CN219084965U - 自动化诊断分析仪中的库存处理设备 - Google Patents

自动化诊断分析仪中的库存处理设备 Download PDF

Info

Publication number
CN219084965U
CN219084965U CN202222356153.2U CN202222356153U CN219084965U CN 219084965 U CN219084965 U CN 219084965U CN 202222356153 U CN202222356153 U CN 202222356153U CN 219084965 U CN219084965 U CN 219084965U
Authority
CN
China
Prior art keywords
analyzer
plate
processing
pipette
consumable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202222356153.2U
Other languages
English (en)
Inventor
S·R·拉茜斯
G·J·洛茨
P·T·米勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Becton Dickinson and Co
Original Assignee
Becton Dickinson and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Becton Dickinson and Co filed Critical Becton Dickinson and Co
Application granted granted Critical
Publication of CN219084965U publication Critical patent/CN219084965U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00306Housings, cabinets, control panels (details)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00326Analysers with modular structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/103General features of the devices using disposable tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers

Abstract

本实用新型涉及自动化诊断分析仪中的库存处理设备。一种用于分析由预分析系统制备的生物样本的分析仪以及一种操作接收由预分析系统制备的样本的分析仪的方法。分析仪是自动化的并且具有带有由多个多通道移液器服务的多个模块的处理平台。由于多通道移液器使用并从多通道移液器分配的大量移液管尖端,处理平台具有含多个溜槽的移液管分配组件,使得多通道移液器无需等待将移液管尖端丢弃到溜槽中。多个溜槽允许移液管尖端通过其落到处理平台下方的废物接收器中。处理平台还包括多个抽屉,这些抽屉包含用于多通道移液器使用的消耗性移液管尖端的料箱。一些抽屉有多个料箱,而一些只有一个料箱,因为溜槽的位置不允许所有抽屉都具有相同的深度。

Description

自动化诊断分析仪中的库存处理设备
相关申请的交叉引用
本申请要求在2021年9月7日提交的美国临时专利申请号63/241,351的优先权和权益,其内容以引用方式并入。本申请与作为在2017年2月17日提交的PCT/US2017/018346的美国国家阶段申请的在2018年9月26日提交的美国专利申请号16/088,531(并作为美国公布号2019/0107547进行公布)相关,2017年2月17日提交的PCT/US2017/018346要求2016年4月22日提交的美国临时申请号62/326,259的申请日的权益,该临时申请的公开内容通过引用并入本文。
技术领域
本文描述了用于样品处理和分析的装置、系统和方法。特别地,描述了包括在高通量系统中的分析仪。这些部件(即分析仪和预分析系统)是模块化的,并且能够集成到几种不同的构造中,以符合特定实验室的诊断需求。
背景技术
生物样本的诊断测试有助于医疗保健行业快速有效地诊断和治疗疾病。执行此类诊断测试的临床实验室每天已经收到数百或数千个样本,并且需求不断增加。样本分析的自动化有助于管理如此大量的样本。自动化样本分析通常由自动化分析仪执行,这些自动化分析仪通常是自备式系统,对生物样本执行多步骤处理以获得诊断结果。
目前几种自动化临床分析仪向用户提供可以在所提供的样品上执行的一系列自动化测试或试验。此外,当样本到达实验室时,它们通常还没有准备好进行分析。为了制备用于用自动化分析仪测试的样本,实验室技术人员通常将样本的等分试样从实验室接收的主容器转移到可用于分析仪检验的辅助容器中。此外,技术人员通常必须知道要对样本进行哪些测试,以便技术人员可以选择与样本配对的特定测试试剂或稀释剂。这可能很耗时,并且可能导致操作者失误和感染传染病。
预分析系统旨在帮助准备样本进行分析,并进一步将操作者从实验室接收样本和分析仪测试结果之间的工作流程中解放出来。然而,这些系统中的许多系统仍需要大量技术人员参与,诸如:在将样本装入预分析系统之前;样本由预分析系统制备后;在分析仪完成分析之后。
例如,一些预分析系统可以将样本的等分试样从第一容器自动转移到第二容器。然而,这样的系统通常需要技术人员在将第一和第二容器装载到系统之前手动匹配它们的识别码,这可能很耗时并且容易出错。
此外,这些系统中的许多系统不能与一个或多个分析仪集成,相反,分析仪也不能与这些系统集成。在这方面,技术人员必须在场以手动将样本从预分析系统转移到分析仪,并在分析完成后从分析仪转移到存储位置。这需要熟练的劳动力来执行琐碎的任务,并且可能会造成分心,因为技术人员必须时刻注意样本在预分析系统和分析仪中的进展,以便技术人员在样本准备好时准备转移样本,以最大限度地减少停机时间。
此外,当前的预分析系统通常以不同于分析仪评估此类样本的速率制备样本,这进一步使预分析系统和分析仪之间的集成复杂化。在这方面,可能需要技术人员持续跟踪由预分析系统制备的样本,直到积累了整批样本以手动转移到分析仪。可替代地,技术人员可以将部分批次转移到分析仪,这会降低分析仪的生产率。
因此,虽然当前的自动化预分析系统和分析仪有利于临床实验室,但是对于不同系统的集成和自动化仍然有进一步改进的空间。
实用新型内容
本公开描述了用于样本处理和分析的装置、系统和方法。特别地,描述了包括在高通量系统中的分析仪。在一个实施例中,高通量系统还可以包括第二分析仪和与第一和第二分析仪两者集成的预分析系统。这些部件(即分析仪和预分析系统)是模块化的,并且能够集成到几种不同的构造中,以符合特定实验室的诊断需求。
本文所述的特定分析仪通常具有竖直布置的多个平台或水平仪。一个平台可以存储用于各种测定的消耗品,并且可以容纳消耗性废物,包括废液。在一个实施例中,足够的消耗品可以存储在分析仪中,以允许它在不重新装载系统的情况下长时间运行(例如,连续24小时或更长时间)。此类系统只需在24小时内补货一次并从中清除废物,这使得补货和维护很容易安排。该平台还可以包括用于检测分析物(诸如DNA靶标)的检测器。
另一个平台可以包括并排布置的多个处理模块。这些处理模块中的每一个可以在它们的结构和功能方面类似地构造。在一个实施例中,每个处理模块能够执行广泛的测定,使得每个处理模块可以运行不同的测定,同时在其他处理模块上运行测定。在这方面,可以根据特定时间点的处理需求自动指定和重新指定每个处理模块以执行任意数量的测定。例如,每个处理模块可能够执行第一、第二或第三测定中的任何一个,但是可以指定第一处理模块来执行第一测定,指定第二处理模块来执行第二测定,指定第三处理模来块执行第三测定,其中每次测定都是不同的。然而,当这些测定完成时,可以自动重新指定任何一个处理模块以执行不同的测定,从而使例如第一、第二和第三处理模块中的每一个同时运行同一个测定。同样地,分析仪可以灵活地适应实时需求,前提是在其壳体内存有足够的用于特定测定的消耗品。
每个处理模块可以具有多通道移液器,该多通道移液器具有与其相关联的多个移液管通道。此外,分析仪可以有一个库存/仓储(inventory)机器人,它定期执行库存检查以确定是否有足够的消耗品可用,在发明者到处理平台之间来回移动消耗品,以及在预分析系统和分析仪之间来回移动样本容器。更具体地,库存机器人包括电子或光电库存扫描仪和末端执行器,该末端执行器被构造为处理各种消耗品,包括样本容器梭、扩增料盒、液体试剂板、干燥试剂板和样本处理板。
多通道移液器各自具有多个液体处理组件并且每个液体处理组件包括移液管组件。本文还描述了一种用于经由处理平台从分析仪丢弃用过的移液管尖端(消耗性废物)的系统。
本公开涉及一种自动化分析仪,其中包括壳体和处理平台等。在某些实施例中,处理平台包括至少一个模块,并且至少一个模块中的每一个包括(1)用于接收干燥试剂消耗品的第一位置,(2)用于接收湿试剂消耗品的第二位置,和(3)用于接收被构造为与磁性提取器一起工作的处理板消耗品的第三位置。在一些实施例中,磁性提取器位于处理平台下方并与处理板消耗品对齐以从处理板消耗品中提取靶标物质。在某些实施例中,处理平台进一步包括多个溜槽,每个溜槽位于至少一个模块中的一个中,其中,溜槽将丢弃的移液管尖端传送到处理平台下方以被废物接收器接收。在另一些实施例中,处理平台进一步包括多个抽屉,这些抽屉容纳移液管尖端以供在分析仪中使用,并且其中,与尖端溜槽相邻的抽屉比不与尖端溜槽相邻的抽屉短,以为处理平台上的倾倒溜槽提供空间。在一些实施例中,本文提供的自动化分析仪进一步包括自动移液器,该自动移液器使用从多个抽屉中的一个获取的移液管从样本容器中吸取样本,并将使用过的移液管尖端丢弃到多个溜槽中的一个中。
在一些实施例中,本文提供的自动化分析仪的磁性提取器除其他方面外进一步包括限定空腔的壳体;可移动地设置在壳体的空腔内的相邻排的永磁体;驱动机构,该驱动机构连接到数排永磁体并且被构造为将该数排永磁体移入和移出空腔;设置在空腔的相对侧处的从壳体成排延伸的多个加热元件;以及滴板,该滴板限定了凹槽,每个凹槽与相应排的加热元件相邻。在某些实施例中,将永磁体从第一位置移动到第二位置将数排永磁体直接设置在数排加热元件之间,使得每个永磁体与相应的加热元件对齐。
在一些实施例中,本文提供的自动化分析仪的磁性提取器适于在其上接收处理板。在另一些实施例中,加热元件各自限定凹部,该凹部被构造为接收和保持设置在磁性提取器上方的处理板的提取管。在又一些实施例中,加热元件连接到对加热元件进行加热的电源,使得当处理板放置在加热元件上方时,由处理板保持的移液管尖端延伸到滴板的凹槽中。在某些实施例中,处理板由机械臂放置在磁性提取器上。
在一些实施例中,本文提供的自动化分析仪进一步包括用于接收消耗品以供在自动化分析仪中使用的消耗品储存库。在某些实施例中,消耗品可以是处理板、干燥试剂板、液体试剂板和扩增料盒中的任何一种或多种。
在一些实施例中,至少一个模块进一步包括与磁性提取器相邻的干燥和液体试剂站。在另一些实施例中,磁性提取器适于在其上接收处理板。在某些实施例中,相对于放置在相应的干燥和液体试剂站处的干燥和液体试剂板,处理板在至少一个模块中定位较低。
附图说明
本公开的特征、方面和优点将通过以下描述、所附权利要求和附图得到更好的理解,其中:
图1是根据本公开的一个实施例的用于高通量诊断系统的机柜的前透视图。
图2是根据本公开的一个实施例的图1的系统的第一分析仪的前部部分透明视图,并且去掉了其外部壳体和其中的某些部件。
图3是图2分析仪的前透视图。
图4A是根据本公开的一个实施例的第一移液管尖端的透视图。
图4B是根据本公开的一个实施例的第二移液管尖端的透视图。
图5是根据本公开的一个实施例的样本容器梭的透视图。
图6是根据本公开的一个实施例的处理板的透视图。
图7是根据本公开的一个实施例的干燥试剂板的透视图。
图8是根据本公开的一个实施例的液体试剂板的透视图。
图9是根据本公开的一个实施例的扩增料盒的俯视图。
图10A是根据本公开的一个实施例的消耗品储存库的后透视图。
图10B是根据本公开的一个实施例的废物储存库的后透视图。
图10C是根据本公开的一个实施例的移液管尖端抽屉的前透视图。
图11A是根据本公开的一个实施例的处理平台的俯视图。
图11B是根据本公开的一个实施例的图11A的处理平台的第一处理模块的俯视图。
图11C是与图11A的处理平台的样本容器保持组件接合的样本容器的示意图。
图12A是根据本公开的一个实施例的图11B的处理模块的提取器的前透视图。
图12B是图12A的提取器的俯视图。
图12C是提取器和处理板的替代实施例的透视图。
图12D是图12C的提取器和处理板的侧视图。
图12E是图1系统的包括图12C的提取器和处理板的处理平台的局部透视图。
图13A是根据本公开的一个实施例的库存机器人的前透视图。
图13B是根据本公开的一个实施例的图13A的机器人的末端执行器。
图13C是图13B的末端执行器的扩增料盒接合构件。
图13D是图13C的接合构件接合扩增料盒的侧视图。
图14A是根据本公开的一个实施例的液体处理组件的前视图。
图14B是图14A的液体处理组件的多通道移液器的前透视图。
图15是涉及图2的分析仪的计算系统的示例性架构的框图,包括适用于实现本公开的方法的示例部件。
图16是根据本公开的一个实施例的使用图2的分析仪的方法的流程图。
图17A是根据本公开的另一个实施例的分析仪的前视图。
图17B是图17A的分析仪的前透视图。
图17C是图17A的分析仪的侧视图。
图18A是图17A的分析仪的前透视图,包括外壳但没有前门。
图18B是图18A的分析仪的局部前透视图,包括单个前门。
图18C是可移动消耗品库存的透视图。
图19是处理平台的一个替代构造。
图20是图19的处理平台的正面侧视图。
图21是设置在图19的处理平台下面的本公开的废物溜槽的透视图。
图22是图1中所示的机柜(例如图1中的机柜2000)的一个替代实施例,该机柜带有从机柜以不同的行程长度延伸并且具有不同数量的料箱的尖端抽屉。
图23A-23B分别图示了两料箱尖端抽屉和一料箱尖端抽屉。
具体实施方式
如本文所用,术语“大约”、“大致”和“基本上”旨在表示与绝对值的轻微偏差包括在如此修饰的术语的范围内,这种偏差不会改变修改后的术语的含义。此外,在以下讨论中,当提及特定方向,诸如左、右、前、后、上和下时,应当理解,这些方向是相对于用户在示例性操作过程中面对以下描述的系统的视角来描述的。
如本文所用,除非上下文另外清楚地指出,否则单数形式“一”、“一个”和“该”也包括单数和复数形式。
图1描绘了高通量系统00,该系统包括第一分析仪2000、第二分析仪4000和预分析系统10,诸如在作为2017年2月17日提交的PCT/US2017/018358的国家阶段申请的美国专利申请号16/077,875中描述的预分析系统,其中PCT/US2017/018358要求临时申请62/296,349(“'875申请”)的优先权,上述专利申请的公开内容通过引用整体并入本文。分析仪2000、4000和预分析系统10是模块化的,使得它们可以彼此物理连接和断开,并且也可以彼此电连接和断开。尽管第一分析仪2000与第二分析仪4000在它们执行的操作和测定方面不同,但应当理解,第二分析仪4000可以是第一分析仪2000的复制品,以便预分析系统10耦合到至少两个相同的分析仪。还应当理解,预分析系统10的模块化允许它耦合到任何如此构造的分析仪。如图所示,第一和第二分析仪2000、4000以线性布置设置在预分析系统10的相对侧处。例如,尽管预分析系统10和分析仪2000、4000被构造用于这种物理布置,但是可以设想预分析系统10可以被构造为容纳两个以上的分析仪并且预分析系统10和分析仪2000、4000可以被构造为使得它们可以放置在诸如L形的其他物理布置中。
与预分析系统相关的分析仪
如图2所示,第一分析仪可以耦合到预分析系统10的任一侧。在这方面,预分析系统10的样本容器梭运送组件300a向分析仪2000的左侧延伸,其中分析仪2000位于系统10的右侧,或者预分析系统10的样本容器梭运送组件300b朝向分析仪2000的右侧延伸,其中分析仪2000位于系统10的左侧。如图所示,此类组件300a-b可在分析仪的阈值附近终止。然而,在一些实施例中,此类组件300a-b可以延伸越过分析仪的阈值并延伸到分析仪2000中。下文进一步描述的库存机器人2300可以从这样的组件300a-b取回样本容器梭2030,而不管样本容器梭2030被递送到分析仪2000的哪一侧。
结构框架
如图2和3中进一步所示,分析仪2000包括结构框架2011,该结构框架2011包括若干支撑部件,诸如金属管段,该金属管段被构造为支撑和限定用于样本处理和分析的各种平台或水平仪。这样的平台可以包括检测/分析平台2012、库存平台2014、处理平台2016和液体机器人处理平台2018。然而,可以实施更多或更少的平台以减少分析仪2000的水平长度或垂直高度。分析仪2000还包括包围其内部部件的壳体或包壳2010,如图1所示。
平台关系
检测/分析平台2012设置在分析仪2000的底部附近并且位于库存平台2014下方。库存平台2014设置在处理平台2016和检测/分析平台2012之间。处理平台2016设置在库存平台2016和液体处理机器人平台2018之间。液体处理机器人平台2018设置在分析仪2000顶部附近。检测/分析、库存和处理平台2012、2014、2016各自位于分析仪2000的前部,并在到达分析仪的后部之前终止,从而提供一个在左右方向上横跨分析仪2000的长度的空间,并且还沿分析仪2000的高度延伸,以便与检测/分析、库存和处理平台2012、2014、2016相交。库存机器人2300设置在该空间内,以允许其访问前述三个平台中的每一个。
消耗品
图4A-8描绘了可以自动处理和用于对包括血液、粘液、痰、尿、粪便、基于液体的细胞学样本等在内的几类样本执行广泛的测定菜单的各种消耗品。此类菜单包括涉及沙眼衣原体、淋病奈瑟菌、阴道毛滴虫、B组链球菌、肠道细菌(例如,弯曲杆菌、沙门氏菌、志贺氏菌、大肠杆菌、痢疾杆菌)和肠道寄生虫(例如,贾第鞭毛虫、隐孢子虫、溶组织内阿米巴)的检测的测定以及涉及血液病毒载量(例如HIV、HCV和HBV)的确定的测定。消耗品设计部分地支持了执行如此广泛的测定菜单的能力。此类消耗品包括移液管尖端、样本容器、样本容器梭、处理板、干燥试剂板、液体试剂板和扩增料盒。
移液管尖端
移液管尖端2020包括第一移液管尖端2020a(图4A)和第二移液管尖端2020b(图4B)。第一移液管尖端2020a大于第二移液管尖端2020b。例如,第一移液管尖端2020a可以是1mL尖端,而第二移液管尖端2020b可以是175uL尖端。然而,分析仪2000能够根据需要容纳任何尺寸的移液管尖端。
样本梭和样本容器
样本容器梭2030(图5)类似于'875申请的梭284并且包括每个被构造为接收样本容器03的接收器2032。所描绘的特定梭2030包括两排的六个接收器2032,总共十二个接收器。然而,可以提供任何数量的接收器2032。例如,梭2030可以包括两排的十二个接收器2032,总共24个接收器。在所描绘的特定分析仪2000中,一批样本可以包括总共24个样本,这相当于总共24个样本容器。然而,分析仪2000可以执行双通道测定或其他多通道测定,其中单个样本在一次运行中被处理和分析两次或更多次。因此,某些批次的24个总样本可能只需要总共12个样本容器即可获得该总样本计数。因此,使每个梭2030容纳半个完整样本批次为分析仪提供了有效容纳双通道测定或其他多通道测定的灵活性。
梭2030还包括用于与库存机器人2300接合的第一横向开口2034和与对应的接收器2032相交的第二横向开口2036,以允许样本容器保持组件(如下所述)接近布置在其中的容器03。样本容器03与‘875申请的第三类容器03相同。在这方面,样本容器03包括带有可穿透密封件09的盖子。
处理板
处理板2040(图6)包括板主体2041。接合构件2049从板主体2041的上表面延伸。这种接合构件2049包括接合槽口2042。因此,槽口2042位于板主体2041上方并且相对于板主体2041的侧面位于内侧。这允许末端执行器,诸如下文进一步描述的末端执行器2360从板主体2041上方夹住处理板2040。然而,在板2040的一些实施例中,槽口2042可以延伸到主体2041的侧表面中,这允许库存机器人2300从主体2041的外围接合处理板2400。
板主体2041至少部分地限定了多个提取管2044、混合孔2046和移液管尖端保持站2047。每个提取管2044具有对应的混合孔2046和与其对齐的移液管尖端保持站2047。提取管2044比混合孔2046更靠近主体2041的中线,并且混合孔2046比移液管尖端保持站2047更靠近主体2041的中线。提取管2044具有由主体2041限定的开口并且具有从主体2041的底面2043延伸的管主体2045。管主体2045限定回转外表面,诸如圆锥回转表面。移液管尖端保持站2047还具有由主体2041和从底面2043延伸的套管2048限定的开口。这样的套管2048即使在移动处理板时也使移液管尖端2020设置在其中时保持稳定。提供了两排提取管2044、混合孔2046和移液管尖端保持器2047并且彼此平行布置。在所描绘的特定实施例中,处理板2040包括两排的六个提取管2044、混合孔2046和移液管尖端保持站2047,这允许在其中处理十二个样本。然而,可以考虑更多或更少的样本。例如,处理板2040可以包括两排的十二个提取管2044、混合孔2046和移液管尖端保持站2047或甚至单排这样的布置。处理板2040在其侧表面或其他表面上包括标识符,诸如条形码,这有助于分析仪2000识别所述板。
干燥试剂板
干燥试剂板2050(图7)包括板主体2051。接合槽口2052延伸到主体2051的侧表面2053中,这允许库存机器人2300从干燥试剂板2050的任何两个相对侧接合干燥试剂板2050。板主体2051限定了多个干燥试剂隔室2054。可穿透的膜(未示出)放置在这些隔室2054中的每个隔室上方并且密封到板主体2051,使得如果膜被穿透以获得进入一个隔室的通路,则其余隔室保持密封。这允许板2050被存储直到需要另一批样本。如图所示,总共有96个试剂隔室2054,它们允许将试剂板2050用于24个样本批次的四次单独运行。但是,这个总数可能会有所不同。干燥试剂板2050还包括在侧表面2053或在干燥试剂板的其他表面上的标识符,诸如条形码,这有助于分析仪2000识别所述板。
在一个实施例中,每个测定利用两个干燥试剂板2050:第一干燥试剂板或提取试剂板2050a和第二干燥试剂板或扩增试剂板2050b(参见图10C)。在这方面,提取试剂板2050a装载有裂解缓冲液和提取珠,而扩增试剂板2050b装载有主混合试剂。
同一板2050内的每个试剂隔室2054装载有同一试剂,使得该试剂板是测定特异性的。因此,在分析仪2000执行不止一种测定的情况下,利用单独的试剂板,每个试剂板都带有对该测定特定的试剂。因此,对于由分析仪2000执行的一项测定,利用至少两个干燥试剂板2050(例如,一个提取试剂板2050a和一个扩增试剂板2050b)。类似地,当分析仪2000进行两种不同的测定时,利用至少四个干燥试剂板2050(例如,两个提取试剂板2050a和两个扩增试剂板2050b)。尽管提取和扩增干燥试剂板2050a-b被描述为是分开的,但是可以设想它们可以组合成单个试剂板。
液体试剂板
液体试剂板2060(图8)包括由上下表面和在其间延伸的侧表面2062限定的板主体2061。接合槽口2064延伸到主体2061的侧表面2062中,这允许库存机器人2300从液体试剂板2060的任何两个相对侧接合液体试剂板2060。液体试剂板2060包括组织成四个处理排2066的多个试剂隔室2066。这些排2066中的每一排包括四个隔室2066a-d,其中每个隔室容纳用于样本处理步骤的试剂。例如,每个处理排2066包括用于重构缓冲液的第一隔室2066a、用于洗涤缓冲液的第二隔室2066b、用于洗脱缓冲液的第三隔室2066c和用于中和缓冲液的第四隔室2066d。这些隔室2066a-d按照它们的使用顺序布置。然而,它们可以采用其他布置。另外,每个隔室2066容纳足够的试剂以处理整批样本,例如一批总共24个样本。可穿透的膜(未示出)放置在这些隔室2066中的每个隔室上方并且密封到板主体2061,使得如果膜被穿透以获得进入一个隔室的通路,则其余隔室保持密封。这允许液体试剂板2060被存储,直到需要另一批样本为止。液体试剂板2060还包括在侧表面2062或在液体试剂板的其他表面上的标识符,诸如条形码,这有助于分析仪2000识别所述板。
扩增料盒
扩增料盒2070(图9)类似于与BD MAXTM系统(新泽西州,富兰克林湖,贝克顿·迪金森公司)相关联并且在美国专利号7,332,130;7,998,708;8,105,783;8,440,149;8,709,787;8,765,076中描述的BD MAXTMPCR料盒,上述专利的公开内容在此以引用方式整体并入本文。扩增料盒2070包括入口端口2073、微流体通道(未示出)、蜡阀2074、扩增室2075和通气孔2076。经处理的样本经由入口端口2073插入料盒2070中,入口端口2073沿微流体通道向下行进到扩增室2075中。当样本沿着通道向下行进时,通气孔2076允许空气逸出。蜡阀2074在熔化时密封腔室2075,使得样本的扩增可以在其中发生。部分限定腔室2075的透明或半透明窗口允许检测器检测其中分析物或靶标的存在。
扩增料盒2070还包括延伸到料盒2070的侧表面中的接合槽口2072。这些槽口2072在其相对侧延伸到料盒2070中并且朝着料盒的中线向内逐渐变细。此外,槽口2072位于与包括入口端口2073和排气口2076的料盒的侧面相邻的侧面处。这防止槽口2072干扰这些结构。槽口2072允许库存机器人2300接合扩增料盒2070,使得料盒2070可以由机器人2300携带。尽管在一些实施例中,扩增料盒2070可能不具有这样的槽口2072并且可以采用其他特征来与机器人夹持器接合。料盒2070的下表面2079在其与槽口2072相交处被斜切或以其他方式成形以匹配机器人的接合柱2365的轮廓,如下文进一步描述并且如图13D所示,其在围绕槽口2072的下表面2079中形成进一步帮助机器人接合的凹部或凹口2077。扩增料盒还包括在其顶部或底部表面2078、2079上的标识符,诸如条形码,这有助于分析仪2000识别所述料盒。
消耗品分级
图10A-10C描绘了库存平台2014和处理平台2016内的消耗品分级的各个方面。库存平台2014包括至少一个消耗品储存库,诸如消耗品储存库(repository)2110(图10A)。库存平台2014还包括至少一个废物储存库,诸如废物储存库2130(图10B)。处理平台2016还包括多个移液管尖端抽屉组件2140(图10C)。消耗品储存库2110、废物储存库2130和移液管尖端抽屉2140各自可由用户从分析仪2000的前部存取,以便用户可以装载和卸载分析仪2000所利用的各种消耗品。
消耗品储存库
如图10A所示,消耗品储存库2110包括支撑结构或横梁2114,其从立柱2118水平延伸,立柱2118从底座2119垂直延伸。支撑结构2114为单独的消耗品限定隔室,使得消耗品可以从立柱2118的第一侧装载到隔室中并且从立柱2118的第二侧卸载。例如,支撑结构2114可以滑动地接收和支撑干燥试剂板2050或液体试剂板2060,如图10A所示。这样的板2050和2060可由用户从立柱2118的前侧滑入它们各自的隔室中,使得诸如条形码的标识符面向系统2000的内部。下文进一步描述的库存机器人2300可以扫描标识符以识别特定板并根据需要从立柱2118的背面移除适当的板2050、2060。在这方面,消耗品,诸如板2050和2060,可以由用户以任何顺序装载,因为系统2000在机器人2300的帮助下,可以进行清点并自动确定消耗品被用户装载的顺序。此外,支撑结构2114在其下端保持板2050、2060,使得其开口2052、2064被暴露,从而允许机器人2300接合选定板以从它们各自的隔室中移除。还如图所示,扩增料盒2070可堆叠在消耗品储存库2110顶端处的相应料盒存储隔室2116内。料盒2070可以由用户从系统2000的正面堆叠在存储隔室2116中并且由机器人2300从那里移除。
在一个实施例中,消耗品储存库2110可以附接至一组轨道,该轨道允许储存库2110像抽屉一样被拉出以用于补货。气动活塞(未示出)可以帮助打开储存库2110并且还可以提供阻尼以防止储存库2110关闭过快和将消耗品推离原位。在另一些实施例中,储存库2110可以铰接,使得门2112可以朝用户摆动打开,从而露出储存库以供补货。
废物储存库
废物储存库2130(图10B)包括门2132,用户可以在分析仪2000的前部存取该门。具有平行于门2132的开口2136的废物隔室2134附接到门2132的背面。储存器2130还包括从废物隔室2134延伸的搁板2138。如图所示,该搁板2138允许库存机器人2300将使用过的处理板2040堆叠在其上。储存器2130还可以在开口2136内包含液体容器,该液体容器可以与位于处理平台2016上的一个或多个废液接收器2260(参见图11B)连通。废物储存库2130可以附接到一组轨道,该组轨道允许储存库2130像抽屉一样被拉出以便清空。气动活塞(未示出)可以帮助打开储存库2130并且还可以提供阻尼以防止储存库2130打开过快和挤压处理板2040。可替代地,储存器2130可以铰接以便朝向用户摆动打开以进行清空。
在一个替代实施例中,提供了一个溜槽,机器人将用过的移液管丢弃到该溜槽中。本文描述的是一种用于经由处理平台从分析仪丢弃用过的移液管尖端(消耗性废物)的系统。在处理平台上带有多个开口的溜槽组件从在处理平台上方操作的多个多通道移液器中的一个接收丢弃的移液管。多通道移液器各自具有多个液体处理组件并且每个液体处理组件包括移液管组件。溜槽对于部署在分析仪中的多个移液管组件是可接近的。溜槽设置在处理平台上并接收释放的、使用过的移液管尖端并将那些使用过和丢弃的移液管尖端引导至废物接收器。在一个示例性实施例中,存在三个溜槽以容纳三个多通道移液器,每个多通道移液器具有三个移液管组件。在此构造中,系统左侧的多通道移液器和中心多通道移液器可以到达左侧的溜槽。所有三个多通道移液器都可以到达中间的溜槽,并且中心和右侧的多通道移液器可以到达处理平台右侧的溜槽。溜槽组件可拆卸地固定在设备中,以便在设备需要技术维护时可以将其拆卸。
处理平台还包括可用于测试多通道移液器中的移液管组件是否泄漏的顺应垫。在操作中,带有附接到其上的移液管尖端的移液器与顺应垫接触。当移液管组件在抽吸模式或压力模式下运行时,测试移液管组件的泄漏情况。在任一种模式下,如果在尖端与顺应垫接触时压力保持恒定,则没有泄漏。
移液管尖端抽屉
移液管尖端抽屉组件2140(图10C)包括尖端抽屉2142,该尖端抽屉2142通常是盒状结构,包括侧壁2144和横向壁2145,横向壁2145包括一个或多个开口,该开口用于接收承载多个移液管尖端的移液管尖端搁架。在所示实施例中,尖端抽屉2142的横向壁2145中有两个开口,该开口用于接收两个移液管尖端搁架(未示出)。在一个示例性实施例中,抽屉具有接收搁架的料箱。第一搁架可以包括第一移液管尖端,而第二搁架可以包括第二移液管尖端。移液管尖端抽屉2142附接到一个或多个轨道2148,该轨道2148允许将抽屉2142部分地拉出分析仪2000以移除空的尖端搁架并用新的尖端搁架补货。门(未示出)可以附接到抽屉2142的一端,以便当抽屉2142关闭时,门形成分析仪外壳的一部分。气动活塞2149可以帮助打开抽屉2142并且还可以提供阻尼以防止抽屉2142过快地打开或关闭。
在一个示例性实施例中,至少一些抽屉构造有多个料箱,每个料箱接收具有标称体积(例如,1mL、175μL等)的移液管尖端。为了容纳处理平台中的溜槽,在这些抽屉回到处理平台中的溜槽时一些抽屉只有一个料箱。由于这些抽屉较短,因此它们无法拉远成为包含两个料箱的抽屉。
处理模块
处理模块/通道
图11A描绘了包括并排布置的多个处理模块2200的处理平台2016。如图所示,处理平台2016包括三个处理模块:第一处理模块2200a、第二处理模块2200b和第三处理模块2200c。然而,分析仪2000可以包括更多或更少的处理模块2200以适应特定实验室的吞吐量需求和空间需求。处理模块2200a-c在它们的物理布置方面类似地构造,它们之间的区别在于它们相对于具有夹爪组件的梭平台的位置,该夹爪组件用作样本容器保持组件2210,该样本容器保持组件2210可以由相邻模块共享。例如,第一和第二处理模块2200a-b都可以利用第一样本容器保持组件2210ab为其样本容器03,并且第二和第三处理模块2200b-c都可以利用第二样本容器保持组件2210bc为其保持样本容器03。
尽管每个处理模块2200被类似地构造,但是每个处理模块2200能够执行广泛的测定,使得每个处理模块2200可以运行不同于在另一个处理模块中同时执行的测定的测定。在这方面,可以根据特定时间点的处理需求自动指定和重新指定每个处理模块2200以执行任意数量的测定类型。例如,可以指定第一处理模块2200a执行第一测定,第二处理模块2200b执行第二测定,并且第三处理模块2200c执行第三测定,其中每个测定都不同。然而,当那些测定完成时,可以自动重新指定处理模块2200a-c中的任何一个以执行不同的测定,使得第一、第二和第三处理模块2200a-c中的每一个都运行例如相同的测定。因此,分析仪2200可以灵活地适应实时需求,前提是在其壳体2010内有足够的用于特定测定的消耗品。
在一个替代实施例中,处理平台2016被重新构造为图19中所示的处理平台4016。类似于图11A中所示的,图19描绘了处理平台4016,处理平台4016包括并排布置的多个处理模块4200a-4200c。如图所示,处理平台4016包括三个处理模块:第一处理模块4200a、第二处理模块4200b以及第三处理模块4200c。然而,分析仪2000可以包括更多或更少的处理模块4200以适应特定实验室的吞吐量需求和空间需求。处理模块4200a-c在它们的物理布置方面类似地构造,它们之间的区别在于它们相对于具有夹爪组件的梭平台的位置,该夹爪组件用作样本容器保持组件4210ab-4210bc,该样本容器保持组件4210ab-4210bc可以由相邻模块共享。例如,第一和第二处理模块4200a和4200b都可以利用第一样本容器保持组件4210ab为其保持样本容器03,并且第二和第三处理模块4200b和4200c都可以利用第二样本容器保持组件4210bc为其保持样本容器03。
尽管每个处理模块4200被类似地构造,但是每个处理模块4200能够执行广泛的测定,使得每个处理模块4200可以运行不同于在另一个处理模块中同时执行的测定的测定。在这方面,可以根据特定时间点的处理需求自动指定和重新指定每个处理模块4200以执行任意数量的测定类型。例如,可以指定第一处理模块4200a执行第一测定,第二处理模块4200b执行第二测定,并且第三处理模块4200c执行第三测定,其中每个测定都不同。然而,当那些测定完成时,可以自动重新指定处理模块4200a-4200c中的任何一个以执行不同的测定,使得第一、第二和第三处理模块4200a-4200c中的每一个都运行例如相同的测定。因此,分析仪4200可以灵活地适应实时需求,前提是在其壳体2010内有足够的用于特定测定的消耗品。
处理模块的示例
图11B描绘了第一处理模块2200a并且是其他处理模块的示例。第一处理模块2200a通常包括第一样本容器保持组件2210ab(由第二处理模块2200b共享)、干燥试剂站2220、液体试剂站2230、提取器2240、扩增料盒站2250、移液管抽屉2140、和废物接收器2260。这些部件可以以任何构造布置。然而,在所描绘的实施例中,干燥试剂站2220和液体试剂站2230位于处理平台2016的后端并且彼此相邻设置。第一和第二提取器2240a-b位于试剂站2220和2230附近,并位于扩增料盒站2250和试剂站2220、2230之间。这允许在它们之间有效地转移液体。移液管尖端抽屉2140位于处理平台2016的前部,从而允许用户轻松接近。处理模块2200a优选地包括三个移液管尖端抽屉2140,每个移液管尖端抽屉2140保持承载第一移液管尖端2020a的第一移液管尖端搁架2022a和承载第二移液管尖端2020b的第二移液管尖端搁架2022b。该数量的移液管尖端2020允许处理模块2200a执行大约十二次测定运行而无需补货。样本容器保持组件2210ab设置在提取器2240a-b和试剂板站2220、2230的侧面以及第一和第二处理模块2200a-b之间。在第一和第二处理模块2200a-b之间还有废物接收器2260。废物接收器允许将用过的移液管尖端从处理平台2016上方丢弃到废物储存库2130中。废物接收器2260还可以包括废液入口(未示出),该废液入口允许废液被放置到废物储存库2130内的瓶子或一些其他容器中。
图19还图示了每个模块,该模块具有:i)干燥试剂板4050,ii)液体试剂板4060,iii)提取器4240、扩增料盒4070和废液端口4260。干燥试剂板4050、液体试剂板、提取器和扩增料盒通过库存机器人4300移动到处理平台4016上并在其周围移动。处理平台4016具有多个抽屉4140a-4140j。每个抽屉都包含消耗性移液管尖端。抽屉4140a-4140b、4140d、4140f和4140h-4140i都具有允许料箱包含超过一种尺寸的移液管尖端的深度。图23A中图示了抽屉(4140a),该抽屉带有一个用于标称体积为1mL的移液管尖端的料箱和用于标称体积为175μL的移液管尖端的第二料箱。图23B中图示了仅带有一个用于带有1mL标称体积的移液管尖端的料箱的抽屉(4140c)。
图19还图示了泄漏检测垫4805a和4805b。这些垫4805a-4805b由柔顺材料制成,并且用于检测是否有任何移液器组件泄漏。通过使移液管组件2470上的移液管尖端2020与接触垫4805a-4805b接触来测试移液管组件。通过使用正压或负压测试移液器组件是否泄漏。如果使用负压,则在移液管组件2470上抽吸部分真空。如果在移液管尖端与垫接触时抽吸的真空没有保持基本恒定,则表明泄漏。类似地,如果使用正压,则将正压引入移液管组件中。如果没有保持正压,这也是泄漏的迹象。检测到泄漏后,操作者会收到泄漏情况警报。
样本容器保持组件
样本容器保持组件2210ab类似于'875申请的样本容器保持组件1100,因为它包括夹持组件2212,该夹持组件2212朝向设置在夹持组件内的梭2030关闭以在从容器03中吸出等分试样时将梭2030和容器03保持在梭2030内。在这方面,夹持组件2212包括接合构件2214,接合构件2214被构造为当夹持组件2212闭合以接合样本容器03的底端处的裙部07时,穿过梭2030中的第二横向开口2036突出,如图11C中最佳所示。这些接合构件2214穿入/咬入相应容器03的裙部07中以防止容器03在抽吸期间不经意地从梭2030移开。然而,与保持组件1100不同,保持组件2210ab具有固定平台2216,梭2030搁置在该平台上,而保持组件1100利用移动输送带1116。因此,代替输送带将梭2030运送到夹持组件2210ab内的位置,库存机器人2300将梭2030放置在夹持组件2212内的位置。图19中的处理平台还图示了容器保持组件4210ab和4210bc。图19所示的处理平台具有多个移液管溜槽4800a、4800b和4800c,每个溜槽具有上部组件4801和下部组件4802。使用支架4810将下部组件4802安装在处理平台4016下方,如下面所述。上部组件4801固定到处理平台4016。参考图20,移液管溜槽4800a-4800c将在处理平台4016下方释放到其中的移液管尖端传送到废物箱4134中。抽屉4140a-4140j布置在处理平台4016上以适应尖端溜槽4800a-4800c的放置。在这方面,单料箱抽屉4140c、4140e和4140g具有比两料箱抽屉4140a-4140b、4140d、4140f和4140h-4140i更小的深度。溜槽4800a-4800c的跨度在图20中的处理平台的侧视图和图21中所示的处理平台的透视剖视图中示出。在图20中,溜槽4140e的顶部视图被移液管尖端抽屉4140e遮挡。支撑架4810在图20中示出。支架4810提供了一种将溜槽4800a-4800c固定到处理平台的方法,并且在分析仪需要维修时允许移除溜槽组件。溜槽4800a-4800c的跨度也可在图21中观察到。有角度的溜槽允许多通道移液器2440a-2440c接近该溜槽,但能够将丢弃的移液管尖端引导到中央接收器4134。图22图示了带有壳体2010但带有本文在图19至21和图23a-23b中描述的抽屉构造的分析仪2000。分析仪具有可从分析仪前面进入的消耗品机柜4110和废液柜4130。
试剂板站
干燥试剂板站2220和液体试剂板站2230可以各自包括由支撑结构(未示出)限定的接收器,诸如从平台2016的表面延伸的一对导轨。这样的接收器可以接收对应的试剂板,以帮助确保将每个板放置在精确的位置。如图所示,处理模块2200a包括一个干燥试剂板站2220和一个液体试剂板站2230。由于分析仪2000通常利用两个干燥试剂板2050a-b用于执行的每个测定,因此在操作期间更换干燥试剂板2050a-b。然而,可以设想,可以将附加的干燥试剂板站结合到处理模块2200a中,以允许试剂板2050a-b中的每一个一次定位在处理平台2016上。处理模块2200a还可以包括允许扩增料盒2070被库存机器人2300精确放置的凹入支撑结构。
提取器
如图12A和12B所示,提取器组件包括两个提取器:第一提取器2240a和第二提取器2240b。每个提取器2240a-b包括壳体2242、印刷电路板2247(“PCB”)、电机2244、驱动机构2246、永磁体2241和加热元件2248。其他示例性提取器组件包括BD MAXTM系统(新泽西州,富兰克林湖,贝克顿·迪金森公司)的提取器,并在美国专利号8,133,671中进行了描述,该专利的公开内容通过引用整体并入本文。永磁体2241安装到驱动机构2246并设置在壳体2242内。永磁体2241布置成两排的六个磁体以形成六对相邻磁体2241a-b。已发现磁体2241a-b的这种并排配对比单个磁体能增强处理板2040内的磁珠的磁吸引力。数排磁体2241可移动地连接到驱动机构2246,并且可经由由电机2244操作的驱动机构2246通过壳体2242顶部的开口移入和移出壳体2242。
PCB 2247和加热元件2248连接到壳体2242的相对侧。加热元件2248布置成两排六个,并在壳体2242上方延伸。每个加热元件2242限定凹部2249,该凹部2249形成杯状结构,该杯状结构具有符合处理板的提取管2045的回转外表面的几何形状。这允许加热元件2248直接接触这种回转表面以将热量传递到提取管2045中并且还允许处理板2040由提取器2240以稳定的方式支撑。此外,提取器2240a-b的宽度使得当处理板由此保持时,移液管尖端2020可以放置到移液管尖端保持站中并延伸通过处理板2040,而不受提取器2240的任何干扰。当电机2244运行时,该数排永磁体2241可以向上移动到加热元件2248和相邻的提取孔2045之间的空间2243中以吸引可以设置在其中的磁珠。
图12C和12D描绘了根据本公开的进一步实施例的提取器2240'和处理板2040。如前所述,处理板可以包括在板主体2041的相对侧中的接合槽口2042。然而,代替接合槽口2042位于板主体2041的两侧,处理板2040优选地包括从板主体2041的上表面延伸的接合构件2049。这种接合构件2049包括接合槽口2042。因此,处理板2040将槽口2042定位在板主体2041上方并且相对于板主体2041的侧面位于内侧。这允许末端执行器2360从板主体2041上方而不是在其侧面夹住处理板2040,这允许末端执行器2360在间隙很小的空间中操作,如下文更详细描述的。
提取器2240'类似于提取器2240,不同之处在于提取器2240'包括滴盘2280。如图所示,滴盘2280包括由中间构件2088连接的凹槽构件2281a-b。中间构件2088在提取器2240'的相对侧之间延伸,并包括用于提取管2045和混合孔2046的开口以从中延伸,使得提取管2045可以接合提取器2240'的加热元件2248,如图12D最佳所示。此外,中间构件2088有助于支撑处理板2040,因为它通常具有允许处理板主体2041搁置在其上的平坦上表面。每个凹槽构件2281a-b包括外护罩2082、内护罩2084和下护罩2086。内护罩2084连接到中间构件2088并从那里向下延伸,因此,当处理板2040安装到提取器2240'上时,内护罩2084位于加热元件2248和一排移液管套管2048之间,如图12D最佳所示。下护罩2086连接到外护罩2082和内护罩2084并在它们之间延伸。外护罩2082从下护罩向上延伸。当这样的移液管尖端2020设置在相应的移液管套管2048中时,这种构造形成了尺寸设计成接收一排移液管尖端2020的凹槽。在这方面,凹槽构件2281a-b在系统2000内形成屏障,这有助于防止来自移液管尖端2020的污染,移液管尖端2020可以储存在移液管套管2048中以供重复使用。
图12E描绘了包括提取器2240'的第三处理模块2210c。处理板2040安装到所述提取器2240'。提取器2240'和处理板2040设置在干燥和液体试剂板2050、2060以及平台上的移液管尖端溜槽2135和扩增料盒站2070之间。然而,如图所示,处理板2040在处理平台2016上的位置通常低于这些周围部件。然而,为了帮助节省系统2000的整体尺寸,这些部件和处理板2040之间的左右间隙是最小的。因此,末端执行器2360可能难以具有足够的间隙来将处理板2040从提取器2240'放置到处理板2040上并拾取处理板2040。在这方面,处理板2040提供接合构件2049,该接合构件为末端执行器2360提供足够的间隙以拾取和放置处理板2040。此外,如图所示,细长开口2017延伸穿过处理平台表面2016,其允许安装到处理板2040的可重复使用的移液管尖端2020延伸穿过其中。滴盘的凹槽构件2281a-b与这样的开口2017对齐,这保护系统2000免于被来自这样的移液管尖端2020的滴液污染。
检测器
每个处理模块2200a-c具有相关联的检测器2270,在图10A所示的实施例中,检测器2270各自位于分析仪2000的底部的检测/分析平台2012中。例如,第一处理模块2200a与第一检测器2270a相关联,第二处理模块2200b与第二检测器2270b相关联,第三处理模块2200c与第三检测器2270c相关联。检测器2270a-c在处理平台2016下方的位置有助于将检测器2270a-c与可能的污染物隔离开来。一种示例性检测器是BD MAXTM系统(新泽西州,富兰克林湖,贝克顿·迪金森公司)的检测器,并在美国专利号8,133,671中进行了描述,该专利的公开内容通过引用整体并入本文。检测器2270a-c中的每个包括读取器头2271和热循环仪2275。读取器头2271包括光学发射器和检测器(未示出),该检测器被构造为检测扩增料盒2070的腔室2075内荧光探针的存在。热循环仪2275包括可移动平台2276,该平台具有构造为接收扩增料盒2070的凹部2277。热循环仪2275具有加热元件(未示出),该加热元件周期性地将扩增料盒2070的内容物(诸如纯化的DNA)加热到预定温度以帮助这些内容物的扩增。读取器头2271从分析仪2000的结构悬挂,使得其读取器指向下方。热循环仪2275设置在读取器头2271下方,并包括电机2278和驱动螺杆,该驱动螺杆沿垂直方向移动平台2276以将扩增料盒2070压靠在读取器头2271上。热循环仪2275和读取器头2271之间存在的空间足够宽以允许库存机器人2300将扩增料盒2070放置到热循环仪2275上。
消耗品处理
图13A-13D描绘了根据本公开的一个实施例的库存机器人2300。库存机器人2300帮助清点分析仪2000内的所有消耗品,并且也处理分析仪2000内的所有消耗品。此外,库存机器人2300可以伸出分析仪2000进入预分析系统10,以便在分析仪2000和预分析系统10之间来回移动带有样本容器03的梭2030。在这方面,分析仪2000的壳体可以包括在其左侧或右侧的侧开口,其尺寸被设置为允许机器人2300通过其中到达。库存机器人2300包括轨道构件2310、主体/柱2320、肩部2330、第一臂构件2340、第二臂构件2350和末端执行器或手2360。
机械臂
轨道构件2310从分析仪2000的一侧沿左右方向延伸到另一侧,并且比前述位于前面的平台2012、2014和2016更靠近分析仪2000的后端。主体2320可滑动地附接到轨道构件2310并且从那里正交地延伸。主体2320经由托架2322联接到轨道构件2310。托架2322和轨道构件2310形成允许主体2320在左右方向上沿单个轴线平移的线性电机。可以在分析仪2000中实现的线性电机的一个示例是Festo线性电机执行器(“FLMA”)(Festo AG&Co.KGEsslingen am Neckar,德国)。然而,其他驱动机构,诸如皮带和滑轮机构被设想为沿着轨道构件2310驱动主体2320。
肩部2330可滑动地附接到主体2320,使得肩部2330可以被沿着主体2320的竖直轴线驱动,这也可以通过线性电机或一些其他驱动机构来实现。肩部2330在第一臂构件2340的一端处附接到第一臂构件2340,使得第一臂构件2340可绕由肩部2330和第一臂构件2340共享的竖直轴线旋转。第二臂构件2350连接到第一臂构件2340的另一端,使得第二臂构件2350可以围绕由两个臂构件2340和2350共享的竖直轴线旋转。末端执行器2360连接到第二臂构件2350的远离第一臂构件2340的一端并且可围绕由末端执行器2360和第二臂构件2350共享的竖直轴线旋转。
末端执行器
末端执行器2360包括主体2362和联接到主体2362的一对可移动的指状件2363a-b。可移动的指状件2363a-b是可操作的,使得它们一起更靠近地移动或分开更远离地移动以便抓握或释放物品,如图13A所示。在这方面,可移动的指状件2363a-b在操作期间通常保持平行。主体2360在主体2362的表面中包括一个或多个标识符读取器2366,诸如条形码扫描仪,该表面通常面向远离指状件2363a-b的方向。主体2362能够相对于第二臂构件2350旋转大约180度,这允许这种标识符读取器2366面向分析仪2000的前部并且扫描位于库存平台2014或其他地方的消耗品。主体2362还可以包括在其底面中的标识符读取器,使得这样的读取器可以读取朝上的标识符,诸如可以位于扩增料盒2070上的标识符。
指状件2363a-b特别构造为接合各种不同的消耗品。在这方面,指状件2363a-b包括第一接合特征2361和第二接合特征2364。如图所示,第一接合特征2361是从一个指状件2363向另一个指状件2363向内延伸的凸片或突起。第一接合特征2361的尺寸设置为分别装配在板2040、2050、2060的接合槽口2042、2052、2062和梭2030的第一横向开口2034内。在操作中,当指状件2363a-b闭合到消耗品上时,第一接合特征2361延伸到对应消耗品的槽口或开口中,从而防止消耗品掉落,而指状件2363a-b自身夹在消耗品的侧表面上以进一步控制和保持此物品。如图所示,每个指状件2363a-b优选地包括两个接合特征2361,这有助于防止在指状件的抓握中消耗品的无意旋转。
第二接合特征2364通常位于指状件2363a-b的与第一接合特征2361相对的两侧并且包括向下延伸的柱或燕尾榫2365。柱2365从接合特征2364的大致平坦的底面2366延伸并从其向外逐渐变细以形成截头圆锥回转表面,如图13C最佳所示。这些柱2365接合扩增料盒2070中的对应槽口2072。如上所述,扩增料盒2070包括围绕每个槽口2072的斜面或轮廓表面,该斜面或轮廓表面形成凹口2077。在操作中,随着柱2365滑入相应的槽口2072中,柱2365最终到达该凹口2077。当它到达凹口2077时,以一致的方式在凹口2077内接收柱2365,如图13D所示。这有助于为料盒2070提供一个稳定的平台,以便在凹口2077符合柱的回转表面时在分析仪2000周围移动。此外,柱2365的喇叭口或锥形有助于防止料盒2070掉落。
如图13B所示,每个指状件2363a-b包括三个接合特征2364。然而,虽然设想了更多或更少的接合特征2364,但优选的是每个指状件2363a-b包括单个第二接合特征2364。这允许指状件2363充分接合扩增料盒2070,该扩增料盒2070可能不经意地绕竖直轴线旋转,使得其侧面不平行于指状件2363a。这对于带有不止单个接合特征2364的指状件2363a-b而言可能是一项明显更困难的任务,因为在扩增料盒2070不经意旋转的情况下,至少一些特征2364可能不能与这种料盒2070的对应槽口2072适当地对齐。
此外,每个指状件2363a-b可以是柔性的,以便能够围绕水平轴线向下或向上弯曲,同时具有足够的弹性以便不会太容易屈服而接触。这种柔性可以沿包括第二接合特征2364的其末端附近的长度赋予每个指状件2363a-b。这允许指状件2363a-b自动调整以接合可围绕水平轴线倾斜的扩增料盒2070,使得料盒2070不平行于指状件2363a-b。
液体处理
图14A和14B描绘了根据本公开的一个实施例的液体处理机器人2400。液体处理机器人2400悬挂在液体处理机器人平台2018处和处理平台2016上方。液体处理机器人2400包括从分析仪2000的一侧沿左右方向延伸到另一侧的轨道构件2405。多个多通道移液器2440经由托架2420和横向臂2430连接到轨道构件2405。臂2430连接到托架2420并且托架2420可滑动地连接到轨道构件2405,使得臂2430在横向于轨道构件2405的方向上延伸。托架2420和轨道构件2405形成允许多通道移液器2440和臂2430沿轨道构件2405在左右方向上被驱动的线性电机。这种线性电机的一个示例是Festo线性电机执行器(“FLMA”)(Festo AG&Co.KG Esslingen am Neckar,德国)。如图所示,每个处理模块2200都有一个多通道移液器2440。因此,在该特定实施例中,存在三个移液管组件:第一多通道移液器2440a、第二多通道移液器2440b和第三多通道移液器2440c。第一多通道移液器2440a对应于第一处理模块2200a,第二多通道移液器2440b对应于第二处理模块2200b,以及第三多通道移液器2440c对应于第三处理模块2200c。然而,更多或更少的多通道移液器2440是可能的并且基于处理模块2200的数量。
多通道移液器
图14B描绘了根据本公开的一个实施例的多通道移液器2440,其是多通道移液器2440a-c的示例。多通道移液器2440包括背板连接器2450和连接到背板连接器2450的多个液体处理组件2442。在所示实施例中,存在三个液体处理组件24742:第一液体处理组件2442a、第二液体处理组件2442b和第三液体处理组件2442c。然而,更多或更少是可以考虑的。每个液体处理组件2442a-c包括主板组件2460a-c和移液管组件2470a-c。液体处理组件2442a-c连接到彼此紧邻的背板连接器2450。
每个主板组件2460有助于向对应的移液管组件2470提供数据、电源和正/负气压。在所示实施例中,存在三个移液管组件2460:第一移液管组件2460a、第二移液管组件2460b和第三移液管组件2460c。这些组件2460a-c对应于相应的液体处理组件2442a-c。每个主板组件2460类似于'875申请中描述和示出的主板组件1401。在这方面,每个主板组件2460包括壳体2462,其中设置有各种部件,诸如PCB、正压和负压输入、阀以及与输入和阀连通的液体/气体导管。主板组件2460a-c还包括z驱动机构,该机构包括位于壳体2462一侧的垂直导轨2464以及电机2466和驱动轴(未示出)。驱动轴设置在壳体2462内。
每个移液管组件2470类似于'875申请的移液管组件502和移液管组件1402,除了每个移液管组件2470不铰接连接到其各自的主板组件2460和不会旋转到多个铰链位置。每个移液管组件2470被限制旋转并经由电机2466沿垂直导轨2464在竖直z方向上移动。因此,第一、第二和第三移液管组件2470a-c能够在竖直或z方向上独立移动。另外,移液管组件2470的构造类似于移液管组件502和1402,特别是在其移液管通道组件(未示出)和移液管尖端弹出器组件2472方面。
背板连接器2450类似于'249申请的背板连接器1600,除了背板连接器2450被构造为具有安装在其上的多个液体处理组件2442,诸如所示的第一、第二和第三组件2442a-c。在这方面,背板连接器2450连接到每个液体处理组件2442的主板组件2470a-c并且包括用于向液体处理组件2442a-c供应必要的功率、压力和数据信号的多个连接器(未示出),诸如以太网、多针、正压输入和负压输入连接器。这有助于减少或消除在如此接近地连接多个液体处理组件2442时可能阻碍并且可能难以管理的外部电缆。
自动化
图15描绘了分析仪2000的计算系统的一般架构。计算系统2510可以是'249申请的系统1300内的子系统,其描绘了高通量系统00的计算系统图。在这方面,跨仪器总线2504和工作流计算设备2540与'249申请中描绘的总线1320和计算设备1330相同。此外,计算设备2510类似于计算设备1360,并且在本文中连同其在分析仪2000内的输入和输出一起被更详细地描述。
计算机控制设备2510可以是任何通用计算机并且可以包含处理器2512、存储器2514和通常存在于通用计算机控制设备中的其他部件。尽管计算机控制设备2510可以包括专用的硬件部件来执行特定的计算过程。处理器2512可以是任何常规的处理器,诸如市售的CPU。可替代地,处理器2512可以是专用部件,诸如专用集成电路(“ASIC”)或其他基于硬件的处理器。
存储器2514可存储可由处理器2512访问的信息,包括可由处理器2512执行的指令2516。存储器2514还可包括可由处理器2512检索、操纵或存储的数据2518。存储器2514可以是能够存储处理器2512可访问的信息的任何非暂时性类型,诸如硬盘驱动器、存储卡、ROM、RAM、DVD、CD-ROM、可写存储器和只读存储器。
指令2516可以是由处理器2512直接执行的任何指令集,诸如机器代码,或由处理器2512间接执行的诸如脚本。在这方面,术语“指令”、“应用”、“步骤”和“程序”在本文中可以互换使用。指令2516可以以目标代码格式存储以供处理器2512直接处理,或以任何其他计算设备语言(包括按需解释或预先编译的独立源代码模块的脚本或集合)存储。
在分析仪2000的一个实施例中,计算系统2510可以包括若干指令集。例如,要执行的每个测定可以具有与其相关联的若干指令集,这些指令集可以包括操作库存机器人2300以执行库存检查和取回用于该测定的适当试剂和其他消耗品的指令。在另一个示例中,一组指令可以确定由特定多通道移液器2440执行的操作序列以帮助处理样本以供分析。
可以通过图形用户界面(“GUI”)输入和查看数据2518,该图形用户界面可以显示在与分析仪2000特别相关的显示界面2500上,或'875申请的与整个高通量系统00相关联的显示界面1332上。数据2518也可以从扫描仪输入,诸如库存机器人2300的末端执行器2360上的扫描仪2366或预分析系统10内的扫描仪。数据也可以通过传感器,诸如光学传感器、温度传感器等获得,以获得关于分析仪内发生的某些条件和活动的信息,例如诸如特定消耗品的位置和空气质量。
该数据2518可以被数字标记为字段实现或关系数据库中的特定识别码(例如,条形码序列号),该识别码也可以存储在存储器2514中。这有助于分析仪2000跟踪分析仪3000内的各种消耗品,并有助于在处理器指令2516的执行期间向处理器2512提供某些信息而无需用户输入。例如,液体试剂板2060可以具有识别码,该识别码可以与位于其外表面上的条形码相关联,该条形码可以在数据库中标记有某些存储的数据,诸如存储在其中的试剂类型以及哪些试剂已经被利用了。这允许分析仪检查其库存以确定试剂和其他消耗品何时运行不足或不足以执行额外的测定。在另一个示例中,梭2030可以具有识别码,该识别码可以在数据库中用某些存储的数据(诸如涉及梭2030携带的每个样本容器03的数据,诸如患者姓名、待执行的测定、处理参数等)进行标记。在进一步示例中,当分析完成时,测定结果可以与数据库内的特定样本相关联,从而用户能够经由访问工作流计算设备2540轻易检索结果,因为这样的结果可以通过设备2510传送到那里。
尽管图20在功能上将处理器2512、存储器2514和计算机控制设备2510的其他元件图示为在同一框内,但计算机控制设备2510、处理器2512和/或存储器2514可以由多个处理器、计算机控制设备和存储器组成,它们可能会或可能不会存储在同一物理壳体中。例如,存储器2514可以是位于与计算机控制设备2510不同的壳体中的硬盘驱动器或其他存储介质。因此,对处理器2512、计算机控制设备2510和存储器2514的引用应当被理解为包括对可以并行或可以不并行运行的处理器、计算机控制设备和存储器的集合的引用。
显示界面
显示界面2520可以与分析仪2000专门相关联,并且可以只显示关于分析仪2000的信息,也可以集成到分析仪2000的结构中。然而,显示界面2520是可选的(由图15中的虚线指示),并且在图1所示的实施例中,不被包括在内,因为改为利用整个系统显示界面1332。然而,在包括显示界面2520的情况下,界面2520可以是联接到壳体2010的前面板或远离分析仪2000定位的监视器、LCD面板等。显示界面可以显示GUI、用户提示、用户指令和可能与用户相关的其他信息。
输入界面
用户控制/输入界面2530允许用户导航GUI,并且再次,可以可选地作为与由图1的显示界面1332提供的整个系统输入界面分开的部件来提供。然而,在提供用户控制/输入界面2530的情况下,这种界面可以是例如触摸面板、键盘或鼠标。此外,输入界面2530可以集成到显示界面2520中,使得显示提示等的相同设备是允许用户响应所述提示的同一设备。
如图15所示,计算机控制设备2510可以连接到工作流计算设备2540,工作流计算设备2540用于集成高通量系统00的所有部件,诸如第二分析仪4000和预分析系统10,并与特别是实验室的实验室信息系统(“LIS”)集成在一起。因此,源自预分析系统10内的与分析仪2000相关的信息可以经由工作流计算设备2540传送到分析仪2000。类似地,源自分析仪2000的与预分析系统10相关的信息可以经由计算机控制设备2500传送到工作流计算设备2540,工作流计算设备2540将该信息传送到预分析系统10。这种信息也可以用工作流计算设备2540从LIS获得的信息(诸如患者信息等)来补充。
计算机控制设备还连接到分析仪3000内的多个部件以来回共享信息,诸如指令和数据。经由内部总线与计算机控制设备连接的一些部件包括处理模块2200a-c、库存机器人2300、检测器2270a-c和液体处理机器人2400中的每一个。与计算机控制设备2510的这种连接允许计算机控制设备2510向这些部件提供指令并从其接收信息。例如,库存机器人2300可以从计算机控制设备2510接收指令以取回某些消耗品并将它们放置在特定位置,并且可以将库存信息传送到计算机控制设备2510。因此,由分析仪2000的内部部件执行的操作通常是处理器2512提供的指令的结果,因为分析仪2000是完全自动化的。
方法
步骤1:接收命令
在分析仪2000(图16)的操作方法中,分析仪2000可以从工作流计算设备2540接收2602测定命令。当一批样本由此被预处理并准备好进行分析时,这种命令可以首先从预分析系统10传送到工作流计算设备2540。在这方面,预分析系统10可以用一个完整的批次装载梭2030,梭2030在该实施例中包括两个梭2030,每个梭2030有十二个样本容器03。这样的梭2030停在'875申请的对接站260处。
步骤2:清点
一旦分析仪2000接收到命令,库存机器人2300清点2604消耗品以确定是否有足够量的消耗品来执行所命令的测定。这种清点可以由库存机器人2300执行。在这方面,当接收到命令时,库存机器人2300将末端执行器2360朝向处理平台2016下方的库存平台2014移动。末端执行器2360旋转约180度,使得标识符读取器2366面向库存平台2014。库存机器人2300然后继续扫描位于其中的消耗品以确定哪些消耗品被装载在分析仪2000内。分析仪2000然后确定是否有足够的消耗品来执行所命令的测定。设想了用于监控消耗品库存的其他自动化设备。此类用于跟踪消耗品库存的其他自动化方法对于本领域技术人员来说是众所周知的并且在本文中不详细讨论。
库存机器人2300可能不需要在每次收到命令时扫描消耗品。相反,分析仪2000跟踪经由用户输入到分析仪2000中的消耗品。例如,当用户装载消耗品时,库存机器人2300扫描消耗品并将它们记录到存储器2514内的数据库中。分析仪2000会跟踪使用消耗品的时间。因此,分析仪2000可以通过经由处理器2512扫描其存储器2514内的数据库来响应命令来清点消耗品以确定哪些消耗品已被使用和未使用以获得完整的计数。
在一个示例中,分析仪2000接收用于识别特定测定靶标(诸如衣原体)的存在的测定命令。分析仪2000知道分析仪2000中必须存在哪些试剂才能进行测定。此外,分析仪2000知道必须使用哪些其他消耗品,诸如移液管尖端2020、处理板2040和扩增料盒2070。这种信息可以在其存储器2514中预编程。分析仪2000扫描其存储器2514中的数据库或利用库存机器人2300来验证必需的消耗品是否可供使用。
如果可用的消耗品不足以执行所命令的测定,则通知2620用户,该通知可以是显示在显示器1332或2520上的警报、对移动设备的推送通知或电子邮件的形式。如果需要不同测定的其他样本准备好由分析仪2000处理并且有足够的消耗品来执行测定,则分析仪2000可以改为接受那些容器03以避免停机,直到用户将必要的消耗品装入分析仪2000。
当用户确实装载消耗品并且分析仪2000接收2622此类消耗品时,诸如在工作班次开始时或响应消耗品不足的警报时,用户通过分析仪2000的前部装载消耗品。因此,用户可以将移液管尖端2020装入移液管抽屉2142中,将试剂板2050和2060、扩增料盒2070和/或处理板2040装入消耗品储存库2110中。可以装载足够的消耗品,以允许分析仪2000连续24小时连续运行。
当用户装载此类消耗品时,分析仪2000识别出库存平台2014已被存取,诸如经由门传感器。库存机器人2300然后可以自动执行储存库扫描以识别装载到分析仪2000中的任何新消耗品。位于消耗品上的标识符,诸如试剂板2050、2060、处理板2040、尖端搁架2022和扩增料盒2070,用于确定消耗品是什么以及它们包含什么,诸如试剂板2050和2060的情况下是试剂。
步骤3:取回样本容器
一旦分析仪2000确定有足够的消耗品来执行测定并且处理模块2200中的一个可供使用,分析仪2000就将其准备情况传达给工作流计算设备2540。工作流计算设备2540然后通知预分析系统10,作为响应,预分析系统10将包含样本容器03的梭2030装载到梭运送组件300上并将其发送到分析仪2000。梭2030可能会在它达到分析仪2000的阈值之前停止。尽管在一些实施例中,梭2030可以直接传送到分析仪2000中。
库存机器人2300然后向预分析系统10移动并到达2606进入预分析系统10中。末端执行器2360夹住梭2030,使得第一接合特征2361被接收在第二横向开口2036中。然后将梭2030运送到分析仪2000中,并运送到与指定处理模块2200相邻的梭保持组件2210,并将梭2030向下放置到固定平台2216上。然后夹持组件2212闭合,使得接合构件2214延伸穿过第二横向开口2034并穿透到相应容器03的裙部07中,从而将容器03保持在适当位置以供多通道移液器2440抽吸。
步骤4:阶段消耗品和等分试样
在充分保持样本容器03的情况下,处理模块2200分阶段配有适当的消耗品。在这方面,库存机器人2300取回两个处理板2040并将一个板放置在每个提取器2240a-b上,使得每个板2040的提取管2044被相应的提取器2240a-b的加热器元件2248接收。库存机器人2300还取回第一干燥试剂板2050a和液体试剂板2060,并将它们分别放置在干燥试剂站2220和液体试剂站2230处。通常,液体和干燥试剂板2050、2060提供的试剂用于多于梭2030携带的样本数量。因此,每次将梭2030放入分析仪中时,分析仪2000可能不会搁置试剂板。此外,库存机器人2300通过经由第二接合特征2364接合槽口2072从库存平台2014取回扩增料盒2070。扩增料盒2070放置在扩增料盒站2250处,使得入口开口2073邻近提取器2240a定位。
此后,多通道移液器2440取回第一移液管尖端2020a,三个移液管组件2470a-c中的每一个都有一个尖端。通过用移液管尖端2020刺穿样本容器的可穿透密封件09并在其中抽吸样本,从每个样本容器03中取出2607等分试样。等分试样被吸入处理板2040的相应提取管2044中。在用等分试样接种每个混合管2044之后,多通道移液器2440将移液管尖端2020a插入相邻的尖端保持站2047中以供以后使用。执行此操作直到从每个容器03中提取等分试样。如果出现故障导致无法取回等分试样,诸如由于密封件未刺穿,分析仪2000将该信息保留在其存储器2514中,因此可以将其传送到预分析系统10,该系统将适当地组织有缺陷的样本,如'875申请中所讨论的。
步骤5:返回样本容器梭并取回另一个
一旦从梭2030中的每个样本容器03中取出等分试样,分析仪2000就向工作流计算设备2540通信表明分析仪2000将梭2030返回2608到预分析系统10。工作流计算设备2540将该通信传送到预分析系统10,该系统将包含另一半批次的另一个梭2030移动到梭运送组件300。在分析仪2000内,夹持组件2212释放梭2030并且库存机器人2300通过将梭2030放置到梭运送组件300的返回通道中将包含用过的容器03的梭2030返回到预分析系统10。然后,库存机器人2300接合并移动2610批次的第二梭2030,并将其运送到梭保持组件2210,在该梭保持组件2210中保持该批次并且抽吸该批次的剩余等分试样。一旦等分试样被转移到处理板2040的剩余提取管2044,梭2030再次经由库存机器人2300返回到预分析系统10。
在一些实施例中,双通道测定可以由分析仪2000执行,其中来自每个样本容器03的等分试样被吸入两个提取管2044中而不是一个提取管中。在这样的实施例中,十二个样本容器03的单个梭2030将填充两个处理板2040,每个处理板2040具有12个提取管2044。因此,在该实施例中,库存机器人2300仅取回用于测定的一个梭2030并且不取回任何其他梭2030。
步骤6:处理样本
在处理板2040接种了样本的等分试样的情况下,分析仪2000处理2612样本。不管测定如何,程序通常是相同的。差异不在于方法,而在于所用的试剂。因此,处理模块2200能够执行广泛的测定。处理通常包括提取、分离和扩增分析物,诸如DNA靶标。
提取涉及重构干燥的裂解剂,该裂解剂可能包含构造为与DNA结合的磁珠。在这方面,多通道移液器2440从处理板2040中的移液管尖端保持站2047拾取先前使用的移液管尖端2020a。尽管多通道移液器2440通常包括多个移液管组件2470a-c,但是单个移液管组件2470可以独立于其他移液管组件2470被沿对应的z-导轨2464驱动,以便从处理板2040取回先前使用的移液管尖端2020a。一旦取出尖端2020a,移液管组件2470刺穿液体试剂板2060中的重构缓冲液的密封件,取出缓冲液的等分试样,并将其转移到干燥的试剂板2050a,在其处它刺穿隔室2044中的一个上方的密封件并通过缓冲液接种隔室2054以再水合裂解剂。然后抽吸重构的裂解剂并转移到提取管2044。重复此过程直到所有提取管2044都接种有裂解剂和磁珠。
然后提取器2240a-c经由与提取管2044接触的加热元件2248加热提取管2044和其中的内容物。当混合物孵育时,库存机器人2300从处理模块2200移除第一干燥试剂板2050并从库存平台2014取回第二干燥试剂板2050b并将其放置在干燥试剂板站2220处。
当孵育完成时,提取器2240a-b的电机2244将永磁体2241移出它们各自的壳体2242并将它们放置在邻近提取管2044的地方,在此附着有提取的DNA的磁珠被吸引到管2044的侧面。然后多通道移液器2440从试剂板2060取回洗涤缓冲液的等分试样并冲洗管混合物。磁体2241被移回它们的壳体2242中,浮液从混合管中取出,并经由与库存平台2014内的废液瓶连通的废液入口丢弃。中和缓冲液从液体试剂板2060被转移到处理板2040中与提取管2044相邻的混合孔2046。然后移液器2440从液体试剂板2040取回洗脱缓冲液并将洗脱缓冲液分配到提取管2044中以将磁珠与分离的DNA分开。磁体2241被移回原位,并且洗脱液被吸出并转移到混合孔2046中,在混合孔与中和缓冲液混合。然后使用中和的样本在第二干燥试剂板2050b内重构主混合物。然后将混合物经由多通道移液器2440和第二移液管尖端2020b装载到扩增料盒2070中,第二移液管尖端2020b通过将混合物吸入料盒2070的入口开口2073中来接种料盒2070。扩增料盒2070可以接收整个批次。
步骤7:放大/分析/检测
此后,库存机器人2300的末端执行器2360接合料盒2070并将其运送到与处理模块2200相关联的检测器2270。库存机器人2300将料盒2070放置在热循环仪2275的平台2276上,而不会明显使料盒2070倾斜。这至少是可能的,因为料盒2070悬挂或被承载以使其低于末端执行器2360的指状件2363a-b定位。如果指状件2363a-b低于料盒2070定位,则料盒2070可能必须从末端执行器2360落下。电机2278然后升高热循环仪2275以将料盒2070压靠在读取器2271上。然后对料盒2070进行热循环以扩增测定靶标。读取器2271检测2614测定靶标在料盒2070的腔室2075内的存在。
步骤8:丢弃并重复
一旦完成检测,结果就被传送到工作流计算设备2540。使用过的扩增料盒2070经由库存机器人2300移动2616到扩增料盒废物,该扩增料盒废物可以在废物储存库2130或分析仪2000中的其他地方。库存机器人2300还通过将板2040堆叠到废物储存库2130的隔板2138上来丢弃用过的处理板2040。将干燥和液体试剂板2050、2060放回到消耗品储存库2110内的它们各自的隔室中以用于另一测定。干燥和液体试剂板2050、2060通常可用于四次测定运行。计算设备2510跟踪板2050或2060已经使用了多少次,并且分析仪2000在它们最终运行之后通过将板2050、2060放置在废物储存库2130中而自动丢弃这些板。一旦消耗品被丢弃,处理模块2200就可以执行2618另一测定。
一次进行多项测定
处理模块2200中的每一个可以在任何给定时间在测定菜单上执行任何测定,只要在其壳体2010内清点适当的消耗品。这使分析仪2000能够灵活地响应以优化吞吐量。例如,第一处理模块2200a可能已经执行了第一测定几次运行。然而,如果在预分析系统10内存在需要不同于第一测定的第二测定的样本积压,则第一处理模块2200a可用于通过执行第二测定来帮助处理和分析这些样本。这可以由分析仪2000自动完成而无需用户的帮助,因为分析仪2000与预分析系统10持续通信。
在不背离本公开的情况下,可以利用上述特征的多种变化、添加和组合。例如,图17A-17C描绘了根据本公开的另一个实施例的分析仪3000。分析仪3000与分析仪2000的相似之处在于它包括具有多个处理模块3200a-c的处理平台3016、带有夹持末端执行器3360的库存机器人3300、包括多个多通道移液器3440a-c的液体处理机器人、消耗品存储区域3014和用于检测分析物的检测器3270a-c。此外,分析仪3000利用与分析仪2000相同的消耗品,诸如前面描述的移液管尖端2020、梭2030、处理板2040、液体试剂板2060、干燥试剂板2050和扩增料盒2070。然而,分析仪3000在消耗品存储3014和检测器3270a-c的布置方面以及在某些消耗品储存库方面不同。
特别地,分析仪2000包括位于库存平台2014下方的检测/分析平台2012。然而,分析仪3000水平而不是垂直地分离这些平台。因此,分析仪3000包括库存部分3014和检测/分析部分3012。在所描绘的特定实施例中,库存部分3014位于分析仪300的左侧处,而检测/分析部分位于分析仪3000的右侧处。
库存部分3014包括第一消耗品储存库3110、第二消耗品储存库3120和废物储存库3130。第一储存库3110与储存库2110的相似之处在于它们都接收和存储消耗品,诸如试剂板2050和2060以及料盒2070。第二储存库3110位于第一储存库3110和废物储存库3130之间。
在图18C中最佳示出的第二储存库3120具有由壁3122和与壁3122相对设置的竖直杆/立柱限定的竖直隔室。这些隔室的尺寸设计成接收处理板2040的堆叠。杆3124有助于防止处理板2040的堆叠倾倒,同时还允许处理板2040充分暴露,使得机器人2300可以从相应的堆叠中取回板2040。
废物储存库3130通常与废物储存库2130相同。废物储存库3130划定分析仪300的库存部分3140的侧向边界并且帮助分离未使用的消耗品和检测/分析部分3012,这可以帮助分离源自任一区域的任何潜在污染。
检测/分析部分3012包括废物储存库3130(在一个实施例中,废物是扩增料盒)、废液储存库3170和多个检测器3270。废物储存库3160具有一个开口以接收和容纳废物,例如用过的扩增料盒2070,直到用户清空储存库3160。扩增的废物储存库3160可以可滑动地附接到一个或多个导轨上,以控制进出分析仪3000的移动。废液储存库3170经由软管或一些其他引导装置(未示出)连接到处理平台3016,使得废液可以从处理平台3016中被处理掉。检测器3270a-c与检测器2270a-c相同,每个都包括热循环仪3275和读取器头3271。检测器3270a-c以竖直布置定位,使得第二检测器3270b位于第三检测器3270c的正上方,并且第一检测器位于第二检测器3270b的正上方。检测器3270a-c沿相同方向打开以供库存机器人3300的抓取器3360存取。在一些实施例中,至少一个检测器3270可以位于与另一检测器相同的水平面上并且相对于其正交布置。
图18A-18C描绘了根据本公开的另一个实施例的分析仪3000'。分析仪3000'与分析仪3000相似,不同之处在于一个或多个消耗品存储库是可移动的,以便于存取。例如,如图18B所示,第二消耗品储存库3120可以像抽屉一样可移动,使得用户可以接近每个竖直隔室以补充处理板2040。在图18C所示的另一个示例中,第一和第二废物储存库3110、3120可以定位在可移动的底座3144上,以便形成可移动的消耗品储存库3142。在这方面,底座3144可以在导轨(未示出)上滑动,使得第一和第二消耗品储存器3110、3120都可以移动到系统3000'之外的位置以补充消耗品。在进一步示例中,转盘式消耗品库存(未示出)可包括可围绕竖直轴线旋转的多个隔室。这样的转盘库存可以旋转以将其隔室暴露给用户以便补充,同时还允许将存储在其中的消耗品定位以供机器人3300存取。
分析仪3000'还包括壳体3010,壳体3010在其前面包括孔隙3012,以便可以移动或移除各种储存库,诸如第一和第二储存库3110、3120、固体废物储存库3130、废液储存库3170以及扩增废物储存库3160,如图18A所示。可铰接地连接至壳体3010的门3014打开以允许用户接近此类储存库。
本文所述的分析仪的一个示例包括:i)壳体;ii)包括末端执行器的机械臂,该末端执行器具有:a)可旋转地连接到关节臂的主体;以及b)联接到主体并且可在第一方向上相对于彼此移动的第一和第二指状件,每个指状件具有从第一和第二指状件中的每一个向内并朝向第一和第二指状件中的另一个突出的接合特征,该接合特征被构造为接合物品的凹部,其中,该凹部被构造为接收该接合特征,使得当所述接合特征与物品如此接合时,所述机械臂能够承载悬挂在所述第一和第二指状件上的物品。该分析仪还具有:iii)至少一个梭平台,用于接收载有样本容器的梭,该载有样本的容器将由分析仪进行评估;其中梭平台具有自动从打开位置移动到闭合位置的夹爪组件,该夹爪组件包括接合构件,当夹爪组件处于打开位置时,该接合构件不接触由梭承载的样本容器的底部部分,并且当夹爪组件处于闭合位置时,该接合构件与样本容器的底部部分接合。分析仪还可以具有从样本容器中吸出样本的自动移液器,并且其中,当自动移液器从样本容器中吸出样本时,梭平台的夹爪组件闭合。当梭平台的夹爪组件处于打开位置时,机械臂将梭放置在梭平台上。自动化分析仪还可以具有磁性提取器。磁性提取器可以包括:i)限定空腔的壳体;ii)可移动地设置在壳体的空腔内的相邻排的永磁体;iii)驱动机构,该驱动机构连接到数排永磁体并被构造为将数排永磁体移入和移出空腔;iv)设置在空腔的相对侧处从壳体成排延伸的多个加热元件。将磁体从第一位置移动到第二位置将该数排磁体直接设置在数排加热元件之间,使得每个永磁体与相应的加热元件对齐。磁性提取器还可以具有限定凹槽的滴板,每个凹槽邻近相应排的加热元件设置。
磁性提取器可以适于在其上接收处理板,每个加热元件限定凹部,该凹部被构造成接收和保持设置在磁性提取器上方的处理板的提取管,加热元件连接到加热该加热元件的电源,以便当处理板放置在加热元件上方时,由处理板保持的移液管尖端伸入滴板的凹槽中。在分析仪的操作中,处理板由机械臂放置在磁性提取器上。在一些示例中,机械臂通过将机械指状件的接合特征与从处理板向上延伸的接合构件接合来将处理板运送到磁性提取器上,其中,向上延伸的接合构件具有在机械指状件处于第一接合位置时接收接合特征的开口,其中,该机械指状件在第一接合位置比在第二位置更靠近在一起,其中在第二位置时,机械指状件之间的距离太远以至于接合特征无法接合接合构件。在一些实施例中,机械指状件具有从机械指状件向下延伸的第二接合特征。在一个示例中,来自机械臂的向下延伸特征包括具有从其延伸的倒置截头圆锥形突起的柱。在操作中,倒置圆锥形特征接合在自动化分析仪中从第一位置运送到第二位置的消耗品中的对应槽口。自动化分析仪可以进一步包括用于接收用于自动化分析仪中的消耗品的消耗品储存库。消耗品的示例包括处理板、干燥试剂板、液体试剂板和扩增料盒。在一些实施例中,机械臂具有扫描仪,其中,机械臂通过使用扫描仪读取消耗品上的代码来取回存储在消耗品储存库中的消耗品。在一个示例中,消耗品储存库从第一侧接收消耗品,并且其中,机械臂从消耗品储存库的第二侧取回消耗品。在一个示例中,分析仪具有一个或多个处理模块,处理模块具有梭平台和磁性提取器。在分析仪具有多个处理模块的示例中,两个相邻的处理模块使用一个梭平台。在一个示例中,处理模块具有与磁性提取器相邻的干燥和液体试剂站,其中,磁性提取器适于在其上接收处理板,并且其中,处理板相对于放置在相应干燥和液体试剂站处的干燥和液体试剂板在处理模块中定位的较低。
在另一方面,用于自动诊断系统的处理板包括:i)板主体,其限定多个提取管、混合孔和移液管尖端保持站,该提取管、混合孔和移液管尖端保持站各自限定延伸穿过板主体的上表面的开口;ii)接合构件,其从板主体的上表面竖直向上延伸,在该接合构件的竖直部分中具有开口,其中,该开口面向板主体的周边,这样的开口被构造为接收自动化运送装置的接合特征。在一个示例中,处理板具有上表面、下表面和边缘,该边缘在上表面和下表面之间延伸并且限定板主体的周边。在另一个示例中,用于自动诊断系统的处理板包括:i)具有上表面、下表面和边缘的板主体,该边缘在上表面和下表面之间延伸并限定板主体的周边;以及ii)在板主体的上表面中并延伸穿过其中的多组开口,其中,该开口终止于封闭端。例如,每组具有:i)提取管,其具有从底面延伸并限定延伸穿过上表面的管开口的管主体;孔;以及移液管站,该移液管站被构造为接收和保持移液管尖端。在一个示例中,每组提取管、孔和移液管站排成一排,并且移液管站最靠近板主体的至少一侧上的边缘定位,该板主体带有提取管,并且孔更远离处理板的周边。
在一个示例中,接合构件从板主体的上表面竖直向上延伸并且在接合构件的竖直部分中具有开口,其中,开口面向板主体的周边,这样的开口被构造为接收自动化运送装置的接合特征。
本文还描述了一种库存机器人,该机器人具有带有用于搬运物品的末端执行器的机械臂,该末端执行器具有:i)可旋转地连接到关节臂的主体;以及ii)联接到主体并从主体延伸的至少两个指状件,该至少两个指状件中的一个指状件可相对于至少两个指状件中的另一个移动。至少两个指状件中的每一个具有第一突起,该第一突起在第一方向上朝至少两个指状件中的另一个延伸以用于接合物品的相应凹部。相应的凹部被构造为接收至少两个指状件中的每一个的突起中的一个,所述突起具有相对于第一方向在向下方向上延伸的第二突起。第二突起用于接合物品顶部中的凹部,其中,该凹部被构造为接收第二突起。
本文还描述了一种具有机械臂的自动化分析仪,该机械臂带有用于运送物品的末端执行器。该末端执行器包括:i)可旋转地连接到关节臂的主体;ii)联接到主体并从其沿第一方向延伸并且可沿横向于第一方向的第二方向相对于彼此移动的第一和第二指状件,每个指状件具有从其沿第二方向延伸的第一接合特征和从第一和第二指状件向下延伸的第二接合特征,该第二接合特征被构造为接合设置在物品顶部中的凹部,其中,该凹部被构造为接收第二接合特征以便当机械臂将物品从第一位置运送到第二位置时将物品从第一和第二指状件悬挂。
本文还描述了一种自动化分析仪,该分析仪具有:i)库存机器人,其包括其上带有末端执行器的机械臂,该末端执行器包括可旋转地连接到关节臂的主体;ii)从主体并且从主体的第一侧延伸的多个夹持指状件,其中,该主体可在竖直轴线上旋转;iii)位于末端执行器上的扫描仪,该扫描仪由库存机器人带到靠近物品,该库存机器人扫描设置在物品上并且位于末端执行器上除夹持指状件从其延伸的位置之外的位置处的识别信息。该分析仪还具有磁性提取器,该磁性提取器具有:i)限定空腔的壳体;ii)可移动地设置在壳体的空腔内的相邻排的永磁体;iii)驱动机构,该驱动机构连接到数排永磁体并被构造为将该数排永磁体移入和移出空腔;以及iv)从壳体成排延伸并设置在空腔的相对侧处的多个加热元件,每个加热元件限定凹部,该凹部被构造为接收和保持设置在磁性提取器上方的处理板的提取管,该加热元件连接到对加热元件进行加热的电源。在操作中,将磁体从第一位置移动到第二位置将数排磁体直接设置在数排加热元件之间,使得每个永磁体与相应的加热元件对齐。磁性提取器还具有从壳体延伸的多个加热元件;滴板,该滴板限定了凹槽,每个凹槽设置成与相应排的加热元件相邻;以及适于接收消耗品处理板的消耗品储存库,该处理板包括其上的机器可读标签,其中,该处理板从第一侧放置在消耗品储存库中,并且由库存机器人扫描仪从消耗品存储库的第二侧读取消耗品上的机器可读标签。在一个示例中,库存机器人被移动到消耗品储存库以获得处理板并扫描消耗品储存库中物品上的标签,并且当它识别出要取回的消耗品时,从消耗品储存库中取出消耗品并将其放置在磁性提取器上,使得由处理板保持的移液管尖端延伸到滴板的凹槽中。
本文还描述了一种操作生物样本自动化分析仪的方法,包括:i)将载有用于分析的样本容器的梭搁架放置在邻近分析仪壳体的位置处;ii)移动包括末端执行器的机械臂,使得末端执行器平移到邻近分析仪的位置,而机器人的其他部分保留在分析仪中;iii)将第一和第二指状件朝向搁架梭推进,使得第一和第二指状件的接合特征进入搁架梭中的对应狭槽中,其中,搁架中狭槽之间的距离对应于当指状件插入狭槽中时从主体延伸的指状件之间的距离;iv)一旦接合构件被推进到狭槽中,将机械臂的指状件平移得更靠近在一起以抓住位于预分析系统内的梭搁架;并且v)使用机械臂将梭搁架从邻近分析仪的位置移动到分析仪中。在一个示例中,末端执行器具有主体,该主体带有从主体延伸的第一和第二指状件,每个指状件上具有接合特征,其中,第一和第二指状件设置在主体中的通道中,并且可以通过机器人平移更靠近在一起或进一步分开。在一个示例中,在分析仪和相邻的预分析系统之间存在物理存取,在该预分析系统中准备样本进行分析,分析在分析仪中进行,并且机械臂从相邻的预分析系统中取回梭搁架,并且将其带入分析仪中。该方法还可以包括:i)使用机械臂,将携带到分析仪中的梭搁架放置在梭保持平台上,其中,该梭保持平台具有夹爪组件,该夹爪组件带有打开位置和闭合位置,其中,当梭搁架放置在梭保持平台上时,夹爪组件处于打开位置;ii)释放夹持指状件和梭搁架之间的张力,并将从末端执行器延伸的夹持指状件从梭搁架中的狭槽中取出;iii)在夹持指状件被取出之后,将夹爪组件移动到闭合位置,从而当夹爪组件处于闭合位置时,使夹爪组件的接合构件紧靠梭中的样本容器的下部固定;iv)使用机器人移液器将移液管尖端插入样本容器中;v)使用机器人移液器吸取样本容器中的至少一部分样本;vi)当夹爪组件处于闭合位置时,从样本容器中取出移液管尖端。在从样本容器中取出移液管尖端后,将夹爪移至打开位置,然后该方法通过以下步骤继续:vii)将末端执行器的第一和第二指状件向梭搁架推进,使得第一和第二指状件的接合特征进入梭搁架中的对应狭槽中,其中,梭搁架中的狭槽之间的距离对应于当指状件插入狭槽中时从主体延伸的指状件之间的距离;viii)在接合构件被推进到狭槽中之后,将指状件平移到一起以抓住位于预分析系统内的梭搁架;ix)将梭搁架从梭保持平台运回邻近分析仪的位置;x)从末端执行器释放梭搁架;以及xi)将末端执行器缩回分析仪中。
在另一个示例中,操作生物样本的自动化分析仪的方法包括以下步骤:i)将库存机器人的机械臂的末端执行器移动到位于第一位置处的物品上方,该末端执行器具有主体,该主体带有位于通道中并且在该通道内可线性移动到位于第一位置处的物品上方的位置的第一和第二指状件,该指状件具有在其上的接合特征;ii)将第一和第二指状件平移开,使得它们之间的距离大于作为从物品的主体向上延伸的突起的接合构件之间的距离,接合构件相对于物品的周边设置在内侧,并且具有面向物品周边的开口;iii)移动末端执行器,使得从每个指状件延伸的接合特征与接合构件内的对应开口对齐;iv)将第一和第二指状件朝向彼此移动以接合接合构件开口;v)提起物品,使物品主体置于指状件下方;vi)将物品移动到第二位置。
在进一步示例中,接合特征是从第一和第二指状件中的每一个向内并朝向第一和第二指状件中的另一个突出的第一接合特征或从每个指状件向下延伸的第二接合特征中的一个,其中,从指状件向下延伸的特征包括带有从其延伸的倒置截头圆锥形突起的柱。在进一步示例中,第一位置是消耗品储存库。消耗品储存库可以包含第一物品,该第一物品包括在其顶表面中的接合构件。该示例性方法可进一步包括:vii)将末端执行器移动到第一物品的顶表面上方;以及viii)将末端执行器降低到物品的顶表面上方,使得第二接合特征与第一物品的顶表面中的对应接合构件接合。消耗品储存库还可以包含第二物品,该第二物品包括在物品主体的上表面中并延伸穿过其中的多组开口,其中,该开口终止于封闭端,其中,每组具有以下各项中的每一个:a)具有管主体的提取管,该管主体从底面延伸并限定延伸穿过上表面的管开口;b)孔;c)移液管站,该移液管站被构造为接收和保持移液管尖端,其中,每组提取管、孔和移液管站对齐成一排,其中,该移液管站定位成最靠近板主体的至少一侧上的边缘,该板主体带有提取管,并且孔更远离处理板的周边;以及d)在顶表面内侧并从其顶表面延伸的接合构件,该接合构件具有面向顶表面周边的开口,该方法进一步包括在第一物品的顶表面上方移动末端执行器。该方法可以包括以下步骤:ix)将末端执行器的接合特征与接合构件对齐;x)将接合特征插入接合构件中;xi)使第一和第二指平移更靠近一起以抓住接合构件;xii)将第二物品运送到第二位置。
在一个示例中,末端执行器被水平推进以将指状件移动到对应的凹部中。在末端执行器包括扫描仪的实施例中,该方法进一步包括:i)命令库存机器人从消耗品储存库取回物品;ii)扫描消耗品储存库中物品上的机器可读标签;iii)确定标签信息是否与库存机器人被命令取回的物品匹配;iv)如果确定匹配,则使末端执行器的臂与物品上的接合构件接合,并使用库存机器人将物品从消耗品储存库运送到第二位置。
从前述内容并参考各种附图,本领域技术人员将理解,在不脱离本公开的范围的情况下,还可以对本公开进行某些修改。尽管在附图中示出了本公开的若干实施例,但本公开并不意在限制于此,因为本公开的范围应与本领域所允许的一样宽,并且说明书应被类似地阅读。因此,以上描述不应被解释为限制,而仅被解释为特定实施例的范例。本领域技术人员将设想在所附权利要求的范围和精神内的其他修改。

Claims (8)

1.一种自动化分析仪,其特征在于,所述自动化分析仪包括:
壳体;以及
包括至少一个模块的处理平台,其中,所述至少一个模块中的每一个包括用于接收干燥试剂消耗品的第一位置、用于接收湿试剂消耗品的第二位置和用于接收处理板消耗品的第三位置,所述处理板消耗品被构造为与位于所述处理平台下方并与所述处理板消耗品对齐的磁性提取器一起工作,以从所述处理板消耗品中提取靶标物质;其中,所述处理平台进一步包括多个溜槽,每个溜槽位于所述至少一个模块中的一个中,其中,所述溜槽将丢弃的移液管尖端传送到所述处理平台下方以被废物接收器接收;并且其中,所述处理平台进一步包括多个抽屉,所述多个抽屉容纳用于在所述分析仪中使用的移液管尖端,并且其中,与所述溜槽相邻的抽屉比不与所述溜槽相邻的抽屉短,以为所述处理平台上的所述溜槽提供空间。
2.根据权利要求1所述的自动化分析仪,其特征在于,所述自动化分析仪进一步包括自动移液器,所述自动移液器使用从所述多个抽屉中的一个获取的移液管从样本容器中吸取样本,并将使用过的移液管尖端丢弃到所述多个溜槽中的一个中。
3.根据权利要求1所述的自动化分析仪,其特征在于,所述磁性提取器进一步包括:
限定空腔的壳体;
可移动地设置在所述壳体的所述空腔内的相邻的数排永磁体;
驱动机构,所述驱动机构连接到所述数排永磁体并且被构造为将所述数排永磁体移入和移出所述空腔;
从所述壳体成排延伸且设置在所述空腔的相对侧处的多个加热元件;
其中,将所述永磁体从所述第一位置移动到所述第二位置将所述数排永磁体直接设置在数排所述加热元件之间,使得每个永磁体与相应的加热元件对齐;以及
滴板,所述滴板限定了凹槽,每个凹槽设置成与相应排的加热元件相邻。
4.根据权利要求3所述的自动化分析仪,其特征在于,所述磁性提取器适于在其上接收处理板,每个所述加热元件限定凹部,所述凹部被构造成接收和保持设置在所述磁性提取器上方的所述处理板的提取管,所述加热元件连接到加热所述加热元件的电源,以便当所述处理板放置在所述加热元件上时,由所述处理板保持的所述移液管尖端伸入所述滴板的所述凹槽中。
5.根据权利要求4所述的自动化分析仪,其特征在于,所述处理板由机械臂放置在所述磁性提取器上。
6.根据权利要求1所述的自动化分析仪,其特征在于,所述自动化分析仪进一步包括用于接收在所述自动化分析仪中使用的消耗品的消耗品储存库。
7.根据权利要求6所述的自动化分析仪,其特征在于,所述消耗品选自由处理板、干燥试剂板、液体试剂板和扩增料盒组成的组。
8.根据权利要求1所述的自动化分析仪,其特征在于,所述至少一个模块进一步包括与所述磁性提取器相邻的干燥和液体试剂站,其中,所述磁性提取器适于在其上接收处理板,并且其中,相对于放置在相应干燥和液体试剂站处的干燥和液体试剂板,所述处理板在所述至少一个模块中定位较低。
CN202222356153.2U 2021-09-07 2022-09-06 自动化诊断分析仪中的库存处理设备 Active CN219084965U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163241351P 2021-09-07 2021-09-07
US63/241,351 2021-09-07

Publications (1)

Publication Number Publication Date
CN219084965U true CN219084965U (zh) 2023-05-26

Family

ID=85506925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202222356153.2U Active CN219084965U (zh) 2021-09-07 2022-09-06 自动化诊断分析仪中的库存处理设备

Country Status (2)

Country Link
CN (1) CN219084965U (zh)
WO (1) WO2023038893A1 (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5058299A (en) * 1998-08-04 2000-02-28 Dynex Technologies Inc. Automated immunoassay apparatus with flexible pick-up arm
JP5872765B2 (ja) * 2009-12-10 2016-03-01 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft 空間的分離による増幅システム
JP2019513235A (ja) * 2016-03-15 2019-05-23 アボット モレキュラー インク. 自動分析のためのシステム及び方法
CN207164073U (zh) * 2016-04-22 2018-03-30 贝克顿·迪金森公司 自动化诊断分析仪
EP3446132B1 (en) * 2016-04-22 2023-06-14 Becton, Dickinson and Company Automated analyzer piercing stoppers for aspiration

Also Published As

Publication number Publication date
WO2023038893A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US20220365107A1 (en) Automated sample diagnostic analyzer and method for its operation
CN109073669B (zh) 自动化诊断分析仪和用于自动化诊断分析仪的操作的方法
US11204358B2 (en) Specimen processing and measuring system
WO2009110583A1 (ja) 分析装置および測定ユニット
JP4246720B2 (ja) リフトシステム付き装置
WO2023076159A1 (en) Calibration and design of an automated diagnostic analyzer
CN219084965U (zh) 自动化诊断分析仪中的库存处理设备
CN220490845U (zh) 自动化分析仪
CN117957448A (zh) 用于自动化诊断分析仪中的库存处理的设备和方法
JP6871935B2 (ja) 体外診断用自動分析システム
JP7221997B2 (ja) 自動分析器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant