekule 2 až 8 alebo v alifatických uhlovodíkoch s počtom uhlíkov v molekule 6 až 11 v pomere 2 t 1 až 1 : 1.A process for the preparation of an oxidation catalyst based on a cobalt fatty acid salt or a mixture of cobalt, manganese, chromium, nickel or a mixture of cobalt, manganese, chromium, potassium salts, characterized in that the formates and / or carbonates of the metals are mixed with an equivalent an amount of fatty acid having a carbon number of 4 to 20, the mixture is heated to a temperature of 100 to 150 ° C at a pressure of 2.6 to 101.0 kPa to remove crystalline water and formic acid and / or acetic acid formed by reaction; and / or carbon dioxide water, the resulting product is dissolved in toluene or p-xylan or in a mixture of xylenes and alcohols having a carbon number of 2 to 8 or aliphatic hydrocarbons having a carbon number of 6 to 11 in a ratio of 2 t 1 to 1: 1. 2, Spósob přípravy katalyzátora podlá bodu 1. vyznačujúei sa tým, že počas reakcie sa do zmesi privádza vzďuoh alebo dusík.2. A process for the preparation of a catalyst according to claim 1, characterized in that air or nitrogen is introduced into the mixture during the reaction.
CS770479A 1979-11-12 1979-11-12 Preparation method of oxidizing katalyzer CS209102B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS770479A CS209102B1 (en) 1979-11-12 1979-11-12 Preparation method of oxidizing katalyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS770479A CS209102B1 (en) 1979-11-12 1979-11-12 Preparation method of oxidizing katalyzer

Publications (1)

Publication Number Publication Date
CS209102B1 true CS209102B1 (en) 1981-10-30

Family

ID=5426630

Family Applications (1)

Application Number Title Priority Date Filing Date
CS770479A CS209102B1 (en) 1979-11-12 1979-11-12 Preparation method of oxidizing katalyzer

Country Status (1)

Country Link
CS (1) CS209102B1 (en)

Similar Documents

Publication Publication Date Title
US3397225A (en) Preparation of esters of unsaturated acids
SU791221A3 (en) Method of preparing terephthalic acid
US3487101A (en) Preparation of methacrylic compounds by dehydration of alpha - hydroxybutyric acid compounds
JP6077654B2 (en) Process for producing isononanoic acid from 2-ethylhexanol
RU2118310C1 (en) Method for production of carboxylic acids or appropriate esters thereof
US2723994A (en) Oxidation of xylene and toluic acid mixtures to phthalic acids
DE69206162T2 (en) Transvinylation process by reactive distillation.
DE3210617C2 (en) Process for the production of methyl lactate
EP1558556B1 (en) Flexible method for the joint production of (i) formic acid, (ii) a carboxylic acid comprising at least two carbon atoms and/or the derivatives thereof, and (iii) a carboxylic acid anhydride
CN116116402B (en) Catalyst, preparation method thereof and method for preparing methyl 3-methoxypropionate by using catalyst to catalyze methanol and methyl acrylate
SK170097A3 (en) Process for the treatment of reaction mixtures obtained by oxidation of cyclohexane
US4820862A (en) Process for the preparation of dimethyl terephthalate
JPH01153653A (en) Acid accelerated hydrocarboxylation
JP6153271B2 (en) Vinyl ester of isononanoic acid derived from 2-ethylhexanol, process for its production and use thereof
SU1088662A3 (en) Process for preparing dimethyltherephthalate
US4380663A (en) Process for the preparation of practically formic acid-free acetic acid
CS209102B1 (en) Preparation method of oxidizing katalyzer
CS195261B2 (en) Method of preparing dimethylester of terephthalic acid
US3903148A (en) Process for preparation of benzoic acid
DE2908934A1 (en) PROCESS FOR THE PREPARATION OF BENZENE CARBONIC ACIDS
US3923867A (en) Method for producing monomethyl terephthalate
US3696141A (en) Process for the production of methyl benzoate
JP4581395B2 (en) Method for purifying (meth) acrylic acid and method for producing (meth) acrylic acid ester
US3703547A (en) Method of preparing phthalic acids
US3308153A (en) Process for production of bis (beta-hydroxyethyl) terephthalate