CN85100483B - 超声波换能器用背载材料 - Google Patents
超声波换能器用背载材料 Download PDFInfo
- Publication number
- CN85100483B CN85100483B CN85100483A CN85100483A CN85100483B CN 85100483 B CN85100483 B CN 85100483B CN 85100483 A CN85100483 A CN 85100483A CN 85100483 A CN85100483 A CN 85100483A CN 85100483 B CN85100483 B CN 85100483B
- Authority
- CN
- China
- Prior art keywords
- transducer
- tungsten
- piggyback
- materials
- carrier material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/002—Devices for damping, suppressing, obstructing or conducting sound in acoustic devices
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
一种适用于低频和高频超声波换能器用的背载材料,它是由含1.0~4.5%氧化铈和钨粉与绝缘胶浇制或压制而成的。采用本发明背载材料的换能器在不改变原有换能器结构和制造方法的条件下,取代原用钨-绝缘胶的背载材料取得良好的效果:在浇制的背载材料制成的发射与接收通用换能器中,可同时提高耐电压性和声衰减性,更易于实现匹配所需的声阻抗;在压制的背载材料所制成的超声波换能器中,可使其背面反射引起的噪声减至极小。
Description
本发明属于超声波换能器用的背载材料。
在超声波换能器中,对背载阻尼块的要求,首先是背载阻尼块同压电晶片或压电薄膜的结合面应有和压电晶片或薄膜同样大小(或接近)的声阻抗;使介面上不发生能量反射;其次是必须使从压电晶片或薄膜一面进入阻尼块中的声能在阻尼块中耗散,以免引起阻尼块的背面反射;同时,在以浇制的背载阻尼块制造换能器时,要求背载阻尼材料具有高的耐电压性能,以免两电极之间通过背载材料而导通,这在发射用的相控阵列换能器中尤为重要。在现有技术中,采用钨-绝缘胶混合物作为背载材料。在发射用的换能器(尤其是在发射用的相控阵列换能器)中的浇制的背载材料,要加氧化铝绝缘层。1981年4月27日申请而在1983年3月3日取得美国专利与商标局批准的美国专利第4,382,201号“超声波换能器和获取其高衰减背载材料的制造方法”提出采用钨-聚氯乙烯混合物作为高频超声波换能器的背载材料。其制备过程中将钨粉与聚氯乙烯混合物在抽真空下加热加压,并在加压下冷却,使其混合材料处于弹性压缩状态,去压后而自然膨胀,以得到高水平的声衰减性能。采用钨-绝缘胶混合物和上述方法制备的钨-聚氯乙烯混合物作为背载材料,可达到一定的性能要求,但存在如下问题:在浇制的背载材料所制成的发射与接收通用的换能器中,往往存在耐电压性与高阻尼性两者不能兼得的矛盾;出现背面反射,造成假信号;在高频(大于4.5MHz)时,噪声大。在发射用的换能器(尤其是在发射用的相控阵列换能器)中,为克服背载材料耐电压性能低的缺点,要加氧化铝绝缘层,厚度控制严格,精度为几个微米,工艺复杂。本发明的目的在于提出一种能克服上述现有技术中背载材料所存在问题的、具有高耐电压性能和高声衰减性能的新的背载材料,在不改变原有换能器结构和制造方法的条件下,取代原用的钨-绝缘胶背载材料,能够按测试的要求配比出具有各种所需声阻抗的背载材料,以提高超声波换能器的使用性能,并使其制作工艺更简便。
本发明所提出的超声波换能器背载材料系含少量其他金属氧化物的钨粉与按一定重量比例的绝缘胶相混合,以浇制或压制方法制备成背载材料。钨粉中所含的金属氧化物以镧系金属氧化物为佳,例如氧化铈。所述的绝缘胶以环氧树脂为宜。由于氧化铈为不导电材料,所以钨铈粉具有极大的电阻;而钨是导电金属,钨粉的电阻极低。以相同的试验条件进行对比试验的结果表明,钨铈粉的电阻比钨粉的电阻高三个数量级(103)。因此,采用一定重量比例的钨铈-环氧树脂的混合物所制备成的背载材料,与相同重量比例的钨-环氧树脂混合物所制备的背载材料相比较,耐电压性能有成倍的提高,适用于制造高电压发射用的超声波换能器,不会发生两电极间通过背载材料而导通的现象。另一方面,钨铈-环氧树脂混合物的介质粘滞性与钨-环氧树脂的介质粘滞性不同,具有较大的声能衰减性能,因而可用于制成高阻尼的换能器。
上述钨铈-环氧树脂背载材料的配制:钨粉中含氧化铈的重量百分比为1.0~4.5%,钨铈粉末的最大粒度为10微米。钨铈粉与环氧树脂的重量比例,应按使用要求来配比,使其声阻抗与压电晶片或压电薄膜的声阻抗相适应,其比例范围为4∶1~50∶1。在钨铈粉比例较小时,用浇制方法制备背载阻尼块;而在钨铈粉比例较大的情况下,须用压制方法来制备背载阻尼块。
在超声波技术中,使用钨铈-环氧树脂背载材料,能使超声波检测仪器使用性能提高,可满足高频超声波换能器的需要。还适用于相控阵列的换能器。
图.为超声波测厚仪探头的剖面图。
采用钨铈-环氧树脂混合物作为超声波测厚仪探头的背载阻尼块,如图所示。图中标记1是电极,2是外壳,3是导线,4是背载材料,5和7是导电薄膜,6是压电晶片,8是保护膜。其中背载材料的配比和制作方法分别是:钨粉中含氧化铈的重量百分比为2%,钨铈粉与环氧树脂重量比例为8∶1;上述材料以浇制方法制成。上述这种背载材料与相同重量比例的钨-环氧树脂混合物取同样方法制成的探头进行试验对比,其结果如下:
背载材料 | 钨——环氧树脂 | 钨铈——环氧树脂 |
发射电压 | 9V | 60~90V |
可测厚度 | 1.5mm | 1.0mm |
换能器合格率 | 30% | 90% |
以上试验证明钨铈-环氧树脂背载材料比钨-环氧树脂背载材料的性能好。
钨铈-环氧树脂混合物背载材料可以适用于>5MHz的高频超声波测试仪的换能器中。
采用钨铈-环氧树脂混合物作为超声波探伤仪换能器的背载阻尼块,与采用钨-环氧树脂混合物作为换能器背载阻尼块进行试验比较,其结果:
灵敏度余量提高 10db左右(约28%)
分辨力提高 5db左右(约24%)
始波占宽缩小 5mm左右(约37%)
采用钨铈-环氧树脂混合物作为背载阻尼块的水声超声波接收成象系统的换能器,其背载阻尼块的配比和制作方法分别是:钨粉中含氧化铈的重量百分比为1.8~2.2%,钨铈粉与环氧树脂的重量比例为5∶1,用压制方法制成片块,贴在压电薄膜及刚性障板后面。与同样比例和同样制作方法的钨-环氧树脂作为背载阻尼块的换能器进行试验比较;其结果:
背载材料 | 钨——环氧树脂 | 钨铈——环氧树脂 |
波形脉宽 | 3微妙 | 2微妙 |
波形余振 | 12微妙 | 7微妙 |
注:钨铈-环氧树脂的噪声比钨-环氧树脂的噪声低5倍,电激励函数的阶函数比较理想。
本发明所提出的超声波换能器的背载材料适用于低频和高频的超声波检测和成象等系统。
至此,已对本发明所提出的背载材料的组成、配制方法及其应用范围作了说明。在此未加说明的,有关的专业人员能显而易见的,对本材料及其应用范围的变更均属本发明所包含的范围之内。
Claims (3)
1、一种超声波换能器用背载材料,上述背载材料是由钨粉与绝缘胶混合,经浇制或压制而成的一种混合物;其特征是在上述的钨粉中含有氧化铈。
2、根据权利要求1所述的背载材料,其特征是所述的钨粉中,氧化铈的含量为1.8~2.2%。
3、根据权利要求1所述的背载材料,其特征是所述的绝缘胶为环氧树脂。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN85100483A CN85100483B (zh) | 1985-04-01 | 1985-04-01 | 超声波换能器用背载材料 |
JP61075367A JPS61292500A (ja) | 1985-04-01 | 1986-04-01 | 超音波トランスデユ−サ−用裏当材 |
EP86104410A EP0196652B1 (en) | 1985-04-01 | 1986-04-01 | A backing material for an ultrasonic transducer |
DE8686104410T DE3683785D1 (de) | 1985-04-01 | 1986-04-01 | Rueckseitenmaterial fuer einen ultraschallwandler. |
US07/140,934 US4800316A (en) | 1985-04-01 | 1987-12-22 | Backing material for the ultrasonic transducer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN85100483A CN85100483B (zh) | 1985-04-01 | 1985-04-01 | 超声波换能器用背载材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN85100483A CN85100483A (zh) | 1986-08-13 |
CN85100483B true CN85100483B (zh) | 1988-10-19 |
Family
ID=4791196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN85100483A Expired CN85100483B (zh) | 1985-04-01 | 1985-04-01 | 超声波换能器用背载材料 |
Country Status (5)
Country | Link |
---|---|
US (1) | US4800316A (zh) |
EP (1) | EP0196652B1 (zh) |
JP (1) | JPS61292500A (zh) |
CN (1) | CN85100483B (zh) |
DE (1) | DE3683785D1 (zh) |
Families Citing this family (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5274296A (en) * | 1988-01-13 | 1993-12-28 | Kabushiki Kaisha Toshiba | Ultrasonic probe device |
GB2232487B (en) * | 1989-06-09 | 1993-08-04 | Shimizu Construction Co Ltd | Ultrasonic measuring apparatus including a high-damping probe |
US5486734A (en) * | 1994-02-18 | 1996-01-23 | Seyed-Bolorforosh; Mir S. | Acoustic transducer using phase shift interference |
US6124664A (en) * | 1998-05-01 | 2000-09-26 | Scimed Life Systems, Inc. | Transducer backing material |
US6051913A (en) * | 1998-10-28 | 2000-04-18 | Hewlett-Packard Company | Electroacoustic transducer and acoustic isolator for use therein |
EP2275175B1 (en) * | 2000-07-13 | 2016-08-24 | ReCor Medical, Inc. | Thermal treatment apparatus with ultrasonic energy application |
EP2455015B1 (en) * | 2000-07-13 | 2017-09-13 | ReCor Medical, Inc. | Ultrasonic energy application with inflatable lens |
