CN2837834Y - Spectrophotometer for quickly measuring spectrum - Google Patents
Spectrophotometer for quickly measuring spectrum Download PDFInfo
- Publication number
- CN2837834Y CN2837834Y CN 200520045814 CN200520045814U CN2837834Y CN 2837834 Y CN2837834 Y CN 2837834Y CN 200520045814 CN200520045814 CN 200520045814 CN 200520045814 U CN200520045814 U CN 200520045814U CN 2837834 Y CN2837834 Y CN 2837834Y
- Authority
- CN
- China
- Prior art keywords
- semi
- light
- light source
- spectrophotometer
- reflecting lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000001228 spectrum Methods 0.000 title claims abstract description 42
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims abstract description 15
- 229910052805 deuterium Inorganic materials 0.000 claims abstract description 15
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 15
- 150000002367 halogens Chemical class 0.000 claims abstract description 15
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 15
- 239000010937 tungsten Substances 0.000 claims abstract description 15
- 238000012545 processing Methods 0.000 claims abstract description 10
- 230000003287 optical effect Effects 0.000 claims description 39
- 150000001875 compounds Chemical class 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 238000005259 measurement Methods 0.000 abstract description 18
- 230000003595 spectral effect Effects 0.000 abstract description 7
- 238000002798 spectrophotometry method Methods 0.000 abstract 1
- 241000219739 Lens Species 0.000 description 58
- 210000000695 crystalline len Anatomy 0.000 description 58
- 101700004678 SLIT3 Proteins 0.000 description 8
- 102100027339 Slit homolog 3 protein Human genes 0.000 description 8
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000002310 reflectometry Methods 0.000 description 3
- 230000011514 reflex Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000005269 aluminizing Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000985 reflectance spectrum Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 230000003245 working effect Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
The utility model provides a spectrophotometer of quick measurement spectrum, includes a light source, on the main light path of this light source output, is spectrophotometry system, colour wheel, third speculum, concave surface reflecting mirror, diffraction grating, slit and receiver in proper order, and the output termination of this receiver is a data processing and controller, its characterized in that: the light source consists of a wide-spectrum halogen tungsten lamp, a deuterium lamp and a switching type first half-transmitting and half-reflecting mirror on an output light path of the light source, the slit is positioned between the light source and the second half-transmitting and half-reflecting mirror, and a collimating combined lens is arranged between the slit and the second half-transmitting and half-reflecting mirror; a converging lens is arranged between the concave reflecting mirror and the receiving system; the receiver is an array CCD. The utility model discloses the spectrophotometer of rapid survey spectrum's characteristics can once measure the spectrum of a wavelength range, and the spectral curve of giving the sample that can be quick, accurate can realize the real-time measurement of sample.
Description
Technical field
The utility model relates to the spectrophotometer of spectral measurement instrument, particularly a kind of quick measure spectrum.
Background technology
Spectrophotometer is as the spectral measurement instrument, and the curve of spectrum such as reflection that can measuring samples, transmission, absorption is a kind of very important testing tool in subjects such as physics, chemistry and life science.
Existing spectrophotometer structural drawing as shown in Figure 6, it mainly is to carry out chromatic dispersion by diffraction grating 12 to separate, and utilizes slit 3 to choose the light of certain single wavelength as measuring light then.By the angle of rotating grating 12, make the light of different wave length pass through slit 3, so just can obtain continuous monochromatic light.Because detector 18 every collection one secondary data can only obtain the data of single wavelength, so just make that existing spectrophotometric measuring speed is very slow, sample of every measurement generally will spend the time of a few minutes, if the accuracy requirement of measuring is than higher, and the wavelength coverage of scanning is bigger, then Hua Fei time more, have in addition reach tens minutes.The spectrophotometer that is somebody's turn to do simultaneously also just can not be used for real-time measurement because measuring speed is slower.
Summary of the invention
Problem to be solved in the utility model overcomes above-mentioned existing long difficulty of spectrophotometer measurement time, a kind of spectrophotometer of quick measure spectrum is provided, it should be able to wavelength coverage of one-shot measurement, and can be quick, provide the curve of spectrum of sample accurately, especially can realize the real-time measurement of sample.
Technical solution of the present utility model is as follows:
A kind of spectrophotometer of quick measure spectrum, comprise a light source, on the main optical path of this light source output, the spectrophotometric system of forming by second semi-transparent semi-reflecting lens, sample stage, first catoptron, second catoptron and the 3rd semi-transparent semi-reflecting lens successively, colour wheel, the 3rd catoptron, concave mirror, diffraction grating, slit and receiver, output termination one data processing and the controller of this receiver, this data processing and controller have software, control second semi-transparent semi-reflecting lens and the 3rd semi-transparent semi-reflecting lens synchronous working line data of going forward side by side and handle, it is characterized in that:
Described light source constitutes by a wide spectrum halogen tungsten lamp, a deuterium lamp with at suitching type first semi-transparent semi-reflecting lens of light source output light path, the turning axle and the main optical path of this suitching type first semi-transparent semi-reflecting lens are at 45, the optical axis of described wide spectrum halogen tungsten lamp is positioned on the main optical path, the rotating shaft parallel of the optical axis of described deuterium lamp and this suitching type first semi-transparent semi-reflecting lens;
Described slit also has a collimation compound lens between the described slit and second semi-transparent semi-reflecting lens between the described light source and second semi-transparent semi-reflecting lens;
Also have one to assemble lens between described concave mirror and the described receiving system;
Described receiver is an array CCD.
Described wide spectrum halogen tungsten lamp is made visible and near infrared light source, and its wavelength coverage is 350nm-3200nm, and described deuterium lamp is made ultraviolet source, and its wavelength coverage is 170-350nm.
Described suitching type first semi-transparent semi-reflecting lens is the catoptron of a circle, and wherein a semicircle is the catoptron of aluminizing, and another semicircle is the blank parts of emptying, and light beam can directly pass through.
Described colour wheel is one to have the combination disk of 10 optical filters, the corresponding certain wavelengths of the logical light of each optical filter, the i.e. filtration that then is reflected of the light transmission of a certain wave band, the light of its all band.
Described diffraction grating can only rotate some specific angles, and each angle is corresponding with the corresponding optical filter of colour wheel, and making each optical filter centre wavelength light beam is 0 ° in the field angle of described convergent lens.
Described data processing and controller are computing machines.
The utility model is measured spectrophotometer fast, compare with above-mentioned existing spectrophotometer, the key distinction is: existing spectrophotometer signal receiver generally adopts photomultiplier or PbS detector, this detector once can only be measured single wavelength, and the utility model is measured the receptacle of spectrophotometer signal fast and has been adopted array CCD, utilize the difference of this array CCD to survey the signal that unit surveys different wave length, so just can wave band of one-shot measurement, thus the measuring speed of sample improved greatly.In order to realize adopting this array CCD detectable signal, our spectrophotometer is different with existing spectrophotometer to be:
At first, the photomultiplier or the PbS detector that replace traditional spectrophotometric receiver with array CCD.
Secondly, slit is placed on the front of diffraction grating, rather than is placed on the diffraction grating back as existing spectrophotometer.
The 3rd, introduced the collimation compound lens, can obtain depth of parallelism better parallel light.
The 4th, the introducing of convergent lens is imaged on the CCD slit, and the photoimaging of different wave length can once be finished the measurement of a wave band at the diverse location of ccd array.
The spectrophotometric advantage of the utility model:
1, the utility model spectrophotometer can be measured the curve of spectrum of testing sample fast, compares with traditional spectrophotometer, and measuring speed improves greatly.
2, light path has been simplified in the introducing of suitching type first semi-transparent semi-reflecting lens, second semi-transparent semi-reflecting lens and the 3rd semi-transparent semi-reflecting anti-mirror, has also simplified instrument, has reduced cost.
3, the introducing of collimation compound lens has solved when measuring because the too big measuring error of bringing of the angle of divergence.
4, the introducing of colour wheel has been carried out preliminary filtration to light beam, has reduced the influence that senior diffraction of diffraction grating (13) brings, and has improved the precision of measuring.
5, the introducing of CCD array, the curve of spectrum that can a wavelength band of one-shot measurement has improved measuring speed greatly.
6, the utility model spectrophotometer utilizes computer control, can measure the curve of spectrum of sample fast accurately.
7, the utility model not only can be used for the measuring samples curve of spectrum, not only can improve measuring speed, and can carry out the real-time monitoring of the curve of spectrum of some occasions.
Description of drawings
Fig. 1 is spectrophotometric schematic diagram of the utility model and main optical path figure;
Fig. 2 is the plane structure chart of semi-transparent semi-reflecting lens in the utility model spectrophotometer;
Fig. 3 is the floor map of colour wheel in the utility model spectrophotometer;
Fig. 4 is that the light of the utility model spectrophotometer different wave length focuses on part index path on the CCD by convergent lens;
Sample stage synoptic diagram when Fig. 5 is the utility model spectrophotometer measurement sample reflectivity.
Fig. 6 is existing spectrophotometer schematic diagram and main optical path figure.
Embodiment
The utility model is described in further detail below in conjunction with drawings and Examples.
See also Fig. 1 earlier, Fig. 1 is the utility model schematic diagram and main optical path figure of the spectrophotometer embodiment of measurement fast; As seen from the figure, the spectrophotometer of the quick measure spectrum of the utility model, comprise a light source, on the main optical path of this light source output, have successively: by second semi-transparent semi-reflecting lens 5, sample stage 6, first catoptron 7, the spectrophotometric system that second catoptron 8 and the 3rd semi-transparent semi-reflecting lens 9 are formed, colour wheel 10, the 3rd catoptron 11, concave mirror 12, diffraction grating 13, slit 3 and receiving system, output termination one data processing and the controller of this receiving system, this data processing and controller have software control second semi-transparent semi-reflecting lens 5 and the 3rd semi-transparent semi-reflecting lens 9 synchronous workings line data of going forward side by side to handle, and it is characterized in that:
Described light source constitutes by a wide spectrum halogen tungsten lamp 1-1, a deuterium lamp 1-2 with at suitching type first semi-transparent semi-reflecting lens 2 of light source output light path, the turning axle and the main optical path of this suitching type first semi-transparent semi-reflecting lens 2 are at 45, the optical axis of described wide spectrum halogen tungsten lamp 1-1 is positioned on the main optical path, the rotating shaft parallel of the optical axis of described deuterium lamp 1-2 and this suitching type first semi-transparent semi-reflecting lens 2;
Described slit 3 also has a collimation compound lens 4 between the described slit 3 and second semi-transparent semi-reflecting lens 5 between the described light source and second semi-transparent semi-reflecting lens 5;
Also have one to assemble lens 14 between described concave mirror 12 and the described receiving system;
Described receiving system is an array CCD15.
Described wide spectrum halogen tungsten lamp 1-1 makes visible and near infrared light source, and its wavelength coverage is 350nm-3200nm, and described deuterium lamp 1-2 makes ultraviolet source, and its wavelength coverage is 170-350nm.
Described suitching type first semi-transparent semi-reflecting lens 2 is catoptrons of a circle, and as shown in Figure 2, wherein a semicircle is the catoptron that has plated layer of aluminum, and another semicircle is the blank parts of emptying, and light beam can directly pass through.
Described colour wheel 10 has 10 optical filter combinations to form, and as shown in Figure 3, each optical filter is used for the light of incident light particular range of wavelengths is done preliminary filtration, makes the light transmission of a certain wave band, and the light of its all band then is reflected and filters away.
Described diffraction grating 13 can only rotate and be in some specific angles, and each angle is corresponding with each optical filter of colour wheel 10, and making each optical filter centre wavelength light beam is 0 ° in the field angle of convergent lens 14.
Described data processing and controller are computing machines 16, are used for controlling the whole spectral photometer, and are for data processing, and show or print the spectrum of specimen.
Described light source comprises that the conversion between wide spectrum halogen tungsten lamp 1-1 and the deuterium lamp 1-2 switches by a suitching type first semi-transparent semi-reflecting lens 2.When measure spectrum needs deuterium lamp 1-2 to make light source, rotate this first semi-transparent semi-reflecting lens 2, the reflecting part that the light that deuterium lamp 1-2 is sent incides this first semi-transparent semi-reflecting lens 2 reflexes to be measured light path and gets on, and the light that wide spectrum halogen tungsten lamp 1-1 sends then is blocked, and can not enter the measurement light path; When the light time that measure spectrum needs wide spectrum halogen tungsten lamp 1-1 to send, with this first semi-transparent semi-reflecting lens 2 around its Rotate 180 °, the light that wide spectrum halogen tungsten lamp 1-1 is sent directly enters into the measurement light path by the blank parts in this first semi-transparent semi-reflecting lens 2, the light that while deuterium lamp 1-2 sends is also directly by the blank parts in this first semi-transparent semi-reflecting lens 2, and penetrate from measuring light path, can not impact measuring.So just can rotate described first semi-transparent semi-reflecting lens 2 and select different light sources according to the needs of measure spectrum.
Described slit 3 is used for blocking a part of light that light source sends, and makes to have only the light path that just can enter instrument by the light of slit.Described colimated light system 4 is collimation compound lenss, obtains more parallel directional light after being used for making diverging light by slit 3 by this colimated light system.
Described spectrophotometric system is made of second semi-transparent semi-reflecting lens 5, first catoptron 7, second catoptron the 8, the 3rd semi-transparent semi-reflecting anti-mirror 9, and wherein first catoptron 7 and second catoptron 8 are general flat reflective mirrors, are used for changing the direction of propagation of light beam; Second semi-transparent semi-reflecting lens 5 is identical with first semi-transparent semi-reflecting lens, 2 structures with the 3rd semi-transparent semi-reflecting anti-mirror 9, see also Fig. 1, described second semi-transparent semi-reflecting lens 5 is used for a branch of light is divided into two bundles, wherein a branch of test beams as sample, be used for specimen, a branch of in addition conduct is with reference to light beam.The 3rd semi-transparent semi-reflecting anti-mirror 9 is used for two-beam synthetic a branch of, control by computer, second semi-transparent semi-reflecting lens 5 and the 3rd semi-transparent semi-reflecting anti-mirror 9 rotate synchronously, the function of their cremasteric reflexes simultaneously or transmission just, and in deal with data, distinguished, just can be obtained the energy on two-beam road simultaneously.
Described diffraction grating 13 is to be used for the light beam that incides its surface is done accurate wavelength separated, the incident light of different wave length is gone out according to different angle diffraction, different with traditional spectrophotometer, diffraction grating of the present utility model only rotates some specific angles, each angle is corresponding with each optical filter of described colour wheel 10, and making the centre wavelength light beam of each optical filter is 0 ° in the rink corner of convergent lens 14.
Described convergent lens 14 is a quartzy cylindrical mirror, and the directional light that is mainly used to incide its surface converges on the CCD15 of back, as shown in Figure 4.
Described CCD15 is used for accepting the light beam by behind the convergent lens 14, since the light of different wave length by diffraction grating after 13 angles that reflect slightly different, like this, also different by the facula position that convergent lens 14 focuses on the CCD15, by gathering the energy of CCD15 array diverse location, we just can obtain the information of different wavelengths of light.The each spectral range of gathering of CCD15 is corresponding with each optical filter of colour wheel 10, and promptly every collection one secondary data of CCD15 can obtain and the corresponding curve of spectrum of colour wheel 10 corresponding optical filter spectral ranges.
The working condition of the utility model device is as follows:
When measuring transmitance, on sample stage 6, do not put into earlier sample, device is carried out school zero: the wavelength coverage that will measure selects wide spectrum halogen tungsten lamp 1-1 or deuterium lamp 1-2 as light source by rotation first semi-transparent semi-reflecting lens 2 per sample, the light beam that light source is sent becomes light into the collimation directional light by slit 3 and collimation compound lens 4, then by second semi-transparent semi-reflecting lens 5, the fast rotational of this second semi-transparent semi-reflecting lens 5, input beam is divided into two light beams, a branch of is folded light beam, another bundle is transmitted light beam, folded light beam through second catoptron 8 as with reference to light beam, the transmitted light beam process sample stage 6 and first catoptron 7 are as measuring beam, the light path that folded light beam and transmitted light beam are passed by is basic identical, again they are combined into a branch of light by the 3rd semi-transparent semi-reflecting lens 9 then, this light beam incides on the colour wheel 10 then, needs rotation colour wheel 10 according to measure spectrum selects different optical filters to filter, then by the 3rd catoptron 11 and concave mirror 12, light beam incides on the diffraction grating 13 through being diffracted on the described concave mirror 12, after the reflection, this diffracted beam focuses on the CCD15 through convergent lens 14, wherein the anglec of rotation of diffraction grating 13 all configures, and making the light of the optical filter centre wavelength that colour wheel 10 working is 0 ° in the rink corner of convergent lens 14.Because the light of different wave length is different in the angle of diffraction of diffraction grating 13, the light of the different wave length by same optical filter is just different in the field angle of convergent lens 14, like this, the light of different wave length will converge in the different detection unit of CCD15, the intensity signal of the last diverse location of CCD15 just corresponding when the transmitance information of front filter different wave length: T (λ
1), T (λ
2), T (λ
3) ..., T (λ
N), same, we just can obtain the transmitance information T (λ of the wavelength coverage that will measure by changing optical filter
Start), ..., T (λ
End).School zero finishes.
School zero finish the back we on sample stage 6, put into sample, use the same method and measure, also can obtain one group of transmitance information (T ' (λ
Start), ..., T ' (λ
End)).At last two arrays of twice measurement being obtained are divided by one by one, just can obtain the optical transmission spectra of sample, i.e. the transmitance t (λ of sample
i)=T ' (λ
i)/T (λ
i), λ wherein
iScope be λ
StartTo λ
End
It is the same with the measurement transmitance to measure the method that absorbs, and only uses formula
(A is the absorption of sample, and t is the transmitance of sample) once converts, and just can obtain the absorptivity of sample.
Measure reflex time, also use the same method, only will change a sample stage, as shown in Figure 5, when the school was zero, putting a known reflectivity array earlier on sample stage 6 was R (λ
i) catoptron (6-3), obtain a measuring beam and reference beam behind the school zero at the spectral line that all will survey the energy ratio of wavelength coverage, behind the school zero, locate to put sample to be measured at original catoptron (6-3), with measuring the reflectivity array Rs (λ that the identical method of transmissivity just can obtain testing sample
i), the reflectance spectrum r (λ of final sample
i)=Rs (λ
i) * R (λ
i), λ wherein
iScope be λ
StartTo λ
End
Claims (5)
1. the spectrophotometer of a quick measure spectrum, comprise a light source, on the main optical path of this light source output, the spectrophotometric system of forming by second semi-transparent semi-reflecting lens (5), sample stage (6), first catoptron (7), second catoptron (8) and the 3rd semi-transparent semi-reflecting lens (9) successively, colour wheel (10), the 3rd catoptron (11), concave mirror (12), diffraction grating (13), slit (3) and receiving system, output termination one data processing and the controller of this receiving system is characterized in that:
Described light source constitutes by a wide spectrum halogen tungsten lamp (1-1), a deuterium lamp (1-2) with at suitching type first semi-transparent semi-reflecting lens (2) of light source output light path, the turning axle and the main optical path of this suitching type first semi-transparent semi-reflecting lens (2) are at 45, the optical axis of described wide spectrum halogen tungsten lamp (1-1) is positioned on the main optical path, the rotating shaft parallel of the optical axis of described deuterium lamp (1-2) and this suitching type first semi-transparent semi-reflecting lens (2);
Described slit (3) is positioned between described light source and second semi-transparent semi-reflecting lens (5), also has a collimation compound lens (4) between described slit (3) and second semi-transparent semi-reflecting lens (5);
Also have one to assemble lens (14) between described concave mirror (12) and the described receiving system;
Described receiving system is an array CCD (15);
Described data processing and controller are computing machines (16), can control each parts collaborative work of this beam split photometer line data of going forward side by side automatically and handle.
2. the spectrophotometer of quick measure spectrum according to claim 1, it is characterized in that described wide spectrum halogen tungsten lamp (1-1) makes visible and near infrared light source, its wavelength coverage is 350nm-3200nm, and deuterium lamp (1-2) is made ultraviolet source, and its wavelength coverage is 170-350nm.
3. the spectrophotometer of quick measure spectrum according to claim 1, it is characterized in that described suitching type first semi-transparent semi-reflecting lens (2) is the catoptron of a circle, wherein a semicircle is the catoptron that has plated layer of aluminum, and another semicircle is the blank parts of emptying, and light beam can directly pass through.
4, the spectrophotometer of quick measure spectrum according to claim 1, it is characterized in that described colour wheel (10) is the combination of 10 optical filters, each optical filter is used for the light of incident light particular range of wavelengths is done preliminary filtration, make the light transmission of a certain wave band, the light of its all band then is reflected and filters away.
5. the spectrophotometer of quick measure spectrum according to claim 4, it is characterized in that described diffraction grating (13) can only rotate some specific angles, each angle is corresponding with each optical filter of colour wheel (10), and making each optical filter centre wavelength light beam is 0 ° in the field angle of convergent lens (14).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200520045814 CN2837834Y (en) | 2005-10-21 | 2005-10-21 | Spectrophotometer for quickly measuring spectrum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200520045814 CN2837834Y (en) | 2005-10-21 | 2005-10-21 | Spectrophotometer for quickly measuring spectrum |
Publications (1)
Publication Number | Publication Date |
---|---|
CN2837834Y true CN2837834Y (en) | 2006-11-15 |
Family
ID=37392321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200520045814 Expired - Lifetime CN2837834Y (en) | 2005-10-21 | 2005-10-21 | Spectrophotometer for quickly measuring spectrum |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN2837834Y (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100451611C (en) * | 2005-10-21 | 2009-01-14 | 中国科学院上海光学精密机械研究所 | Spectrophotometer for quickly measuring spectrum |
CN114354538A (en) * | 2022-03-22 | 2022-04-15 | 朗思传感科技(深圳)有限公司 | Laser gas sensing device and gas detection method |
-
2005
- 2005-10-21 CN CN 200520045814 patent/CN2837834Y/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100451611C (en) * | 2005-10-21 | 2009-01-14 | 中国科学院上海光学精密机械研究所 | Spectrophotometer for quickly measuring spectrum |
CN114354538A (en) * | 2022-03-22 | 2022-04-15 | 朗思传感科技(深圳)有限公司 | Laser gas sensing device and gas detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1752739A (en) | Spectrophotometer for quickly measuring spectrum | |
CN100480677C (en) | Optical detection apparatus and multi-channel sample analyzer employing the same | |
CN201569493U (en) | Optical spectrum analyzer | |
CN101443647B (en) | Optical measurement system with simultaneous multiple wavelengths, multiple angles of incidence and angles of azimuth | |
US5952660A (en) | Method of identifying post consumer or post industrial waste carpet utilizing a hand-held infrared spectrometer | |
JP2001033384A (en) | Method and device for evaluating particle using multiple-scanning beam reflection factor | |
JPS6331730B2 (en) | ||
CN102042961B (en) | Fiber reflecting type micro-nano system spectrophotometer and application thereof | |
CN1650151A (en) | Optical spectrometer | |
US7209237B2 (en) | Optical system for analyzing multi-channel samples and multi-channel sample analyzer employing the same | |
CN102879091B (en) | Echelle grating spectrometer, atomic emission spectrometer and spectrum testing method | |
KR100460972B1 (en) | Method and apparatus for identifying discarded carpet using hand-held infrared spectrometer | |
CN2837834Y (en) | Spectrophotometer for quickly measuring spectrum | |
CN207366450U (en) | A kind of full spectrum microplate reader for being designed with eight passage cell holders | |
JP7551736B2 (en) | Apparatus and method for measuring Raman spectra | |
CN114486912A (en) | Optical element defect detection device and method based on line spectral confocal technology | |
CN101464210B (en) | Optical grating detecting instrument | |
CN112945857A (en) | Outer ball type diffuse reflection spectrum measuring device | |
CN218726656U (en) | PCR light path capable of providing full-wavelength light beam and detection device | |
CN1541330A (en) | Spectrometric method and device for carrying out said method (variants) | |
KR100961138B1 (en) | Beam Spectrometer | |
CN2190293Y (en) | Positive incident reflecting optic spectrometer | |
CN110887816B (en) | Active and passive dual-mode spectrometer | |
CN110887817B (en) | Active and passive dual-mode spectrum detection method | |
CN217738983U (en) | Microscopic circular dichroism spectrum detection system based on single photon counting and collecting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Effective date of abandoning: 20090114 |
|
AV01 | Patent right actively abandoned |
Effective date of abandoning: 20090114 |
|
C25 | Abandonment of patent right or utility model to avoid double patenting |