CN2583113Y - Single crystal high temperature alloy electric field unidirectional solidification equipment - Google Patents
Single crystal high temperature alloy electric field unidirectional solidification equipment Download PDFInfo
- Publication number
- CN2583113Y CN2583113Y CN 02251220 CN02251220U CN2583113Y CN 2583113 Y CN2583113 Y CN 2583113Y CN 02251220 CN02251220 CN 02251220 CN 02251220 U CN02251220 U CN 02251220U CN 2583113 Y CN2583113 Y CN 2583113Y
- Authority
- CN
- China
- Prior art keywords
- single crystal
- sample
- directional solidification
- electric field
- equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000007711 solidification Methods 0.000 title claims abstract description 37
- 230000008023 solidification Effects 0.000 title claims abstract description 37
- 239000013078 crystal Substances 0.000 title claims abstract description 33
- 230000005684 electric field Effects 0.000 title claims abstract description 28
- 229910045601 alloy Inorganic materials 0.000 title description 2
- 239000000956 alloy Substances 0.000 title description 2
- 229910000601 superalloy Inorganic materials 0.000 claims abstract description 29
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 230000007246 mechanism Effects 0.000 claims abstract description 12
- 230000006698 induction Effects 0.000 claims description 20
- 229920000742 Cotton Polymers 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 229910002804 graphite Inorganic materials 0.000 claims description 9
- 239000010439 graphite Substances 0.000 claims description 9
- 238000009423 ventilation Methods 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000010791 quenching Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 4
- 230000000171 quenching effect Effects 0.000 abstract description 4
- 230000008569 process Effects 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 230000009286 beneficial effect Effects 0.000 abstract 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 32
- 238000009413 insulation Methods 0.000 description 20
- 229910052786 argon Inorganic materials 0.000 description 16
- 239000007789 gas Substances 0.000 description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000005204 segregation Methods 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000011449 brick Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
Images
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
本实用新型涉及单晶高温合金凝固技术,具体为一种单晶高温合金电场定向凝固设备,具有壳体、加热装置、试样夹持机构和直流电场发生装置,所述夹持机构置于壳体下方,由托架上设有两个夹持杆构成,所述两个夹持杆一端分别与托架上的转轴连接,另一端通过紧固件连接,并且其外侧面分别安装有张紧弹簧,张紧弹簧另一端固定于托架,试样下端穿过壳体底部中间位置开有的孔置于两个夹持杆之间,所述托架开有试样穿过的通孔;所述直流电场发生装置为试样一端与稳压电源的一极之间串联有可编程功能模块,另一端通过夹持杆与稳压电源另一极相连形成的闭合回路。本实用新型在定向凝固过程中避免杂晶产生、细化单晶高温合金凝固组织、利于快速淬火。
The utility model relates to the solidification technology of a single crystal superalloy, specifically a single crystal superalloy electric field directional solidification equipment, which has a shell, a heating device, a sample clamping mechanism and a DC electric field generating device, and the clamping mechanism is placed in the shell Below the body, there are two clamping rods on the bracket. One end of the two clamping rods is respectively connected to the rotating shaft on the bracket, and the other end is connected by a fastener. Spring, the other end of the tension spring is fixed on the bracket, the lower end of the sample passes through the hole opened in the middle of the bottom of the shell and placed between the two clamping rods, and the bracket has a through hole through which the sample passes; The DC electric field generating device is a closed loop formed by a programmable functional module connected in series between one end of the sample and one pole of the regulated power supply, and the other end is connected to the other pole of the regulated power supply through a clamping rod. The utility model avoids the generation of miscellaneous crystals in the directional solidification process, refines the solidification structure of the single crystal superalloy, and is beneficial to rapid quenching.
Description
技术领域technical field
本实用新型涉及单晶高温合金凝固技术,具体为一种单晶高温合金电场定向凝固设备。The utility model relates to the solidification technology of a single crystal superalloy, in particular to an electric field directional solidification device for a single crystal superalloy.