US6763722B2 (en) * | 2001-07-13 | 2004-07-20 | Transurgical, Inc. | Ultrasonic transducers |
DK200101780A (da) * | 2001-11-30 | 2002-11-27 | Danfoss As | Ultralydstransducer |
US6952967B2 (en) * | 2002-06-18 | 2005-10-11 | General Electric Company | Ultrasonic transducer |
US20040082859A1 (en) | 2002-07-01 | 2004-04-29 | Alan Schaer | Method and apparatus employing ultrasound energy to treat body sphincters |
EP1596746B1 (en) * | 2003-02-20 | 2016-10-19 | ReCor Medical, Inc. | Ultrasonic ablation devices |
US7075215B2 (en) * | 2003-07-03 | 2006-07-11 | Pathfinder Energy Services, Inc. | Matching layer assembly for a downhole acoustic sensor |
US7036363B2 (en) * | 2003-07-03 | 2006-05-02 | Pathfinder Energy Services, Inc. | Acoustic sensor for downhole measurement tool |
US7513147B2 (en) * | 2003-07-03 | 2009-04-07 | Pathfinder Energy Services, Inc. | Piezocomposite transducer for a downhole measurement tool |
US6995500B2 (en) * | 2003-07-03 | 2006-02-07 | Pathfinder Energy Services, Inc. | Composite backing layer for a downhole acoustic sensor |
US8354773B2 (en) * | 2003-08-22 | 2013-01-15 | Siemens Medical Solutions Usa, Inc. | Composite acoustic absorber for ultrasound transducer backing material |
JP4181103B2 (ja) * | 2004-09-30 | 2008-11-12 | 株式会社東芝 | 超音波プローブおよび超音波診断装置 |
US20060198773A1 (en) * | 2005-01-24 | 2006-09-07 | Osram Sylvania Inc. | Method for Suppressing the Leachability of Certain Metals |
US7989064B2 (en) * | 2005-01-24 | 2011-08-02 | Global Tungsten & Powders Corp. | Ceramic-coated tungsten powder |
US20060196585A1 (en) * | 2005-01-24 | 2006-09-07 | Osram Sylvania Inc. | Additives for Suppressing Tungsten Leachability |
CN100389890C (zh) * | 2005-02-07 | 2008-05-28 | 北京大学 | 换能器和阵及其制备方法 |
WO2007136566A2 (en) | 2006-05-19 | 2007-11-29 | Prorhythm, Inc. | Ablation device with optimized input power profile and method of using the same |
US7587936B2 (en) * | 2007-02-01 | 2009-09-15 | Smith International Inc. | Apparatus and method for determining drilling fluid acoustic properties |
US7808157B2 (en) * | 2007-03-30 | 2010-10-05 | Gore Enterprise Holdings, Inc. | Ultrasonic attenuation materials |
WO2008147325A1 (en) * | 2007-06-01 | 2008-12-04 | Axsensor Ab | Piezoelectric transducer device |
US8022595B2 (en) * | 2008-09-02 | 2011-09-20 | Delaware Capital Formation, Inc. | Asymmetric composite acoustic wave sensor |
US8117907B2 (en) * | 2008-12-19 | 2012-02-21 | Pathfinder Energy Services, Inc. | Caliper logging using circumferentially spaced and/or angled transducer elements |
EP2376011B1 (en) * | 2009-01-09 | 2019-07-03 | ReCor Medical, Inc. | Apparatus for treatment of mitral valve insufficiency |
US8073640B2 (en) * | 2009-09-18 | 2011-12-06 | Delaware Capital Formation Inc. | Controlled compressional wave components of thickness shear mode multi-measurand sensors |
US8691145B2 (en) | 2009-11-16 | 2014-04-08 | Flodesign Sonics, Inc. | Ultrasound and acoustophoresis for water purification |
US9421553B2 (en) | 2010-08-23 | 2016-08-23 | Flodesign Sonics, Inc. | High-volume fast separation of multi-phase components in fluid suspensions |
US9079221B2 (en) | 2011-02-15 | 2015-07-14 | Halliburton Energy Services, Inc. | Acoustic transducer with impedance matching layer |
US9048521B2 (en) | 2011-03-24 | 2015-06-02 | Etegent Technologies, Ltd. | Broadband waveguide |
US9182306B2 (en) | 2011-06-22 | 2015-11-10 | Etegent Technologies, Ltd. | Environmental sensor with tensioned wire exhibiting varying transmission characteristics in response to environmental conditions |
US9950282B2 (en) | 2012-03-15 | 2018-04-24 | Flodesign Sonics, Inc. | Electronic configuration and control for acoustic standing wave generation |
US10689609B2 (en) | 2012-03-15 | 2020-06-23 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
US9752114B2 (en) | 2012-03-15 | 2017-09-05 | Flodesign Sonics, Inc | Bioreactor using acoustic standing waves |
US9752113B2 (en) | 2012-03-15 | 2017-09-05 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9688958B2 (en) | 2012-03-15 | 2017-06-27 | Flodesign Sonics, Inc. | Acoustic bioreactor processes |
US9458450B2 (en) | 2012-03-15 | 2016-10-04 | Flodesign Sonics, Inc. | Acoustophoretic separation technology using multi-dimensional standing waves |
US9272234B2 (en) | 2012-03-15 | 2016-03-01 | Flodesign Sonics, Inc. | Separation of multi-component fluid through ultrasonic acoustophoresis |
US10370635B2 (en) | 2012-03-15 | 2019-08-06 | Flodesign Sonics, Inc. | Acoustic separation of T cells |
US10322949B2 (en) | 2012-03-15 | 2019-06-18 | Flodesign Sonics, Inc. | Transducer and reflector configurations for an acoustophoretic device |
US9783775B2 (en) | 2012-03-15 | 2017-10-10 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US9745548B2 (en) | 2012-03-15 | 2017-08-29 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9567559B2 (en) | 2012-03-15 | 2017-02-14 | Flodesign Sonics, Inc. | Bioreactor using acoustic standing waves |
US10953436B2 (en) | 2012-03-15 | 2021-03-23 | Flodesign Sonics, Inc. | Acoustophoretic device with piezoelectric transducer array |
US10704021B2 (en) | 2012-03-15 | 2020-07-07 | Flodesign Sonics, Inc. | Acoustic perfusion devices |
US9796956B2 (en) | 2013-11-06 | 2017-10-24 | Flodesign Sonics, Inc. | Multi-stage acoustophoresis device |
US10967298B2 (en) | 2012-03-15 | 2021-04-06 | Flodesign Sonics, Inc. | Driver and control for variable impedence load |
US11324873B2 (en) | 2012-04-20 | 2022-05-10 | Flodesign Sonics, Inc. | Acoustic blood separation processes and devices |
CN106964010A (zh) * | 2012-04-20 | 2017-07-21 | 弗洛设计声能学公司 | 脂质颗粒与红血球的声电泳分离 |
US10737953B2 (en) | 2012-04-20 | 2020-08-11 | Flodesign Sonics, Inc. | Acoustophoretic method for use in bioreactors |
US9745569B2 (en) | 2013-09-13 | 2017-08-29 | Flodesign Sonics, Inc. | System for generating high concentration factors for low cell density suspensions |
US20160294033A1 (en) | 2013-11-01 | 2016-10-06 | Etegent Technologies Ltd. | Broadband Waveguide |
US10352778B2 (en) | 2013-11-01 | 2019-07-16 | Etegent Technologies, Ltd. | Composite active waveguide temperature sensor for harsh environments |
US9725710B2 (en) | 2014-01-08 | 2017-08-08 | Flodesign Sonics, Inc. | Acoustophoresis device with dual acoustophoretic chamber |
WO2015157488A1 (en) | 2014-04-09 | 2015-10-15 | Etegent Technologies Ltd. | Active waveguide excitation and compensation |
CN103964746B (zh) * | 2014-05-06 | 2015-08-12 | 南京信息工程大学 | 一种磁性阻尼复合材料及其制备方法 |
US9744483B2 (en) | 2014-07-02 | 2017-08-29 | Flodesign Sonics, Inc. | Large scale acoustic separation device |
US10106770B2 (en) | 2015-03-24 | 2018-10-23 | Flodesign Sonics, Inc. | Methods and apparatus for particle aggregation using acoustic standing waves |
US11377651B2 (en) | 2016-10-19 | 2022-07-05 | Flodesign Sonics, Inc. | Cell therapy processes utilizing acoustophoresis |
WO2016176663A1 (en) | 2015-04-29 | 2016-11-03 | Flodesign Sonics, Inc. | Acoustophoretic device for angled wave particle deflection |
US11708572B2 (en) | 2015-04-29 | 2023-07-25 | Flodesign Sonics, Inc. | Acoustic cell separation techniques and processes |
US11021699B2 (en) | 2015-04-29 | 2021-06-01 | FioDesign Sonics, Inc. | Separation using angled acoustic waves |
BR112017024713B1 (pt) | 2015-05-20 | 2022-09-27 | Flodesign Sonics, Inc | Método para a separação de um segundo fluido ou um particulado de um fluido principal |
US10161926B2 (en) | 2015-06-11 | 2018-12-25 | Flodesign Sonics, Inc. | Acoustic methods for separation of cells and pathogens |
US9663756B1 (en) | 2016-02-25 | 2017-05-30 | Flodesign Sonics, Inc. | Acoustic separation of cellular supporting materials from cultured cells |
CN108025333B (zh) | 2015-07-09 | 2020-10-02 | 弗洛设计声能学公司 | 非平面和非对称压电晶体及反射器 |
US11459540B2 (en) | 2015-07-28 | 2022-10-04 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
US11474085B2 (en) | 2015-07-28 | 2022-10-18 | Flodesign Sonics, Inc. | Expanded bed affinity selection |
CN105178949A (zh) * | 2015-09-11 | 2015-12-23 | 中国石油天然气集团公司 | 一种超声波探头 |
US10481288B2 (en) | 2015-10-02 | 2019-11-19 | Halliburton Energy Services, Inc. | Ultrasonic transducer with improved backing element |
US10710006B2 (en) | 2016-04-25 | 2020-07-14 | Flodesign Sonics, Inc. | Piezoelectric transducer for generation of an acoustic standing wave |
US11214789B2 (en) | 2016-05-03 | 2022-01-04 | Flodesign Sonics, Inc. | Concentration and washing of particles with acoustics |
US11085035B2 (en) | 2016-05-03 | 2021-08-10 | Flodesign Sonics, Inc. | Therapeutic cell washing, concentration, and separation utilizing acoustophoresis |
CN114891635A (zh) | 2016-05-03 | 2022-08-12 | 弗洛设计声能学公司 | 利用声泳的治疗细胞洗涤、浓缩和分离 |
EP3463573A2 (en) * | 2016-06-06 | 2019-04-10 | Sofwave Medical Ltd. | Ultrasound transducer and system |
WO2018075830A1 (en) | 2016-10-19 | 2018-04-26 | Flodesign Sonics, Inc. | Affinity cell extraction by acoustics |
US11686627B2 (en) | 2017-04-10 | 2023-06-27 | Etegent Technologies Ltd. | Distributed active mechanical waveguide sensor driven at multiple frequencies and including frequency-dependent reflectors |
US11590535B2 (en) | 2017-10-25 | 2023-02-28 | Honeywell International Inc. | Ultrasonic transducer |
US10809233B2 (en) | 2017-12-13 | 2020-10-20 | General Electric Company | Backing component in ultrasound probe |
WO2019118921A1 (en) | 2017-12-14 | 2019-06-20 | Flodesign Sonics, Inc. | Acoustic transducer drive and controller |
US12102844B2 (en) | 2018-08-02 | 2024-10-01 | Sofwave Medical Ltd. | Fat tissue treatment |
WO2021106138A1 (ja) * | 2019-11-28 | 2021-06-03 | 本多電子株式会社 | 超音波送受波器 |
CN116803216A (zh) | 2020-12-31 | 2023-09-22 | 苏维夫医疗有限公司 | 安装在多个印刷电路板上的多个超声波激励器的冷却 |
WO2024089043A1 (en) | 2022-10-28 | 2024-05-02 | Rhovica Neuroimaging Ag | A catheter for placement in a ventricular system |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3663842A (en) * | 1970-09-14 | 1972-05-16 | North American Rockwell | Elastomeric graded acoustic impedance coupling device |
CH582951A5 (zh) * | 1973-07-09 | 1976-12-15 | Bbc Brown Boveri & Cie | |
US4076611A (en) * | 1976-04-19 | 1978-02-28 | Olin Corporation | Electrode with lanthanum-containing perovskite surface |
DE2736588C2 (de) * | 1977-08-13 | 1979-06-07 | Stettner & Co, 8560 Lauf | Schalldämpfende Masse, Verfahren zur Herstellung schalldämpfender Formkörper und Verwendung derselben |
US4382201A (en) * | 1981-04-27 | 1983-05-03 | General Electric Company | Ultrasonic transducer and process to obtain high acoustic attenuation in the backing |
LU83330A1 (fr) * | 1981-04-29 | 1983-03-24 | Euratom | Transducteurs ultrasonores performants simplifies |
JPS59143041A (ja) * | 1983-02-04 | 1984-08-16 | Nippon Tungsten Co Ltd | タングステン電極材料 |
JPS60131875A (ja) * | 1983-12-20 | 1985-07-13 | 三菱重工業株式会社 | セラミツクと金属の接合法 |
-
1985
- 1985-04-01 CN CN85100483A patent/CN85100483B/zh not_active Expired
-
1986
- 1986-04-01 JP JP61075367A patent/JPS61292500A/ja active Granted
- 1986-04-01 DE DE8686104410T patent/DE3683785D1/de not_active Expired - Fee Related
- 1986-04-01 EP EP86104410A patent/EP0196652B1/en not_active Expired
-
1987
- 1987-12-22 US US07/140,934 patent/US4800316A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DE3683785D1 (de) | 1992-03-19 |
CN85100483A (zh) | 1986-08-13 |
EP0196652A2 (en) | 1986-10-08 |
EP0196652B1 (en) | 1992-02-05 |
EP0196652A3 (en) | 1988-05-11 |
US4800316A (en) | 1989-01-24 |
JPH0457280B2 (zh) | 1992-09-11 |
JPS61292500A (ja) | 1986-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN85100483B (zh) | 超声波换能器用背载材料 | |
EP0128049A2 (en) | Ultrasonic probe having a backing member | |
CA1134939A (en) | Polymeric piezoelectric microprobe having a damper | |
US3379901A (en) | Fetal heart transducer and method of manufacture | |
Ou-Yang et al. | New KNN-based lead-free piezoelectric ceramic for high-frequency ultrasound transducer applications | |
US4420707A (en) | Backing for ultrasonic transducer crystal | |
US5418759A (en) | Ultrasound transducer arrangement having an acoustic matching layer | |
US4559827A (en) | Ultrasonic shear wave couplant | |
Hatano et al. | Reciprocity calibration of impulse responses of acoustic emission transducers | |
Reilly et al. | Through air transmission for ultrasonic nondestructive testing | |
Hill et al. | A theory for optimization in the use of acoustic emission transducers | |
US3553501A (en) | Ultrasonic piezoelectric transducer cartridge | |
CN108917805B (zh) | 电磁超声波双波换能器 | |
Dias | Construction and performance of an experimental phased array acoustic imaging transducer | |
DE69205148T2 (de) | Fühler zum messen von hochintensitätakustischen feldern. | |
McSkimin | Performance of high frequency barium titanate transducers for generating ultrasonic waves in liquids | |
CN109668624B (zh) | 一种全屏蔽辐射冲击波探头 | |
CN215932137U (zh) | 一种超声波传感器 | |
Ye | On acoustic attenuation by swimbladder fish | |
CN214511197U (zh) | 一种抗电磁干扰的超声骨密度探头 | |
GB2097630A (en) | Ultrasonic transducers | |
Xie et al. | The characteristic analysis of gradient matching layer of wideband ultrasonic transducer-Comparison of different matching layers | |
Ramos et al. | A 5 MHz high-voltage demultiplexed ultrasonic array system for rapid-scan testing of advanced materials | |
Brendel et al. | Hydrophone measurements | |
CN115950801A (zh) | 一种用于矿浆浓度测量的换能器及其制备方法和超声波矿浆浓度检测仪 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C13 | Decision | ||
GR02 | Examined patent application | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |