CS201150B1 - Method of conservation and fortification of the green voluminous fodder - Google Patents
Method of conservation and fortification of the green voluminous fodder Download PDFInfo
- Publication number
- CS201150B1 CS201150B1 CS775895A CS589577A CS201150B1 CS 201150 B1 CS201150 B1 CS 201150B1 CS 775895 A CS775895 A CS 775895A CS 589577 A CS589577 A CS 589577A CS 201150 B1 CS201150 B1 CS 201150B1
- Authority
- CS
- Czechoslovakia
- Prior art keywords
- fodder
- wood
- green
- molasses
- lactic acid
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 4
- 239000002023 wood Substances 0.000 claims description 27
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 26
- 239000004310 lactic acid Substances 0.000 claims description 13
- 235000014655 lactic acid Nutrition 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 239000002351 wastewater Substances 0.000 claims description 5
- 239000011094 fiberboard Substances 0.000 claims description 2
- 239000004459 forage Substances 0.000 claims description 2
- 230000007062 hydrolysis Effects 0.000 claims description 2
- 238000006460 hydrolysis reaction Methods 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 230000008719 thickening Effects 0.000 claims 1
- 235000013379 molasses Nutrition 0.000 description 26
- 235000016068 Berberis vulgaris Nutrition 0.000 description 13
- 241000335053 Beta vulgaris Species 0.000 description 13
- 244000025254 Cannabis sativa Species 0.000 description 11
- 238000000855 fermentation Methods 0.000 description 10
- 230000004151 fermentation Effects 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 7
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 238000004321 preservation Methods 0.000 description 5
- 239000003755 preservative agent Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 235000014121 butter Nutrition 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 230000002335 preservative effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 238000009924 canning Methods 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 239000000413 hydrolysate Substances 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 240000000385 Brassica napus var. napus Species 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 235000019750 Crude protein Nutrition 0.000 description 1
- 240000004585 Dactylis glomerata Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- 241000209049 Poa pratensis Species 0.000 description 1
- CZMRCDWAGMRECN-UHFFFAOYSA-N Rohrzucker Natural products OCC1OC(CO)(OC2OC(CO)C(O)C(O)C2O)C(O)C1O CZMRCDWAGMRECN-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241001520823 Zoysia Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000469 ethanolic extract Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 229940039696 lactobacillus Drugs 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000004460 silage Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
Landscapes
- Fodder In General (AREA)
Description
Bielkovinové zelené krmoviny sa konzervujú v polnohospodárstve, ako je známe, pomocou kyseliny mliečnej, ktorá vzniká tak, že pri nakladení (silážovaní) bielkovinových krmovín sa přidá určité množstvo repnej melasy, ktorá účinkom baktérií Lactobacillus skvasuje na / kyselinu mliečnu.Protein green fodder is preserved in agriculture, as is known, with lactic acid, which results from the addition (silage) of protein fodder by adding a certain amount of beet molasses, which is fermented to lactic acid by the action of Lactobacillus.
Repná melasa ako zvyškový produkt, ktorý vzniká pri výrobě repného cukru, sa ale stává deficitným materiálom, jednak v dósledku zdokonalovania cukrovarníckej technologie lepším využitím jej obsahu sacharózy, jednak rastúcimi nárokmi kvasného priemyslu, ktorý melasu potřebuje ako východiskový surovinový produkt pre rózne dóležité výrobky (lieh, kyselina citrónová, kyselina mliečna a pod.). Trvalý nedostatok repnej melasy nerieši ani čiastočný dovoz trstinovej melasy.Beet molasses as a residual product of beet sugar production, however, is becoming a deficient material due to improved sugar technology by better utilization of its sucrose content and increasing demands of the fermenting industry, which needs molasses as a starting material product for differently important products (alcohol). , citric acid, lactic acid and the like). Even the partial import of cane molasses does not solve the persistent lack of beet molasses.
Podrobnými pokusmi sa zistilo, že pre konzervovanie a fortifikáciu zelených objemových krmovín je možné nahradit deficitnú repnú melasu dřevným hydrolyzátom.Detailed experiments have shown that it is possible to replace defective beet molasses with wood hydrolyzate to preserve and fortify green bulk forage.
Dřevný hydrolyzát (napr. dřevná melasa získaná zahuštěním odpadových vod z výroby dřevovláknitých dosák mokrým spósobom, DVD m.sp,, alebo získaná zahuštěním hydrolyzátů dřeva po pósobení hydrolyzačných činidiel, ako kyselin, hydroxidov a pod,, v podobě cca 50 % roztoku) obsahuje značné množstvo, sacharidov, ktoré móžu nahradit pri konzervovaní repnú melasu.Wood hydrolyzate (eg wood molasses obtained by concentration of waste water from the production of fiber boards by wet process, DVD m.sp ,, or obtained by concentration of wood hydrolyzates after exposure to hydrolyzing agents such as acids, hydroxides, etc., in the form of about 50% solution) a significant amount of carbohydrates that can replace canola molasses in canning.
Použitie dřevného hydrolyzátů (drevnej melasy) pre krmné účely je predmetom osobitného autorského osvedčenia č. 156 673, Z prístupnej literatúry nie je však známe jeho po201 150 užitie na konzervovanie a fortifikáciu zelených objemových krmovín, čo je predmetom přihlášeného vynálezu.The use of wood hydrolysates (wood molasses) for feeding purposes is the subject of a separate author's certificate no. No. 156,673. However, it is not known from the available literature for its use for the preservation and fortification of green bulk fodder, which is the object of the present invention.
Dřevný hydrolyzát obsahuje rozpuštěné látky, prevažne saoharidickej povahy v podobě mono- a oligosacharidov, ktoré vznikli z dřeva pri tepelnomechanickom rozvlákňovaní štiepok nasýtenou parou alebo pčsobením hydrolyzačných Sinidiel. Dřevná melasa z výroby DVDThe wood hydrolyzate contains solubles, mainly of a carbohydrate nature, in the form of mono- and oligosaccharides, which are formed from wood during thermomechanical pulping of chips by saturated steam or by action of hydrolyzing agents. Wooden molasses from DVD production
m.sp. má obyčejné toto zlozeni® (počítané na sušinu):m.sp. has the following composition® (calculated on dry weight):
- éterický extrakt (živičnaté látky) 0,40 %,- ethereal extract (bituminous substances) 0,40%,
- etanolový extrakt (monosaoharidy a pod.) 20,50 %,- ethanol extract (monosaoharides, etc.) 20,50%,
- lignin (stanovený a kyselinou sírovou) 9,0 %,- lignin (determined with sulfuric acid) 9,0%,
- sacharidický podiel 66,0 %, z toho monosaoharidy 8,0 %,- carbohydrate fraction 66.0%, of which monosaoharides 8.0%,
- popol (Ko0, OaO, MgO, Peo0_, SiO„, Al90 , Po0_, MnO, stopy Cu,- ash (K o 0, OaO, MgO, Pe o 0_, SiO 2, Al 9 0, P o 0_, MnO, traces of Cu,
4,00.%,4.00.%.
B, Ni, Co)B, Ni, Co)
- dusíkaté látky 0,10 %,- Crude protein 0,10%,
Na konzerváciu a fortifikáciu sa mčže použit zahuštěný dřevný hydrolyzát v množstve 0,5 až 10 %_hmot. z konzervovanej krmoviny, Uvádzame příklady pokusov s použitím drevnej melasy v množstve 0,5 a 1 % hmot. z konzervovanej krmoviny.Concentrated wood hydrolyzate in an amount of 0.5 to 10% by weight can be used for preservation and fortification. Examples of experiments using wood molasses in amounts of 0.5 and 1 wt. from preserved fodder.
Příklad 1-0,5%Example 1-0.5%
Ku konzervácii sa použil prirodzený trávný porast z prvej kosby. Porast sa zberal v Stádiu prevládajúcich druhov tráv (Pestuoa pratensis Huds., Poa pratensis I., Dactylis glomerata I,). Pokus sa založil v typových silách o kapacitě 25 1. Každý variant sa realizoval v piatioh opakovaniach. Kontrolný variant representoval trávnu hmotu bez konzervačnej přísady.Natural grass cover from the first mowing was used for conservation. The crop was harvested at the predominant grass stage (Pestuoa pratensis Huds., Poa pratensis I., Dactylis glomerata I,). The experiment was based on type forces with a capacity of 25 1. Each variant was carried out in five repetitions. The control variant represented grass without preservative.
Dřevný hydrolyzát sa aplikoval v množstve 0,5 % hmot. zo zakonzervovanéj trávnéj hmoty. Před aplikáciou sa riedil v pomere 1 : 1. Melasa repná ako tradičná konzervačná přísada sa použila podlá rovnakých zásad.The wood hydrolyzate was applied in an amount of 0.5% by weight. of conserved grass. Prior to application, it was diluted 1: 1. Beet molasses as a traditional preservative was used according to the same principles.
Priebeh fermentaČného procesu sa sledoval podlá produkcie C02 a teploty. Na základe analýzy trávnej hmoty na organioké živiny před konzerváoiou a po skončení fermentaČného procesu sa vypočítali straty na živinách v priebehu konzervácie. Po skončení fermentaČného procesu sa žakonssrvovaná trávná hmota vyhodnotila podlá ČSN 46 7012.The course of the fermentation process was monitored according to CO 2 production and temperature. Based on the analysis of grass matter for organic nutrients before and after the fermentation process, nutrient losses during the preservation were calculated. After the fermentation process was finished, the lawn grass was evaluated according to ČSN 46 7012.
Dosiahnuté maximálně teploty vo variantoch s konzervačnými přísadami 28,2 a 28,8 °C signalizujú správný priebeh fermentaČného procesu* Naproti tomu v kontrolnom variante maximálna teplota 39,6 °C poukazuje, že teplotně optimum pre činnost baktérií mliečneho kvasenia sa překročilo, a tým sa vytvořili priaznivé, podmienky pre činnost nežiadúcej mikroflóry.The maximum temperatures achieved in the 28.2 and 28.8 ° C preservation variants indicate the correct course of the fermentation process. * In contrast, in the control variant, the maximum temperature of 39.6 ° C indicates that the temperature optimum for lactic acid bacteria has been exceeded and thereby favorable conditions for undesirable microflora have been created.
Zvýšená oxidačná činnost v priebehu fermentaČného procesu v kontrolnom variante sa p««jevila aj vo zvýšenej produkcii C02 oproti iným variantom.The increased oxidation activity during the fermentation process in the control variant also appeared in increased CO 2 production over other variants.
Z celkového vyhodnotenia (tabulka 1) zakonzervovanej trávnej hmoty vyplývá, že sa doaiahli v podstatě zhodné výsledky u dřevného hydrolyzátu a urepnej melasy. Uvedené konzervačně přísady zabezpečujú správný priebeh fermentaČného procesu, čo sa prejavilo v zhodnom klasifikačnom zatriedení.The overall evaluation (Table 1) of the conserved grass mass shows that substantially identical results were obtained for wood hydrolyzate and urep molasses. Said preservatives ensure the correct course of the fermentation process, which is reflected in the same classification classification.
Tabulka 1Table 1
Celkové zhodnotenie zakonzervovanéj trávnéj hmoty (0,5 % přísady)Overall evaluation of conserved grass matter (0.5% of the additive)
Příklad 2 - 1 %Example 2 - 1%
Postupovalo sa podobné ako v příklade 1, len s tým rozdielom, že sa dřevný hydrolyzát ako aj repná melasa použili v dávke 1 % hmot. zo zakonzervovanéj trávnej hmoty. Ako SalSÍ variant sa použili homofermentatívne baktérie mliečneho kvasenia.The procedure was similar to that of Example 1, except that the wood hydrolyzate and beet molasses were used at a rate of 1% by weight. of conserved grass. Homofermentative lactic acid bacteria were used as the SalSi variant.
Priebeh fermentačného procesu sa sledoval podlá rovnakých kritérií ako v příklade 1.The fermentation process was monitored according to the same criteria as in Example 1.
Dosiahnuté maximálně teploty (dřevný hydrolyzát 28,8 °C, repná melasa 26,9 °C, homofermentatívne baktérie mliečneho kvasenia 27,1 °C) signalizujú správný priebeh fermentačného procesu. V kontrolnom variante maximálna teplota 37,8 °C poukazuje na to, že teplotné optimum pre činnost baktérií mliečneho kvasenia sa překročilo, a tým sa vytvořili priaznivé podmienky pre činnost baktérií Coli a Z celkového zhodnotenia (tabulka 2) erogenes a máslového kvasenia. zakonzervovanej trávnej hmoty vyplývá, že sa doTabulka 2The maximum temperatures reached (wood hydrolyzate 28.8 ° C, beet molasses 26.9 ° C, homofermentative lactic acid bacteria 27.1 ° C) signal the correct course of the fermentation process. In the control variant, a maximum temperature of 37.8 ° C indicates that the temperature optimum for lactic acid bacteria activity has been exceeded, thereby creating favorable conditions for the activity of Coli and Z total recovery (Table 2) of erogenes and butter fermentation. of conserved grass matter implies that Table 2
Celkové zhodnotenie zakonze rvovanej trávnej hmoty (1 % přísady)The overall evaluation of the end of the treated grass matter (1% of the additive)
siahli v podstatě zhodné výsledky u dřevného hydrolyzátu, repnej melasy a u homofermentatívnyeh baktérií mliečneho kvasenia. Uvedené konzervačně přísady zabezpečujú správný priebeh fermentačného procesu, čo sa prejavilo v zhodnom klasifikačnom zatriedení.yielded substantially identical results for wood hydrolyzate, beet molasses and homofermentative lactic acid bacteria. Said preservatives ensure the correct course of the fermentation process, which is reflected in the same classification classification.
Dosiahnuté výsledky dovolujú vyslovit závěr, že repná melasa mdže byt pri konzervácii trávnej hmoty úspěšně nahradená zahuštěným dřevným hydrolyzátom.The results obtained make it possible to conclude that beet molasses can be successfully replaced by a concentrated wood hydrolyzate in the conservation of grass matter.
Exaktně získané výsledky potvrdili, že pri konzervovaní:Exactly obtained results confirmed that when preserving:
a/ priebeh teplót v zakonzervovaných krmovinách dosahuje maximum po 10 až 12 h a po 8 dňoch sa teplota vyrovná teplote okolia. Maximálně teploty nepresahujú optimum teploty vhodnej pre činnost baktérií mliečneho kvasenia} b/ maximum tvorby C02 sa zaznamenává po 13 až 15 dňoch. V cLalšom období hladina ostává na'rovnakej úrovni} c/ v zakonzervovaných krmovinách připravených s repnou aj dřevnou melasou sa nezaznamenal výskyt kyseliny máslovéj, alebo len nepatrné množstvo} d/ dosahuje sa vysoké percento kyseliny mliečnej; e/ pH hodnoty dosahujú optimum} f/ straty na živinách, najma na dusíkatých látkaeh sú na bežnej hladině.a / the temperature curve in the canned fodder reaches a maximum after 10 to 12 h and after 8 days the temperature is equal to the ambient temperature. A maximum temperature not exceeding the optimum temperature suitable for the activity of lactic acid bacteria b} / High C0 2 formation was recorded after 13 to 15 days. 20032004, 04:57:07 Over the next period, the level remains at the same level (c) in canned fodder prepared with beet and wood molasses, there has been no occurrence of butyric acid, or only a small amount (d) a high percentage of lactic acid is reached; (e) pH values achieve optimum nutrient losses, in particular on nitrogenous substances, at normal levels.
Ako zdroj zahuštěného dřevného hydrolyzátu sme uviedli odpadové vody z výroby DVDAs a source of thickened wood hydrolyzate we mentioned waste water from DVD production
m.sp. Samozřejmé sa móže použit aj melasa vyrobené neutralizáciou a zahuštěním roztokov (hydrolyzátov), získaných záměrnou hydrolýzou dřeva.m.sp. Of course, molasses produced by neutralizing and concentrating solutions (hydrolysates) obtained by deliberate hydrolysis of wood may also be used.
Sledováním nových možností přípravy polnohospodárskych krmovín z nových zdrojov pri zachovaní kvality krmovinovej základné a zlepšení životného prostredia dospěli sma k závěru, že je možná příprava - konzervovanie a fortifikáeia zelených objemových krmív so zahuštěným dřevným hydrolyzátom (dřevnou melasou), ktorý dovoluje plnohodnotné nahradit deficitnú repnú melasu. Poukázali na to dosiahnuté výsledky za přísné sledovaných podmienok.By monitoring new possibilities for the preparation of agricultural feed from new sources while maintaining the quality of the feed and improving the environment, they concluded that preparation is possible - preserving and fortifying green bulk feed with thickened wood hydrolyzate (wood molasses), which allows full replacement of defective beet molasses . They pointed out the results achieved under strictly monitored conditions.
Konzervovanie a fortifikáeia zelených objemových krmovín novým prídavkom, a to zahuštěným dřevným hydrolyzátom, sa vyznačuje týmito výhodami:Preservation and fortification of green fodder by a new addition of concentrated wood hydrolyzate is characterized by the following advantages:
1. Zabezpečuje využitie drevnej melasy pripravenej z odpadových v6d od výroby DVD m.sp., alebo z dřevného hydrolyzátu a představuje plnohodnotná náhradu doteraz používanej repnej melasy.1. It ensures the use of wood molasses prepared from waste products from the production of DVD m.sp. or from wood hydrolyzate and represents a full-value substitute of the previously used beet molasses.
2. Uvedený zdroj je v súčasnej době neželatelným odpadom (odpadové vody), alebo představuje surovinu (dřevo), ktorá je domácou surovinou a pri správnom hospodárení s lesným bohatstvom stále obnovovatelnou.2. That resource is currently unwanted waste (waste water) or is a raw material (wood), which is a domestic raw material and, with proper management of forest resources, still renewable.
3. Poskytuje ako konzervačně, tak aj energetické látky.3. Provides both preservative and energy substances.
4. Nevyžaduje žiadne investičně náklady, nakolko sa využije to isté zariadenie ako pri konzervovaní s repnou melasou.4. It does not require any investment costs as the same equipment is used as in canning with beet molasses.
5. Zlepšuje životné prostredie tým, že odpadové vody od výroby DVD m.sp. neznečisťujú veřejné toky pri vypúšfaní·5. Improves the environment by making waste water from the production of DVD m.sp. do not pollute public flows when discharging ·
Claims (1)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS775895A CS201150B1 (en) | 1977-09-09 | 1977-09-09 | Method of conservation and fortification of the green voluminous fodder |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CS775895A CS201150B1 (en) | 1977-09-09 | 1977-09-09 | Method of conservation and fortification of the green voluminous fodder |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| CS201150B1 true CS201150B1 (en) | 1980-10-31 |
Family
ID=5404764
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CS775895A CS201150B1 (en) | 1977-09-09 | 1977-09-09 | Method of conservation and fortification of the green voluminous fodder |
Country Status (1)
| Country | Link |
|---|---|
| CS (1) | CS201150B1 (en) |
-
1977
- 1977-09-09 CS CS775895A patent/CS201150B1/en unknown
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Das et al. | Useful byproducts from cellulosic wastes of agriculture and food industry—a critical appraisal | |
| Joanna et al. | Sugar beet pulp as a source of valuable biotechnological products | |
| Black et al. | Effects of stage of maturity and silage additives upon the yield of gross and digestible energy in sorghum silage | |
| Jayeola et al. | Production of bioactive compounds from waste | |
| Keady et al. | Prediction of silage feeding value from the analysis of the herbage at ensiling and effects of nitrogen fertilizer, date of harvest and additive treatment on grass silage composition | |
| McDonald et al. | Fermentation studies on inoculated herbages | |
| CN104605153A (en) | Method for comprehensive utilization of energy grass in fields of feeds, biogas and paper pulp | |
| CN101897839B (en) | Comprehensive utilization method of banana stems | |
| Weinberg et al. | Ensiling whole wheat for ruminant feeding at different stages of maturity | |
| CN110235935B (en) | Fresh bamboo shoot preservative and preparation method and application thereof | |
| Gado et al. | Enzymatic treatments of sugarcane bagasse by different sources of cellulase enzymes | |
| Giardini et al. | Effect of maize silage harvest stage on yield, plant composition and fermentation losses | |
| Kumar et al. | Diversified use of byproducts of sugarcane and cotton-a review | |
| CN108323723B (en) | Preparation method of dried blueberry fruits and dried blueberry fruits | |
| US20190256668A1 (en) | Drastic Reduction of Viscosity in Biomass | |
| Sollenberger et al. | Conserved forage | |
| CS201150B1 (en) | Method of conservation and fortification of the green voluminous fodder | |
| DE2824553C3 (en) | Process for the production of soft, edible mushroom fruit bodies or parts thereof from tough mushroom material | |
| JPS62215503A (en) | Grape quality improvement method | |
| CN101433231B (en) | Fresh-keeping method of high-sugar fruits and material for fresh-keeping | |
| CN118020827A (en) | A volatile oil complex and its application in peach storage | |
| Singh et al. | Bioconversion of wheat straw to animal feed by solid substrate fermentation or ensiling. | |
| CN109929771A (en) | Ensiling agent and preparation method thereof | |
| Hussian et al. | Effect of Adding Fermented Juice of Epiphytic Lactic Acid Bacteria Prepared with Different Sources and Levels of Soluble Carbohydrates on Chemical Composition, Fermentation and Quality Characteristics of Wheat Straw Silages | |
| Vaisto et al. | The use of cellulases for increasing the sugar content of AIV-silage |