背景技术Background technique
单晶高温合金具有优越的高温蠕变性能和低周热疲劳性能,是航空发动机叶片首选高温合金材料。但是单晶高温合金凝固速度较低,凝固组织粗大;同时由于合金化程度高而极易产生溶质偏析,对合金的组织与性能带来不利的影响,限制了单晶高温合金潜力的发挥,细化单晶高温合金凝固组织和降低凝固偏析是材料研究领域孜孜以求的目标。已有的研究结果表明电场能细化金属凝固组织,改善γ′相形貌,减少偏析和显微疏松,有利于提高单晶高温合金使用性能。单晶高温合金相对于普通定向凝固高温合金的优越性在于消除了晶界而提高高温性能,在定向凝固过程中如何避免杂晶的产生是实验和生产中需要认真考虑和应该解决的问题。在普通氩气保护定向凝固设备中,由于氩气流经试管与隔热挡板之间的缝隙,引超热量的散失,造成定向凝固固液界面径向温度梯度增大,不利于直流电场,引入直流电场后,如何进行试样淬火亦为需要解决的问题。Single crystal superalloys have superior high-temperature creep properties and low-cycle thermal fatigue properties, and are the preferred superalloy materials for aeroengine blades. However, the solidification rate of single crystal superalloys is low, and the solidification structure is coarse; at the same time, due to the high degree of alloying, solute segregation is very easy to occur, which has an adverse effect on the structure and properties of the alloy, which limits the potential of single crystal superalloys. Minimizing the solidification structure of single crystal superalloys and reducing solidification segregation are the goals pursued by the field of materials research. The existing research results show that the electric field can refine the metal solidification structure, improve the γ′ phase morphology, reduce segregation and microporosity, and help improve the performance of single crystal superalloys. Compared with ordinary directionally solidified superalloys, single crystal superalloys have the advantage of eliminating grain boundaries and improving high-temperature performance. How to avoid the generation of miscellaneous crystals during directional solidification is a problem that needs to be carefully considered and solved in experiments and production. In ordinary argon-protected directional solidification equipment, due to the argon flow through the gap between the test tube and the heat insulation baffle, the excess heat is lost, causing the radial temperature gradient of the directional solidification solid-liquid interface to increase, which is not conducive to the DC electric field. After the DC electric field, how to quench the sample is also a problem that needs to be solved.
实用新型内容Utility model content
本实用新型的目的在于提供一种在定向凝固过程中避免杂晶产生、细化金属凝固组织、利于快速淬火的单晶高温合金电场定向凝固设备。The purpose of the utility model is to provide a single crystal superalloy electric field directional solidification equipment which avoids the generation of miscellaneous crystals, refines the metal solidification structure and facilitates rapid quenching during the directional solidification process.
本实用新型的技术方案是具有壳体、加热装置、试样夹持机构和直流电场发生装置,所述夹持机构置于壳体下方,由托架上设有两个夹持杆构成,所述两个夹持杆一端分别与托架上的转轴连接,可以绕转轴转动,另一端通过紧固件连接,并且其外侧面分别安装有张紧弹簧,张紧弹簧另一端固定于托架,试样下端穿过壳体底部中间位置开有的孔置于两个夹持杆之间,所述托架开有试样穿过的通孔;所述直流电场发生装置为试样一端与稳压电源的一极之间串联有可编程功能模块,另一端通过夹持杆与稳压电源另一极相连形成的闭合回路,所述稳压电源电流为0~60A;The technical solution of the utility model is to have a housing, a heating device, a sample clamping mechanism and a DC electric field generating device. The clamping mechanism is placed under the housing and consists of two clamping rods on the bracket. One end of the two clamping rods is respectively connected to the rotating shaft on the bracket, which can rotate around the rotating shaft, and the other end is connected by a fastener, and tension springs are respectively installed on the outer surfaces thereof, and the other ends of the tension spring are fixed on the bracket. The lower end of the sample passes through the hole in the middle of the bottom of the shell and is placed between two clamping rods. The bracket has a through hole for the sample to pass through; A programmable function module is connected in series between one pole of the piezoelectric power supply, and the other end is connected to the other pole of the voltage-stabilizing power supply through a clamping rod to form a closed loop, and the current of the voltage-stabilizing power supply is 0-60A;
