CS200342B1 - Method of making the magnetically soft iron bodies by the processes of the powder metallurgy - Google Patents

Method of making the magnetically soft iron bodies by the processes of the powder metallurgy Download PDF

Info

Publication number
CS200342B1
CS200342B1 CS553677A CS553677A CS200342B1 CS 200342 B1 CS200342 B1 CS 200342B1 CS 553677 A CS553677 A CS 553677A CS 553677 A CS553677 A CS 553677A CS 200342 B1 CS200342 B1 CS 200342B1
Authority
CS
Czechoslovakia
Prior art keywords
bodies
iron
sintered
temperature
particle size
Prior art date
Application number
CS553677A
Other languages
Czech (cs)
Slovak (sk)
Inventor
Andrej Salak
Ladislav Bohus
Original Assignee
Andrej Salak
Ladislav Bohus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andrej Salak, Ladislav Bohus filed Critical Andrej Salak
Priority to CS553677A priority Critical patent/CS200342B1/en
Publication of CS200342B1 publication Critical patent/CS200342B1/en

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Description

Spósob výroby magneticky měkkých železných telies postupmi práěkovej metalurgieMethod for producing magnetically soft iron bodies by powder metallurgy processes

Vynález sa týká spósobu výroby magneticky mákkých železných telies postupmi práč kovej metalurgie, při ktorých aa vyžaduje najma vysoká indukcia, a ktoré sú vhodné pře použitie pri magnetizácii jednosměrným i striedavým prúdom.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a process for the production of magnetically soft iron bodies by scrubber metallurgy processes in which aa requires a high induction and which are suitable for use in both direct and alternating current magnetization.

V práěkovej metalurgii je známých viacero postupov pre výrobu magneticky makkých predmetou. Ich podstatou je, že k práškovému železu, v každom případe vždy jedného druhu, ktorého velkosl častíc je obmedzená iba hornou hranieou, sa přidáváju aj dalfie prvky a takáto prášková zmes sa lisuje a speká na tvarové telesá. Tak sa používá práškové železo s velkosťou častíc menšou ako 0,16 mmalebo s menšou ako 0,10 mm, zriedkevo s velkosťou castic mensou ako 0,063 mm. Ako přísada sa najčastejšie přidává fosfor k práškovému železu v množstve asi do 1,5 % hmotnostných, křemík, pokial sa kladie dóraz cj na zníženie měrných strát, a niekedy aj 1,5 až 2,5 % hmotnostných médi. Lisovanie tvarových telies sa robí obvykle tlakmi 490 až 981 MPa v snahe dosiahnúť hustotu výliskov, ktoré sa potom spekajú obvykle pri teplotách okolo 1250 °C alebo vo vakuu aj pri teplote 1300 °C, aby telesá dosiahli optimálně magnetické vlastnosti. V zaujme dosiahnutia vysokej hustoty výliskou, často sa používá aj technika dvojitého alebo viacekrát opakovaného lisovania a spekania s medzižíhaním po každom lisovaní. Po takomto spracovaní telesá s pórovitoxťou iba 6 až 8 % objemových dosahujú pri zkúřkach magnetizácie jednosměrným prúdom 100 A/cm magnetická indukciu 1,25 až 1,3 T a pri magnetizácii striedavým prúdom 50 Hz magnetická indukciu 1,15 až 1,2 T.In powder metallurgy, several processes are known for the production of magnetically macular objects. Their essence is that additional elements are added to the iron powder, in each case of one kind, the particle size of which is limited only by the upper edge, and such powder mixture is pressed and sintered to form bodies. T and the use of iron powder having a particle size of less than 0.16 mmalebo of less than 0.10 mm, zriedkevo a particle size of below 0.063 mm. As an additive, phosphorus is most often added to the iron powder in an amount of up to about 1.5% by weight, silicon, when the reduction of specific losses is emphasized, and sometimes 1.5 to 2.5% by weight of the medium. Molding of the shaped bodies is usually carried out at pressures of 490 to 981 MPa in order to achieve the density of the moldings, which are then sintered usually at temperatures of about 1250 ° C or under vacuum at 1300 ° C to achieve optimal magnetic properties. In order to achieve a high density of the compact, a technique of double or multiple squeezing and sintering with annealing after each squeezing is also often used. After such treatment, bodies with a porosity of only 6 to 8% by volume achieve a magnetic induction of 1.25 to 1.3 T in the case of direct current magnetization tests of 100 A / cm and a magnetic induction of 1.15 to 1.2 T in the case of 50 Hz alternating current.

200 342200 342

200 342200 342

Nedostatko doterajších postuftpv výroby magneticky makkých železných teliee poetupmi práškovej metalurgie je predovšetkým poměrně nízká hodnota magnetickej indukcie, ktorá ea nimi dosahuje, So bráni zvyšovaniu výkonu a ostatných technických parametrov elektrotechnických výrobkov a zariadení, v ktorých sa takéto telesá s výhodou používajú, alebo by sa mohli používal·. Je to spoeobené jednak použitím uvedeného granulometrického zloženia práškového železa, ktoré nezale^je doeiahnutie optimálnej llaovatelnoeti a vlastností štruktúry telesa po apekaní nevyhnutných pre vysoké magnetické vlastnosti, jednak prídavkom uvedených legúr, ktorých úlohou je často iba prispiel· k aktivácii procesu spekania vytvořením kvopalnej fázy. Přitom, ako sa často ukazuje, prídavok spomínaných legúr móže mal· priamo vačší zhoršující vplyv na magnetické vlastnosti, než je ich kladný vplyv na tieto vlastnosti cestou zvýšenia hustoty výliskov a změny štruktúry materiálu. Ďalšou nevýhodou týchto poetupov Je, že každý prídavok dolšieho prvku k práškovému železu zvyšuje spotřebu materiálu a výrobní náklady, pričom pre dosahovanle požadovaných vyšších hodnot indukcie je nevyhnutné spekanie telies obvykle pri teplotách nad 1200 °C, čo zvyšuje nároky na technická zariadenia i spotřebu elektrickéJ energie.In particular, the shortcoming of the prior art production of magnetically macular iron bodies by powder metallurgy processes is the relatively low value of the magnetic induction that achieves and achieves them. · used. This is due to the use of the above-mentioned granulometric composition of the iron powder, which does not matter to obtain the optimum llaability and structure properties of the body after baking necessary for high magnetic properties, and the addition of said alloys. As has often been shown, the addition of the above-mentioned alloys may have a deteriorating effect on the magnetic properties directly more than their positive effect on these properties by increasing the density of the moldings and altering the structure of the material. A further disadvantage of these processes is that each addition of the lower element to the iron powder increases material consumption and production costs, while sintering of the bodies is usually required at temperatures above 1200 ° C to achieve the desired higher induction values, increasing engineering and power consumption .

Vyššie uvedené nevýhody nemá spósob magneticky makkých železných telies, ktoré sa vyrábajú postupml práškovej metalurgie podlá vynálezu, ktorého podstata spočívá v tom, že sa použije práškové železo s velkoslou častíc vybraných frakcií, ku ktorému sa přidá kysličník železa a z tejto práškovej zmesi sa vylisuje pórovité tvarové telesá, ktoré sa potom spekajú, opakované deformujú a tepelne spracujú. Přitom aa použije práškové železo, ktorého hmotnostný podiel častíc s velkoslou 0,1 až 0,20 mm tvoří 60 až 90 %, podiel Častíc s velkoslou menšou ako 0,1 mm 10 až 20 % a zvyŠok do 100 % tvoria částice s velkoslou nad 0^20 mm. Použitím práškového železa uvedeného granulometrického zloženia ea zvyšuje jeho lisovatelnosl· a pri spekaní sa dosahuj, rovnoměrná a vačšia velkosl· zrna materiálu, čo prispieva k zvýšeniu magnetických druhov práškového železa. K práškovému železu sa přidá ako aktivátor spekania kysličník železa s výhodou v množstve 0,5 až 5 % hmotnostných, ktorý má sypnú hustotu 0,5 až 1,8 g.om-^ a velkosl· častíc menšiu ako 0,04 mm. Přitom to móže byl· kysličník železa, ktorý vzniká pri tepelnom rozklade chloridu železnatého alebo heptahydrátu síranu železnatého alebo oxidáolou za tepla spracovávanýoh ocelových pásov. Prášková zmes sa lisuje v uzavretých zápustkách tlakom 392 až 765 MPa a potom sa výlisky spekajú pri teplote 1050 až 1200 °C po dobu 1 až 5 h, alebo sa spekajú stupňovité, a to najprv pri teplote 800 až 1000 °C po dobu 1 až 2 h a potom pri teplote 1050 až 1200 °C po dobu 2 až 4 h. Po spekaní sa telesá deformujú za studená kalibrováním pre zvýšenie přesnosti rozmerov a hustoty výliskov, alebo sa deformujú za tepla s výhodou kováním ták, aby telesá dosiahli hustotu aspoň 7,5 g.cm’\ V prípadoch vyžadujúcich odstránenie spevnenia telies, ku ktorému došlo prl predchádzajúcej deformácii, tieto sa tepelne spracujú s výhodou žíháním pri teplote 650 až 1100 °C po dobu 0,5 až 2 h.The above-mentioned disadvantages do not have the method of magnetically macular iron bodies which are produced by the process of powder metallurgy according to the invention, which consists in the use of powdered iron with a large particle size of selected fractions, to which iron oxide is added. the bodies that are then sintered are repeatedly deformed and heat treated. In this case, aa uses powdered iron having a proportion by weight of particles having a particle size of 0.1 to 0.20 mm in size of 60 to 90%, a proportion of particles having a particle size of less than 0.1 mm of 10 to 20% and the remainder to 100% being particles with a 0 ^ 20mm. The use of powdered iron of said granulometric composition ea increases its compressibility and at sintering results in a uniform and larger grain size of the material, which contributes to an increase in the magnetic types of powdered iron. Iron oxide, preferably in an amount of 0.5 to 5% by weight, having a bulk density of 0.5 to 1.8 g / cm @ 2 and a particle size of less than 0.04 mm, is added to the iron powder as a sinter activator. This may be iron oxide, which is produced by the thermal decomposition of ferrous chloride or ferrous sulfate heptahydrate or by oxidized steel strips. The powder mixture is compressed in closed dies at a pressure of 392 to 765 MPa and then the slugs are sintered at a temperature of 1050 to 1200 ° C for 1 to 5 hours, or sintered stepwise, first at a temperature of 800 to 1000 ° C for 1 to 5 hours. 2 h and then at 1050 to 1200 ° C for 2 to 4 h. After sintering, the bodies are cold deformed by calibrating to increase the accuracy of the dimensions and density of the moldings, or they are hot deformed preferably by forging such that the bodies reach a density of at least 7.5 g.cm < -1 > prior to deformation, these are preferably heat treated by annealing at a temperature of 650 to 1100 ° C for 0.5 to 2 hours.

Příklad 1Example 1

Připraví sa mechanické práškové železo, u ktorého častíce s velkoslou 0,1 ež 0,16 mm tvoria 80 % hmotnostných, částice s velkoslou menšou eko 0,1 mm tvoři.. 10ř a částice vačšie ako 0,16 mm taktiež 10 % hmotnostných, ku ktorému sa přidá i 1 í hmotnostní kysličníkaMechanical powder iron is prepared in which particles of 0.1 to 0.16 mm in size comprise 80% by weight, particles of less than 0.1 mm in eco size are 10% and particles larger than 0.16 mm are also 10% by weight. to which is added 1% by weight of oxide

200 342 železitého s velkoslou Častíc menřou ako 0,04 mm so sypnou hustotou 1,5 g.crn”^ a 1 % · hmotnostně stearanu zinočnatého ako mazadlo. Po dókladnom premieřjní z tejto prářkovej zmesi sa vylisujú tvarové telesá tlakom 490 až 687 MPa, ktoré sa potom spekajú v štiepenom čpavku pri teplote 1100 °C po dobu 4 h. Skúřobné vzorky vyrobené z týchto telies mali200 342 ferric with a large particle size of less than 0.04 mm with a bulk density of 1.5 g.cm < -1 > and 1% by weight of zinc stearate as a lubricant. After thoroughly screening from this sparging mixture, the shaped bodies are pressed at a pressure of 490 to 687 MPa, which are then sintered in split ammonia at 1100 ° C for 4 h. Test specimens made of these bodies had

O hustotu 6,9 až 7,2 g.cm J a v tomto stave dosiahli magnetické indúkciu 1,4 aě 1,52 T pri magnetizácii jednosměrným prúdom 100 A/cm a medzu pevnosti-190 až 250 MPa. řríklad 2With a density of 6.9-7.2 g.cm J and in this state, they achieved a magnetic induction of 1.4 to 1.52 T with a direct current magnetization of 100 A / cm and a breaking strength of 190 to 250 MPa. Example 2

Z prářkovej zmesi ako v příklade 1 sa vylisujú tlakom 294 až 490 MPa tvarové telesá, ktoré sa spekajú pri teplote 1100 °C po dobu 2 h v řtiepenom čpavku. Po opátovnom ohřeve pri teplote 1100 °C po dobu 15 min v redukčněj plynnéj atmosféře, telesá sa podrobia de* t s * * formaci! za tepla kováním v uzavretej zapustke, pričom dosiahnu hustotu aspoň 7,5 g.cm . V tomto stave meranim na skúřobných vzorkách sa dosiahla magnetická indukcia 1,7 T pri magnetizácii jednosměrným prúdom 100 A/cm a medza pevnosti 380 MPa»Molded bodies are pressed from a scrubbing mixture as in Example 1 at a pressure of 294 to 490 MPa, which are sintered at 1100 ° C for 2 h in split ammonia. After reheating at 1100 ° C for 15 min in a reducing gas atmosphere, the bodies are subjected to de-formation. by hot forging in a closed die, reaching a density of at least 7.5 g.cm. In this state, measurements on the test specimens resulted in a magnetic induction of 1.7 T with a direct current magnetization of 100 A / cm and a breaking strength of 380 MPa »

SpSsobom pódia vynálezu sa dosiahne predovšetkým zvýšenie hodnót magnetickej indukcie železných telies vyráběných práškovou metalurgiou s vyléčením dalších prvkov, a to predovšetkým iba technikou jednoduchého llsovanla a spekania i pri použití nižších lisovacích tlekov. Podobné k význačnému zvýšeniu magnetickej indukcie dochádze aj pri telesách vyráběných spSsobom podlá vynálezu, ktoré sa po spekaní podrobia deformácii ža tepla kováním, čím sa prevyšujú aj vlastnosti telies kovaných z kompaktnvch ocelí.In particular, the method of the invention achieves an increase in the magnetic induction values of iron bodies produced by powder metallurgy with the healing of other elements, in particular only by the simple pressing and sintering technique, even when using lower presses. Similar to the marked increase in magnetic induction occurs also in the bodies produced according to the invention, which after sintering undergo heat deformation by forging, thus exceeding the properties of the bodies forged from compact steels.

Spósob podlá vynálezu je možné úspěšně uplatnit napr. vo výrobě pólových nástavcov dynam, štartérov a alternátorov.The method of the invention can be successfully applied e.g. in the production of pole pieces dynamo, starters and alternators.

Claims (12)

PREDMET VYNÁLEZUOBJECT OF THE INVENTION 1. Spósob výroby magneticky makkých železných telies postupmi prářkovej metalurgie z práškového železa obsahujúceho připadne fosfor vyznačujúci sa tým, že sa použije práškové železo, ku ktorému sa přidá kysličník železa a z tejto prářkovej zmesi sa vylisujú pórovité tvarové teleaá, ktoré sa potom spekajú, opakované deformujú a tepelne spracujú.1. Method for producing magnetically macular iron bodies by powder metallurgy from powdered iron, optionally containing phosphorus, characterized in that a powdered iron is used to which iron oxide is added and porous shaped bodies are pressed from this powdered mixture, which are then sintered, repeatedly deformed and heat treated. 2. Spósob podlá bodu 1, vyznačujúci sa tým, že s výhodou sa použije zmes aspoň dvoch druhov práškového železa.2. Method according to claim 1, characterized in that a mixture of at least two types of iron powder is preferably used. 3. Spósob podlá bodu 1 a 2, vyznačujúci sa tým, že v prářkovom železe podiel častíc s velkoslou 0,1 až 0,20 mm tvoří 60 až 90 %, podiel častíc s velkoslou menřou ako 0,1 mm 10 až 20 % a zvyřok do 100 % hmotnostných tvoria částice vačšie ako 0,20 mm,3. A method according to claim 1 or 2, characterized in that the proportion of particles having a particle size of 0.1 to 0.20 mm in size is 60 to 90%, that of particles having a particle size of less than 0.1 mm is 10 to 20% and Residues up to 100% by weight form particles larger than 0,20 mm, 4. Spósob podlá bodu 1, vyznačujúci sa tým, že sa přidá kysličník železe so aypnou hustotou v rozsahu 0,5 až 1,8 g.cm-^ a s velkoslou častíc menřou ako 0,04 mm.4. The process of claim 1 wherein iron oxide having an apparent density in the range of 0.5 to 1.8 g.cm & lt ; 2 > and a particle size of less than 0.04 mm is added. 5. Spósob podlá bodu 1 a 4, vyznačujúci sa tým, že kysličník železa sa přidá s výhodou v množstve 0,5 až 5 % hmotnostných.5. Method according to claim 1, characterized in that the iron oxide is preferably added in an amount of 0.5 to 5% by weight. 6. Sposob podle bodu 1,4 a 5, vyznačujúci sa tým, že sa s výhodou použije kysličník železa, ktorý vzniká tepelným rozkladom chloridu železnatého elebo heptahydrátu síranu železnatého alebo oxidáoiou za tepla spracovaných ocelových pásov.6. A process as claimed in claim 1, wherein iron oxide is produced by thermal decomposition of ferrous chloride or ferrous sulphate heptahydrate or by heat-treated steel strips. 7. Spósob podlá bodu 1, vyznačujúci sa tým, že tvarové telesá sa lisujú z prářkovej zmesi tlakom 392 až 785 MPa.7. The method of claim 1, wherein the moldings are compressed from the propellant mixture at a pressure of 392 to 785 MPa. 200 342200 342 8. SpSsob podlá bodu 1 a 7, vyznačující sa tým, že tvarové pórovité telesá sa spekajú pri teploto 1050 až 1200 °C po dobu 1 až 5 h.8. The method of claims 1 and 7, wherein the shaped porous bodies are sintered at a temperature of 1050-1200 [deg.] C. for 1 to 5 hours. 9. SpSsob podlá bodu 1 a 7, vyznačujúci sa tým, že tvarové pórovité telesá sa spekajú stup ňovite, najprv s výhodou pri tepiote 800 a 1000 °C po dobu 1 až 2 h a potom pri tepiote 1050 až 1200 °C po dobu 2 až 4 h.9. The method according to claim 1, characterized in that the shaped porous bodies are sintered stepwise, preferably at a temperature of 800 and 1000 ° C for 1 to 2 h and then at a temperature of 1050 to 1200 ° C for 2 to 2 hours. 4 h. 10. SpSsob podlá bodu 1, 8 a 9, vyznačujúci sa tým, že opékané pórovité tvarové teleaé aa podrobia deformácii s výhodou kalibrováním za studená.10. Method according to claim 1, 8 and 9, characterized in that the toasted porous shaped bodies a and are subjected to deformation preferably by cold calibration. 11. Spůsob podlá bodu 1, 8 a 9, vyznačujúci sa tým, že epekané pórovité tvarové telesá sa podrobia deformácii za tepla, s výhodou kováním tak, aby teleaá dosiahli hustotu aspoň11. Method according to claim 1, 8 and 9, characterized in that the baked porous shaped bodies are subjected to hot deformation, preferably by forging, so that the bodies reach a density of at least 7,5 g.cm3.7.5 g.cm 3 . 12. Spósob podlá bodu 1 a 11, vyznačujúci sa tým, že telesá sa tepelne spracujú s výhodou žihaním pri tepiote 650 až 1100 °C po dobu 0,5 až 2 h.12. The method according to claim 1, wherein the bodies are heat treated, preferably by annealing at a temperature of 650 to 1100 [deg.] C. for 0.5 to 2 hours.
CS553677A 1977-08-23 1977-08-23 Method of making the magnetically soft iron bodies by the processes of the powder metallurgy CS200342B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CS553677A CS200342B1 (en) 1977-08-23 1977-08-23 Method of making the magnetically soft iron bodies by the processes of the powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CS553677A CS200342B1 (en) 1977-08-23 1977-08-23 Method of making the magnetically soft iron bodies by the processes of the powder metallurgy

Publications (1)

Publication Number Publication Date
CS200342B1 true CS200342B1 (en) 1980-09-15

Family

ID=5400437

Family Applications (1)

Application Number Title Priority Date Filing Date
CS553677A CS200342B1 (en) 1977-08-23 1977-08-23 Method of making the magnetically soft iron bodies by the processes of the powder metallurgy

Country Status (1)

Country Link
CS (1) CS200342B1 (en)

Similar Documents

Publication Publication Date Title
US4681629A (en) Powder metallurgical process for manufacturing copper-nickel-tin spinodal alloy articles
Angers et al. Hot-pressing of boron carbide
EP0457418A1 (en) An optimized double press-double sinter powder metallurgy method
EP0187751B1 (en) Powder mixture free of segregation
DE3160220D1 (en) Method of producing sinterable titanium base alloy powder
Simchi Effects of lubrication procedure on the consolidation, sintering and microstructural features of powder compacts
US4976778A (en) Infiltrated powder metal part and method for making same
US3471343A (en) Process for the production of sinter iron materials
US3495958A (en) High purity steel by powder metallurgy
US4662939A (en) Process and composition for improved corrosion resistance
EP0274542B1 (en) Alloy steel powder for powder metallurgy
CS200342B1 (en) Method of making the magnetically soft iron bodies by the processes of the powder metallurgy
JPS61231102A (en) Powder based on iron containing ni and mo for producing highstrength sintered body
US6001150A (en) Boric acid-containing lubricants for powered metals, and powered metal compositions containing said lubricants
US4152179A (en) Process for producing phosphorous-bearing soft magnetic material
US4603028A (en) Method of manufacturing sintered components
Sands et al. Sintered Stainless Steel: II—THE Properties of Stainless Steel Powders Sintered in Dissociated Ammonia
GB829640A (en) Improvements relating to the manufacture of alloy strip
US4518427A (en) Iron or steel powder, a process for its manufacture and press-sintered products made therefrom
Szewczyk-Nykiel et al. Corrosion Behaviour of Sintered AISI 316L Stainless Steel Modified with Boron-Rich Master Alloy in 0.5 M NaCl Water Solution
EP0024217A1 (en) Process for producing a compacted powder metal part
US2816053A (en) Powdered metal magnet with low residual characteristics
JPS5763658A (en) Manufacture of sintered machine parts with superior specific strength
DE1295856B (en) Process for the production of objects of high hardness and wear resistance
SU1740108A1 (en) Method for making articles from powdered structural steels