所述两个夹持杆的相对侧面开有相对应的槽,与夹持的试样相配合;所述两个夹持杆外侧分别设有冷却水管;所述紧固件为紧固螺钉;There are corresponding grooves on the opposite sides of the two clamping rods to match the clamped sample; cooling water pipes are respectively provided on the outer sides of the two clamping rods; the fasteners are fastening screws;
所述加热装置由感应加热器与感应体构成,感应体底部设有隔热挡板,感应体的顶部以及外侧周围至壳体内侧壁之间设有保温棉,感应体与壳体内侧壁之间的保温棉扎有通气孔;所述隔热挡板为圆柱体,中间开有圆柱孔,底部开出辐射状通气沟槽;所述保温棉为Al2O3保温棉;所述壳体为石英玻璃罩;所述感应体为石墨感应体。The heating device is composed of an induction heater and an induction body. The bottom of the induction body is provided with a heat insulation baffle, and insulation cotton is provided between the top and the outer periphery of the induction body and the inner wall of the housing. The distance between the induction body and the inner wall of the housing is The thermal insulation cotton in between has air holes; the heat insulation baffle is a cylinder with a cylindrical hole in the middle, and radial ventilation grooves at the bottom; the thermal insulation cotton is Al 2 O 3 thermal insulation cotton; the shell It is a quartz glass cover; the induction body is a graphite induction body.
本实用新型具有如下特点:The utility model has the following characteristics:
1.本实用新型引入直流电场,从而在定向凝固中可以施加电场,通过可编程程序模块实现多种电场施加模式,能细化金属凝固组织,改善γ′相形貌,减少偏析和显微疏松,有利于提高单晶高温合金使用性能。1. The utility model introduces a DC electric field, so that an electric field can be applied during directional solidification, and various electric field application modes can be realized through a programmable program module, which can refine the metal solidification structure, improve the γ′ phase morphology, and reduce segregation and microporosity , which is conducive to improving the performance of single crystal superalloys.
2.本实用新型采用的氩气流动路线实现流经定向凝固固液界面氩气流很小,确保定向凝固固液界面径向温度梯度减小,降低杂晶产生的可能性,已凝固部分保持单晶状态。2. The argon flow route adopted in the utility model realizes that the argon flow passing through the directional solidified solid-liquid interface is very small, ensuring that the radial temperature gradient of the directional solidified solid-liquid interface is reduced, reducing the possibility of miscellaneous crystals, and the solidified part remains monolithic. crystal state.
3.本实用新型采用可快速打开的水冷夹持机构,将试样底部热量迅速带走,可以同时作为引入直流电场的一极,夹持机构可快速打开,试样凝固固液界面淬火时能够快速淬火。3. The utility model adopts a water-cooled clamping mechanism that can be opened quickly to quickly take away the heat at the bottom of the sample, and can be used as a pole for introducing a DC electric field at the same time. The clamping mechanism can be opened quickly, and the solid-liquid interface of the sample can be quenched during solidification. Fast quenching.
4.本实用新型电场定向凝固实验设备加热温度可达1700℃,单晶高温合金凝固时温度梯度为200℃/cm。4. The heating temperature of the experimental equipment for electric field directional solidification of the utility model can reach 1700°C, and the temperature gradient when the single crystal superalloy is solidified is 200°C/cm.
5.本实用新型感应加热磁场对液态金属的电磁感应作用被屏蔽,避免感应加热磁场对液态金属的搅拌作用。5. In the utility model, the electromagnetic induction effect of the induction heating magnetic field on the liquid metal is shielded, so as to avoid the stirring effect of the induction heating magnetic field on the liquid metal.
6.本实用新型氩气的良好保护作用,高温合金试样氧化轻微,石墨感应体烧损非常少。6. Due to the good protective effect of argon gas in the utility model, the superalloy sample is slightly oxidized, and the graphite induction body is very little burned.
附图说明Description of drawings
图1为本实用新型结构示意图。Fig. 1 is the structural representation of the utility model.
图2为本实用新型加热装置电器原理图。Fig. 2 is the electrical schematic diagram of the utility model heating device.
图3为本实用新型氩气保护气帘的形成示意图。Fig. 3 is a schematic diagram of the formation of the argon protective gas curtain of the present invention.
图4为本实用新型夹持机构结构示意图。Fig. 4 is a structural schematic diagram of the clamping mechanism of the present invention.
图5为本实用新型直流电场发生装置原理简图。Fig. 5 is a schematic diagram of the principle of the DC electric field generating device of the present invention.
具体实施方式Detailed ways
如图1所示,单晶高温合金电场定向凝固设备结构包括三部分:加热装置4、夹持机构7及直流电场发生装置。下面就此进行详细介绍。As shown in Figure 1, the structure of the electric field directional solidification equipment for a single crystal superalloy includes three parts: a heating device 4, a
加热装置4采用IGBT超音频电源产生单相交流电,经变压器降压后送至感应加热器41,感应加热器41加热石墨感应体42,石墨感应体42以辐射方式加热试样3,整个装置电器原理如图2所示。The heating device 4 uses an IGBT super-audio power supply to generate single-phase alternating current, which is sent to the
石墨感应体42周围采用高纯度Al2O3保温棉11保温,Al2O3保温棉11耐火度高于1700℃,具有良好的保温效果,加热炉在1550℃下工作两小时后,石英玻璃罩(壳体)2温度仍低于400℃,选择泡沫耐火砖制作隔热挡板,隔热挡板5做成圆柱状,中间开有圆柱孔,底部开出辐射状通气沟槽;石墨感应体42上方Al2O3保温棉11与Al2O3坩埚10间隙被捣实,尽量减少氩气的通过,感应体42与石英玻璃罩2内侧壁之间的Al2O3保温棉11扎有通气孔,使来自氩气入口1的氩气主要从石英玻璃罩内壁和泡沫耐火砖制的隔热挡板5底部辐射状通气沟槽流过;石英玻璃罩2底部中间位置开有比Al2O3坩埚外径稍大的孔,以便Al2O3坩埚从石英玻璃罩2底部穿出,氩气从二者的孔隙氩气出口6处流出,实现氩气的密封保护。The
图3为设备中氩气保护气帘的形成示意图,凝固界面处氩气流很小,使得凝固界面保持水平,减少凝固中杂晶的产生的可能性。Figure 3 is a schematic diagram of the formation of the argon protective gas curtain in the equipment. The argon flow at the solidification interface is very small, which keeps the solidification interface level and reduces the possibility of miscellaneous crystals during solidification.
石英玻璃罩2分成三节,上节玻璃罩开有电线引入孔,孔径略大于电线直径,定向凝固期间,电线可自由下降,在更换试样3时仅需打开本节玻璃罩,上节玻璃罩开有氩气入口1,中间玻璃罩可仅在更换石墨感应体42和隔热挡板5时打开;石墨感应体42、隔热挡板5和保温棉全部置于石英玻璃罩2下节内,试样3在石英玻璃罩下节底部孔中穿过。The
根据长期统计结果,电流为0~60A/cm2,在单晶高温合金电场定向凝固设备上,DD3单晶高温合金定向凝固后,90%以上的试样仍保持单晶状态,而在常规设备上,30%以上的试样出现杂晶。According to the long-term statistical results, the current is 0-60A/cm 2 . On the electric field directional solidification equipment of single crystal superalloy, after directional solidification of DD3 single crystal superalloy, more than 90% of the samples still maintain the single crystal state, while in conventional equipment On the surface, more than 30% of the samples appeared miscellaneous crystals.
石英玻璃罩内的空气被充分驱逐出来,单晶高温合金完全处于氩气气氛中,烧损非常少,空气对高温合金熔体的氧化显著减轻,定向凝固石墨感应体,烧损非常少。The air in the quartz glass cover is fully expelled, the single crystal superalloy is completely in the argon atmosphere, the burning loss is very small, the oxidation of the superalloy melt by the air is significantly reduced, and the directionally solidified graphite induction body has very little burning loss.
氩气主要从石英玻璃罩2内壁和隔热挡板5下方流过时,减少氩气带走的热量,IGBT超音频电源所需的功率有所降低,具有一定的节能效果。When the argon gas mainly flows through the inner wall of the
如图4所示夹持机构结构示意图,所述夹持机构7置于壳体2下方,由托架74上设有两个夹持杆75构成,试样3底部穿过壳体2底部中间位置开有的孔置于两个夹持杆75之间,试样3下端被夹持杆75固定在略大于其半径的圆弧槽处,夹持杆75可围绕转轴76在托架74平面上转动,在紧固件(紧固螺钉)72夹持力的作用下,将试棒2牢牢夹住;两个夹持杆75一端分别与托架74上的转轴76连接,另一端通过紧固件(紧固螺钉)72连接,并且其外侧面分别安装有张紧弹簧73,张紧弹簧73另一端固定于托架74,所述夹持杆采用具有优良导热性能的铜合金制成,外侧焊有冷却水管71(铜管),在冷却水的作用下,将试样3底部热量迅速带走,因而定向凝固试样固液界面前沿具较高的温度梯度,在加热温度为1550℃时,DD3高温合金定向凝固固液界面前沿温度梯度达到200℃/cm,夹持螺钉72打开时,夹持杆75在张紧弹簧73力的作用下迅速打开,试样3穿过托架74上的通孔掉入淬火机构内。As shown in Figure 4, the clamping mechanism structure schematic diagram, the
图5为直流电场发生装置原理简图,定向凝固过程中试样3中间部分为液态,两端保持固态,试样3顶端用钼丝连接,通过可编程功能模块8与稳压电源9的正极相连,试样3下端通过夹持杆75与稳压电源9的负极相连,形成闭合回路,稳压电源电流在0~60A范围内连续可调,可编程功能模块8为现有技术,如采用:台湾Array电器有限公司生产的AF-10M2-A型可编程功能模块,可实现多种定时开关功能。Figure 5 is a schematic diagram of the DC electric field generating device. During the directional solidification process, the middle part of the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 02251220 CN2583113Y (en) | 2002-12-13 | 2002-12-13 | Single crystal high temperature alloy electric field unidirectional solidification equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 02251220 CN2583113Y (en) | 2002-12-13 | 2002-12-13 | Single crystal high temperature alloy electric field unidirectional solidification equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
CN2583113Y true CN2583113Y (en) | 2003-10-29 |
Family
ID=33721159
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 02251220 Expired - Fee Related CN2583113Y (en) | 2002-12-13 | 2002-12-13 | Single crystal high temperature alloy electric field unidirectional solidification equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN2583113Y (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102069176B (en) * | 2009-11-25 | 2012-10-03 | 中国科学院金属研究所 | Liquid metal cooling directional solidification process |
CN105603209A (en) * | 2016-03-15 | 2016-05-25 | 东北大学 | Blowing-type induction melting furnace |
CN108680440A (en) * | 2018-03-19 | 2018-10-19 | 北京航空航天大学 | High-temperature material Mechanics Performance Testing heating using cold aid mode and measuring system |
CN110252958A (en) * | 2019-06-21 | 2019-09-20 | 西安交通大学 | A blade casting mold preparation method based on the hollow/porous structure of the flange to suppress the defects of the flange plate |
CN110579419A (en) * | 2019-08-28 | 2019-12-17 | 安徽江淮汽车集团股份有限公司 | Low cycle fatigue reliability test method and device |
CN112399744A (en) * | 2020-11-10 | 2021-02-23 | 北京动力机械研究所 | Composite high-temperature-resistant heat-resistant support structure |
-
2002
- 2002-12-13 CN CN 02251220 patent/CN2583113Y/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102069176B (en) * | 2009-11-25 | 2012-10-03 | 中国科学院金属研究所 | Liquid metal cooling directional solidification process |
CN105603209A (en) * | 2016-03-15 | 2016-05-25 | 东北大学 | Blowing-type induction melting furnace |
CN108680440A (en) * | 2018-03-19 | 2018-10-19 | 北京航空航天大学 | High-temperature material Mechanics Performance Testing heating using cold aid mode and measuring system |
CN110252958A (en) * | 2019-06-21 | 2019-09-20 | 西安交通大学 | A blade casting mold preparation method based on the hollow/porous structure of the flange to suppress the defects of the flange plate |
CN110579419A (en) * | 2019-08-28 | 2019-12-17 | 安徽江淮汽车集团股份有限公司 | Low cycle fatigue reliability test method and device |
CN110579419B (en) * | 2019-08-28 | 2021-07-13 | 安徽江淮汽车集团股份有限公司 | Low cycle fatigue reliability test method and device |
CN112399744A (en) * | 2020-11-10 | 2021-02-23 | 北京动力机械研究所 | Composite high-temperature-resistant heat-resistant support structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103111609B (en) | A kind of amorphous alloy inoculation Birmasil method | |
CN1821430A (en) | A high temperature treatment device under a strong magnetic field | |
CN204975280U (en) | High frequency magnetic field refines device that metal solidifies tissue with pulse current in coordination | |
CN103056344B (en) | Method for controlling electroslag melting casting by added transient magnetic field and electroslag smelting casting device | |
CN101532092B (en) | Magnesium melt purifying device | |
CN104278173B (en) | High-strength high-plasticity TiAl alloy material and preparation method thereof | |
CN204417564U (en) | A kind of rotary crystallizer of esr | |
CN2583113Y (en) | Single crystal high temperature alloy electric field unidirectional solidification equipment | |
CN102921929B (en) | Non-pollution directional solidification method of high-niobium titanium aluminum intermetallic compound | |
CN101148713A (en) | Preparation method and device of high-strength and high-conductivity copper-chromium-zirconium alloy material | |
CN101173838A (en) | Novel directional solidification and purification stove | |
CN101885053A (en) | A method and device for directional solidification grain ultra-refinement by strong pulse current | |
CN104625022B (en) | A kind of method of field trash in transverse magnetic field directional solidification purification metal | |
CN1226470C (en) | A single crystal superalloy electric field directional solidification equipment | |
CN104071790B (en) | Electromagnetic agitation silicon alloy melt silicon purifying plant and method | |
CN110304634A (en) | A method for highly efficient and energy-saving purification of industrial silicon | |
CN103540775B (en) | For nickel-32% molybdenum master alloy preparation method of melting TA10 ingot casting | |
CN102689000A (en) | Electromagnetic forming device and method for manufacturing titanium aluminum-based alloy directional fully-lamellar microstructure | |
CN2706729Y (en) | Well type resistance furnace body for Mg alloy heat treatment experiment | |
CN204122734U (en) | A kind of device of pulse current thinning metal solidification texture | |
CN104389017A (en) | Internal inlet gas gas-cooling device of coagulation enhancing block of polycrystalline silicon ingot furnace and polycrystalline silicon ingot furnace | |
CN114590783B (en) | Zone-melting device and method for preparing high-purity tellurium through targeted vortex enhanced zone melting | |
CN212205609U (en) | A Small Vacuum Electric Arc Furnace for the Preparation of Refractory High-Entropy Alloys | |
CN114780899A (en) | Non-eutectic composition of eutectic high-entropy alloys to obtain fully eutectic structure and performance control method | |
CN109252059B (en) | Magnesium alloy melt processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |