CN217922436U - 用于导电型碳化硅晶片的电流加热装置 - Google Patents

用于导电型碳化硅晶片的电流加热装置 Download PDF

Info

Publication number
CN217922436U
CN217922436U CN202221248562.4U CN202221248562U CN217922436U CN 217922436 U CN217922436 U CN 217922436U CN 202221248562 U CN202221248562 U CN 202221248562U CN 217922436 U CN217922436 U CN 217922436U
Authority
CN
China
Prior art keywords
electrode
silicon carbide
carbide wafer
tray structure
control module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202221248562.4U
Other languages
English (en)
Inventor
丁雄傑
韩景瑞
刘薇
邹雄辉
李锡光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Tianyu Semiconductor Co ltd
Original Assignee
Dongguan Tianyu Semiconductor Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Tianyu Semiconductor Technology Co ltd filed Critical Dongguan Tianyu Semiconductor Technology Co ltd
Priority to CN202221248562.4U priority Critical patent/CN217922436U/zh
Application granted granted Critical
Publication of CN217922436U publication Critical patent/CN217922436U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本实用新型公开一种用于导电型碳化硅晶片的电流加热装置,包括电源控制模块、测温单元、第一电极、第二电极及托盘结构,托盘结构上设有容置槽,第一、第二电极分别对应于托盘结构的中心和边缘设置,且第一、第二电极分别电连接于电源控制模块的正负极,测温单元设于托盘结构的上方并电连接于电源控制模块,当容置槽内容纳碳化硅晶片时,碳化硅晶片使第一、第二电极导通从而形成加热电路,利用导电型碳化硅晶片的内部电阻发热来实现热退火,该电流加热装置的升、降温速率远快于现有的炉腔加热装置,在小批量处理导电型碳化硅晶片时,具有较大时间成本和能耗成本优势。

Description

用于导电型碳化硅晶片的电流加热装置
技术领域
本实用新型涉及晶体合成技术领域,尤其涉及一种适用于碳化硅晶片在化学气相沉积法生长外延层前后的高温退火过程中的加热装置。
背景技术
碳化硅半导体材料具有高热导率、高击穿场、高饱和电子漂移速率和高键合能等优点,可很好地满足现代电子技术在高温、高功率、高电压、高频率及高辐射等恶劣条件的应用要求。
各类碳化硅功率电子器件必须制作在高质量的外延晶片上,高质量的碳化硅外延晶片的批量生产除了需要经过外延层生长外,还需经过预处理、磨抛、清洗等必要配套工序。对于一些万伏级外延晶片(外延层厚度>100μm),还需要增加碳离子注入、氢气退火等少子寿命调控工序,以确保载流子有足够的扩散距离来应对厚度的增加。这些配套工序经常会涉及对碳化硅衬底或外延片的热处理过程,目前常规的处理方式是在外延生长炉或专用退火炉等炉腔加热装置上进行高温退火。
现有的用外延炉进行退火处理的方式,极大地占用了外延晶片的生产产能。专用退火炉虽然可以通过夹具来批量处理外延晶片,但是其庞大的腔体使得升、降温的时间都较长,因此,在面对定制化生产过程中处理少量晶片时,其单位晶片的时间和能耗成本的劣势就会被放大。成本问题是目前制约碳化硅功率电子器件大规模取代传统硅功率电子器件的主要因素之一。
因此,有必要提供一种可使碳化硅晶片快速升温退火的加热装置,以在小批量处理碳化硅晶片时,能够相较于现有的加热装置提升效率并具有节能优势。
实用新型内容
本实用新型的目的在于提供一种用于导电型碳化硅晶片的电流加热装置,以在小批量处理碳化硅晶片时,能够提升效率并具有节能优势。
为实现上述目的,本实用新型的技术方案为:提供一种用于导电型碳化硅晶片的电流加热装置,其包括电源控制模块、测温单元、第一电极、第二电极以及托盘结构,所述托盘结构上设有容置槽,所述第一电极、所述第二电极中的一者对应于所述托盘结构的中心设置,所述第一电极、所述第二电极中的另一者安装于所述托盘结构的边缘,并且所述第一电极、所述第二电极分别电连接于所述电源控制模块的正负极,所述测温单元设于所述托盘结构的上方并电连接于所述电源控制模块,当所述容置槽内容纳碳化硅晶片时,所述碳化硅晶片使所述第一电极、所述第二电极导通从而形成加热电路,所述测温单元用于检测所述容置槽内的碳化硅晶片的表面温度。
较佳地,所述第一电极、所述第二电极中的一者设有一个并对应于所述托盘结构的中心安装,所述第一电极、所述第二电极中的另一者设有多个并均匀地安装于所述托盘结构的边缘。
较佳地,所述第一电极对应于所述托盘结构的中心设置并呈圆柱形,多个所述第二电极沿所述托盘结构的周向均匀布置,且每一所述第二电极均具有一呈方形的接触部,所述接触部凸伸于所述容置槽内,所述第一电极、所述接触部均用于抵接所述碳化硅晶片。
较佳地,所述接触部的边长大于等于所述第一电极的直径。
较佳地,当所述第一电极电连接于所述电源控制模块的正极、所述第二电极电连接于所述电源控制模块的负极时,所述加热电路等效为由多个阻值为Ri的电阻并联的电阻加热电路,这种方式可实现对碳化硅晶片的均匀加热;当所述第一电极电连接于所述电源控制模块的负极、所述第二电极电连接于所述电源控制模块的正极时,所述加热电路等效为多个阻值为Ri并且相互独立的电阻加热电路,这种方式可对碳化硅晶片的指定区域进行可控的非均匀加热退火。
较佳地,当所述第二电极设有n个时,对应于第i个所述第二电极的等效电阻的阻值Ri=ρ·r/li·t,其中,ρ为所述碳化硅晶片的电阻率,r为所述碳化硅晶片的半径,t为所述碳化硅晶片的厚度,li为在所述第一电极与第i个所述第二电极的连接方向上、所述第一电极与所述第二电极的投影的宽度最小值;其中,n 为大于等于1的正整数,i为大于等于1小于等于n的正整数。
较佳地,所述电源控制模块根据施加于所述第一电极、所述第二电极之间的电压以及所述等效电阻的阻值Ri,可计算出等效的电阻加热电路的电流以及电阻发热功率,并根据所述测温单元检测到的温度与电阻发热功率之间的关系,实时调节施加于所述第一电极、所述第二电极之间的电压,以调节电阻发热功率,进而达到调节加热温度之目的。
较佳地,所述托盘结构包括石英玻璃基材,所述石英玻璃基材的厚度为1cm 且其二氧化硅含量在99.5%以上。
较佳地,所述托盘结构还包括粘合于所述石英玻璃基材上方的区熔单晶硅层、成型于所述区熔单晶硅层上方的金刚石多晶涂层,其中,所述区熔单晶硅层的厚度为100μm~500μm,其电阻率大于5000Ω·cm,金刚石多晶涂层的厚度为10μm~50μm,金刚石多晶涂层具有绝缘和优异导热性能,主要使电加热时的热量可以快速且均匀地传导到碳化硅晶片的整晶面,更利于实现碳化硅晶片的温度的均匀分。
较佳地,所述容置槽的直径为1520mm、深度为0.3mm。
较佳地,所述测温单元设有多个,多个所述测温单元间隔地设于所述容置槽的上方,用于对所述碳化硅晶片的不同区域的表面温度进行检测,并且,可根据不同的退火温度范围来设置不同型号的测温单元。
更优选地,所述测温单元采用红外测温仪,并且当退火温度在25℃~450℃之间时,采用单色测温仪,当退火温度在450℃~1600℃之间时,采用辐射比色测温仪。
与现有技术相比,由于本实用新型的用于导电型碳化硅晶片的电流加热装置,在对应于托盘结构的中心以及托盘结构的边缘分别设置第一电极、第二电极,并且第一电极、第二电极分别电连接于所述电源控制模块的正负极,因此,当所述托盘结构的容置槽内容纳碳化硅晶片时,所述碳化硅晶片与第一电极、第二电极相接触而使两者导通从而形成加热电路,首先,利用导电型碳化硅晶片的内部电阻发热来实现热退火,其优点是升、降温速率远快于现有的炉腔加热装置,在小批量处理导电型碳化硅晶片时,具有较大时间成本和能耗成本优势,可以作为在碳化硅外延晶片量产中炉腔加热装置退火工艺的一种补充方案,其次,采用中心到边缘的导电回路能有效避免圆形晶片边缘到边缘导电回路中出现复杂的电场分布的情况,可以将二维的电场分布模型简化为一维的简单电路模型。
附图说明
图1是本实用新型第一实施例之电流加热装置的俯视图。
图2是图1的剖视图。
图3是图1中电流加热装置的使用状态剖视图。
图4是图3中电流加热装置的等效电阻示意图。
图5是图3中电流加热装置的等效电路示意图。
图6是本实用新型第一实施例中电流加热装置的原理框图。
图7是本实用新型第二实施例之电流加热装置的剖视图。
图8是图7的中电流加热装置的使用状态剖视图。
图9是图8中电流加热装置的俯视图。
具体实施方式
现在参考附图描述本实用新型的实施例,附图中类似的元件标号代表类似的元件。需说明的是,本实用新型所涉及到的方位描述,例如上、下、左、右、前、后等指示的方位或位置关系均为基于附图所示的方位或位置关系,仅是为了便于描述本申请的技术方案或/和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。所描述到的第一、第二等只是用于区分技术特征,不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
首先结合图1-图9所示,本实用新型所提供的用于导电型碳化硅晶片的电流加热装置100,主要适用于导电型碳化硅单晶衬底晶片及外延晶片的加热退火,但并不限于此,当然还可以用于其他导电型的晶片的加热退火,为便于描述,下文中用碳化硅晶片200来代指所有的导电型晶片。
结合图1-图9所示,本实用新型的用于导电型碳化硅晶片的电流加热装置 100,其包括第一电极110、第二电极120、测温单元130、托盘结构140以及电源控制模块150(见图5-图6)。其中,所述托盘结构140上设有用于容纳碳化硅晶片200的容置槽140a,第一电极110、第二电极120中的一者对应于托盘结构140的中心设置,第一电极110、第二电极120中的另一者安装于所述托盘结构140的边缘,并且第一电极110、第二电极120分别电连接于所述电源控制模块150的正负极,测温单元130设于托盘结构140的上方并电连接于所述电源控制模块150,当所述容置槽140a内容纳碳化硅晶片200时,使第一电极110、第二电极120与所述碳化硅晶片200相接触从而使两者导通,因此,电源控制模块150、第一电极110、碳化硅晶片200、第二电极120形成加热电路,利用电加热方式来实现碳化硅晶片200的热退火;并且,测温单元130用于检测容置槽140a内的碳化硅晶片200的表面温度,所述电源控制模块150用于根据测温单元130所检测到的温度控制调节施加于第一电极110、第二电极120之间的电压,使化硅晶片200的温度保持在热退火工艺的目标值附近。
在本实用新型中,第一电极110、第二电极120中的一者设有一个并对应于托盘结构140的中心安装,第一电极110、第二电极120中的另一者设有多个并均匀地安装于托盘结构140的边缘。在一种具体实施方式中,第一电极110对应于托盘结构140的中心设置并呈圆柱形,多个第二电极120沿托盘结构140 的径向均匀布置,且每个第二电极120均具有一呈方形的接触部121,该接触部 121凸伸于所述容置槽140a内,如图2、图5所示;当所述容置槽140a内容纳碳化硅晶片200时,第一电极110、接触部121均可以抵接所述碳化硅晶片200 的表面,如图4、图9所示。
在本实用新型中,所述测温单元130可以设置一个或多个,测温单元130 设于所述容置槽140a的上方,用于检测碳化硅晶片200的表面温度,当具有多个测温单元130时,多个测温单元130间隔设置,可以分别检测碳化硅晶片200 的不同区域的表面温度。另外,还可根据不同的退火温度范围来设置不同型号的测温单元130,详见后述。
下面再次参看图1-图9所示,对本实用新型之用于导电型碳化硅晶片的电流加热装置100的不同实施例分别进行说明。
先结合图1-图4所示,在本实用新型的第一实施例中,所述托盘结构140 包括石英玻璃基材141、粘合于所述石英玻璃基材141上方的区熔单晶硅层142、成型于所述区熔单晶硅层142上方的金刚石多晶涂层143。其中,石英玻璃基材 141的厚度为1cm且其二氧化硅含量在99.5%以上,区熔单晶硅层142的厚度为 100μm~500μm,电阻率大于5000Ω·cm,金刚石多晶涂层143采用直流电弧等离子体喷射化学气相沉积法在所述区熔单晶硅层142上沉积形成,并且金刚石多晶涂层143的厚度为10μm~50μm,当然,金刚石多晶涂层143可以采用其他方式成型,由于金刚石多晶涂层143具有绝缘和优异导热性能,因此,使电加热时的热量可以快速且均匀地传导至碳化硅晶片200的整晶面,更利于实现碳化硅晶片200的温度的均匀分布。
更具体地,所述托盘结构140的容置槽140a设于金刚石多晶涂层143的上方,也即,金刚石多晶涂层143形成容置槽140a的底面,如图2所示。在本实施例中,所述容置槽140a的直径优选为1520mm、深度优选为0.3mm,用于容纳直径6英寸、厚度为350μm的碳化硅晶片200。可理解地,所述容置槽140a 的尺寸并不以此为限,可以根据具体的碳化硅晶片200的不同尺寸灵活设置,以满足不同尺寸、型号的碳化硅晶片200的加热。
继续结合图1-图2所示,本实施例中,用于导电型碳化硅晶片的电流加热装置100设有一个第一电极110以及多个第二电极120,其中,第一电极110对应于托盘结构140的中心设置并呈圆柱形,第一电极110优选为镀锡铜材质;多个第二电极120沿托盘结构140的径向均匀布置并通过导线并联接地,每个第二电极120均具有一呈方形的接触部121,接触部121凸伸于容置槽140a内用于抵接碳化硅晶片200,每个第二电极120也优选为镀锡铜材质。当导电型的碳化硅晶片200放置于容置槽140a内之后,使第一电极110接触碳化硅晶片200的中心,接触部121接触碳化硅晶片200的边缘,碳化硅晶片200与第一电极110、第二电极120接触而使两者导通,本实施例中,第一电极110、第二电极 120的设置方式,采用中心到边缘的导电回路能有效避免圆形晶片边缘到边缘导电回路中出现复杂的电场分布的情况(市面上的导电型碳化硅单晶衬底和外延片除了定位边小部分区域外,近似为规则的正圆形),可以将二维的电场分布模型简化为一维的简单电路模型,更容易实现电源控制模块150对碳化硅晶片200 的温度调控。
本实用新型中,所述接触部121的边长大于等于第一电极110的直径,如图4所示。在本实施例中,第一电极110的直径与所述接触部121的边长优选相等,两者均优选为6mm,当然并不限于该数值,可根据具体的需要灵活设置两者的尺寸。
继续参看图1-图2所示,在本实施例中,第一电极110电连接于所述电源控制模块150的正极,第二电极120电连接于电源控制模块150的负极并通过导线并联接地,因此,所述电流加热装置100的加热电路等效为由多个阻值为 Ri的碳化硅电阻并联的电阻加热电路,这种方式中可实现对碳化硅晶片200的快速、均匀加热。
结合图3-图5所示,当第二电极120设有n个时,所述电流加热装置100 的加热电路等效为阻值为Ri(i=1,2,……,n)的碳化硅电阻并联形成的电阻加热电路(参看图5所示),其中,n为大于等于1的正整数。对应于第i个第二电极120的等效电阻的阻值Ri=ρ·r/li·t,其中,ρ为碳化硅晶片200的电阻率, r为碳化硅晶片200的半径,t为碳化硅晶片200的厚度,li为在第一电极110与第i个第二电极120的连接方向上、第一电极110与第二电极120的投影的宽度最小值,具体参看图4所示,i为大于等于1小于等于n的正整数。
在本实施例中,优选设置八个第二电极120,八个第二电极120依次相隔 40°对称地分布在托盘结构140的边缘,如图1、图4所示。因此,本实施例中的加热电路可以等效为八个阻值为Ri(i=1,2,……,n)的碳化硅电阻并联形成的电阻加热电路,如图5所示。例如,对于其中一种碳化硅单晶衬底片,其电阻率ρ为0.02,半径r为7.1.2mm,晶片厚度t为0.35mm;对于等效的碳化硅电阻Ri而言,第一电极110与任何一个第二电极120之间等效的碳化硅电阻Ri的宽度li均为6mm,如图4所示,根据上述公式Ri=ρ·r/li·t计算得到每个等效的碳化硅电阻Ri的阻值均为6.78Ω。
再次结合图1-图5所示,在本实施例中,根据上述公式计算出等效的碳化硅电阻Ri的阻值后,所述电源控制模块150根据其加载于该等效的碳化硅电阻 Ri上的电压U以及欧姆定律,计算出等效的碳化硅电阻Ri上的电流I,再进一步根据公式P=I2R计算出每一个等效的电阻加热电路的功率。然后,根据功率P 与退火温度之间的对应关系,可实时的控制或调节施加在第一电极110、第二电极120之间的电压,从而实现退火温度的调节。
需要特别注意的是,加载于上述等效的碳化硅电阻Ri上的电压U,需考虑通过碳化硅晶片的最大电流密度,以避免过高的电流密度损坏碳化硅晶格。例如,可以参考在碳化硅肖特基势垒二极管(SiC-SBD)或金属-氧化物半导体场效应晶体管(MOSFET)器件应用中的额定功率的电流密度,以600V、6A的 SiC-SBD为例,其一般需要die面积为2mm×2mm,其额定工况下的电流密度为1.5A/mm2,从行业经验的角度看,说明在该电流密度下可以保证器件的长期稳定使用,不存在晶格损伤问题。因此,以最大电流密度1.5A/mm2为例,当第一电极110、第二电极120与碳化硅晶片200接触而导通时,由于碳化硅晶片 200上等效的碳化硅电阻Ri的有效截面面积S=li×t=6mm×0.35mm=2.1mm2,以最大电流密度1.5A/mm2计算,可以得出最大电流I=2.1mm2×1.5A/mm2=3.15 A,根据欧姆定律,可计算出加载于每个等效的碳化硅电阻Ri上的最大电压 U=3.15A×6.78Ω=21.357V。也就是说,在不超过21.357V的范围内调节施加于第一电极110、第二电极120之间的电压,可以在保证不损坏碳化硅晶格的前提下,实现退火温度的调节。
结合图3-图6所示,在本实用新型的一种具体实施方式中,为避免过高的电流密度损坏碳化硅晶格,选择在第一电极110、第二电极120之间加上20.3V (小于上述最大电压21.357V)的电压,根据欧姆定律可得,每个等效的碳化硅电阻Ri上产生的电流为I=20.3V/6.78Ω≈3.0A,如上所述,由于电流通过碳化硅晶片200上等效的碳化硅电阻Ri的有效截面面积S=li×t=6mm×0.35mm=2.1 mm2,因此,可以计算得出通过该截面的电流密度约为1.4A/mm2,也即小于额定工况下的电流密度为1.5A/mm2。此时,可计算出每一个等效的电阻加热电路的功率P,即,P=I2R=(3.0A)2×6.78Ω=61w,由八条电阻加热电路所组成的电加热装置100的总功率为61w×8=488w,可以满足退火目标温度为600℃的碳化硅晶片200的加热。并且,在具体加热过程中,利用测温单元130实时检测碳化硅晶片200的表面温度,并将检测到温度反馈至电源控制模块150,电源控制模块150根据功率P与退火温度之间的对应关系,并通过上述逻辑算法计算施加在第一电极110、第二电极120之间的电压,以将温度控制在600±10℃的范围内。
可理解地,在本实用新型中,第二电极120的数量并不限于八个,在其他实施例中,当需要更高的退火温度(例如超过600℃时)时,则可以增加第二电极120的数量,由此来增加等效的电阻加热电路的数量,进而增加总的发热功率,以提高退火温度。
再次结合图1-图6所示,在本实施例中,所述测温单元130仅设置一个,且测温单元130优选采用红外测温仪,并且可以根据不同的退火温度范围来配备不同型号的红外测温仪,例如,当退火温度在25℃~450℃之间时,采用单色测温仪,当退火温度在450℃~1600℃之间时,采用辐射比色测温仪。当然,所述测温单元130还可以是其他的温度检测装置。
下面再次结合图1-图6所示,本实施例中的电流加热装置100使用时,在托盘结构140的容置槽140a中放置直径为6英寸、厚度为350μm的碳化硅晶片200,同时,使第一电极110共圆心地接触并连接碳化硅晶片200的表面的圆心,参看图1、图4所示,第一电极110电连接于电源控制模块150的正极,同时,八个第二电极120依次相隔40°的对称设置,每个第二电极120的接触部 121均接触碳化硅晶片200的上表面,并且每个第二电极120均电连接于源控制模块的负极并通过导线并联接地,如图6所示。
然后,电源控制模块150分别在第一电极110与每个第二电极120之间施加电压,导电型的碳化硅晶片200将第一电极110、第二电极120导通,从而在碳化硅晶片200的内部实现电阻发热,进而对碳化硅晶片200进行加热,并且,八个第二电极120的设置,相当于在碳化硅晶片200上产生八个并联的电阻加热电路,而托盘结构140的金刚石多晶涂层143在与碳化硅晶片200的背部接触时,起到绝缘作用的同时,其高热导率帮助热量在碳化硅晶片200的横向更加均匀地分布,使得八个电阻加热电路产生的发热量可以快速且均匀的传遍整个碳化硅晶片200,更利于实现碳化硅晶片200的温度的均匀分布。
下面结合图7-图9所示,在本实用新型的第二实施例中,电流加热装置100 与上述第一实施例的主要差异在于:第一电极110、第二电极120的电连接方式不同。在本实施例中,第一电极110电连接于所述电源控制模块150的负极并接地,第二电极120电连接于所述电源控制模块150的正极,因此,所述电流加热装置100的加热电路可以等效为多个阻值为Ri并且相互独立的电阻加热电路,由于是多个独立的电阻加热电路,因此,可对碳化硅晶片200的指定区域进行可控的非均匀加热退火。
在本实施例中,每个等效的碳化硅电阻的阻值Ri=ρ·r/li·t,等效及计算方式与上述第一实施例中的相同,不再重复描述,因此,每个等效的碳化硅电阻的阻值Ri均为6.78Ω。
参看图7-图8所示,本实施例中同样设置有八个第二电极120,因此,所述电流加热装置100的加热电路等效为八个阻值为Ri并且相互独立的电阻加热电路,施加在第一电极110与各个第二电极120的之间的电压不同,分别为电压 V1、V2……V8,也就是说,等效得到的八个电阻加热电路中的电流不同,进而使各个电阻加热电路因电流不一致而产生不同的电阻发热量。
需要说明的是,并不是说本实施例中在八个等效的电阻加热电路中只能分别施加不同的电压,根据需要,当然可以选择在八个等效的电阻加热电路中施加相同的电压。
本实施例中,第一电极110、第二电极120的结构、安装方式以及其他未描述的部分,均与上述第一实施例中的相同,在此不再重复描述。
继续结合图7-图9所示,在本实施例中,所述托盘结构140的结构也与上述第一实施例中的略有差异,具体为,所述托盘结构140仅包括石英玻璃基材 141,该石英玻璃基材141的厚度为1cm且其二氧化硅含量在99.5%以上。当然,所述托盘结构140也可以采用其他高绝缘和低热导率的涂层材料成型。本实施例中,由于不设置金刚石多晶涂层143,因此,所述电流加热装置100的等效的八个电阻加热电路所产生的不同发热量,无法快速、均匀地传导到碳化硅晶片 200的整晶面,通过测温单元130和电源控制模块150的配合,可以实现对碳化硅晶片200的指定区域可控的非均匀加热退火。具体等效得到的每个电阻加热电路的加热功率的调节方式与上述第一实施例中的相同,不再重复描述。
继续结合图7-图8所示,在本实施例中,优选设置多个测温单元130,多个测温单元130间隔地设于容置槽140a的上方,并对应于碳化硅晶片200的指定区域设置,用于检测碳化硅晶片200的指定区域的表面温度,电源控制模块150 根据不同的测温单元130的检测结果,分别控制或调节对应区域的第一电极110、第二电极120之间的电压,由此使各个等效的电阻加热电路的电压不同,实现碳化硅晶片200的不同区域的分别加热。
需要说明的是,对于本实施例中的托盘结构140,并不仅限于仅包括石英玻璃基材141,其当然还可以设置为上述第一实施例中的三层结构,这并不影响等效得到的八个相互独立的电阻加热电路的加热。
再次结合图7-图9所示,本实施例中的电流加热装置100使用时,在托盘结构140的容置槽140a中放置直径为6英寸、厚度为350μm的碳化硅晶片200,同时,使第一电极110共圆心地接触并连接碳化硅晶片200的表面的圆心,如图7、图9所示,同时第一电极110电连接于电源控制模块150的负极并接地,八个第二电极120之间分别相隔40°的对称设置,每个第二电极120的接触部 121均接触碳化硅晶片200的上表面,每个第二电极120均电连接于电源控制模块150的正极,如图7-图9所示。
然后,电源控制模块150分别在八个第二电极120施加不同的电压V1、 V2、……V8,使所述电流加热装置100等效得到的八个电阻加热电路产生不同的发热量,由于托盘结构140不设置金刚石多晶涂层143,因此,八个电阻加热电路产生的不同的发热量分别传输至碳化硅晶片200,实现对碳化硅晶片200的不同区域的分别加热,并且可分别控制和调节前述电压V1、V2、……V8,实现对碳化硅晶片200的指定区域可控的非均匀加热退火。
综上所述,由于本实用新型的用于导电型碳化硅晶片的电流加热装置100,在对应于托盘结构140的中心以及托盘结构140的边缘分别设置第一电极110、第二电极120,并且第一电极110、第二电极120分别电连接于所述电源控制模块150的正负极,因此,当所述托盘结构140的容置槽140a内容纳碳化硅晶片 200时,所述碳化硅晶片200与第一电极110、第二电极120相接触而使两者导通从而形成加热电路,首先,利用导电型碳化硅晶片200的内部电阻发热来实现热退火,其优点是升、降温速率远快于现有的炉腔加热装置,在小批量处理导电型碳化硅晶片200时,具有较大时间成本和能耗成本优势,可以作为在碳化硅外延晶片量产中炉腔加热装置退火工艺的一种补充方案,其次,采用中心到边缘的导电回路能有效避免圆形晶片边缘到边缘导电回路中出现复杂的电场分布的情况,可以将二维的电场分布模型简化为一维的简单电路模型,更容易实现电源控制模块150对碳化硅晶片200的温度调控。
以上所揭露的仅为本实用新型的优选实施例而已,当然不能以此来限定本实用新型之权利范围,因此依本实用新型申请专利范围所作的等同变化,仍属本实用新型所涵盖的范围。

Claims (9)

1.一种用于导电型碳化硅晶片的电流加热装置,其特征在于,包括电源控制模块、测温单元、第一电极、第二电极以及托盘结构,所述托盘结构上设有容置槽,所述第一电极、所述第二电极中的一者对应于所述托盘结构的中心设置,所述第一电极、所述第二电极中的另一者安装于所述托盘结构的边缘,并且所述第一电极、所述第二电极分别电连接于所述电源控制模块的正负极,所述测温单元设于所述托盘结构的上方并电连接于所述电源控制模块,当所述容置槽内容纳碳化硅晶片时,所述碳化硅晶片使所述第一电极、所述第二电极导通从而形成加热电路,所述测温单元用于检测所述容置槽内的碳化硅晶片的表面温度。
2.如权利要求1所述的用于导电型碳化硅晶片的电流加热装置,其特征在于,所述第一电极、所述第二电极中的一者设有一个并对应于所述托盘结构的中心安装,所述第一电极、所述第二电极中的另一者设有多个并均匀地安装于所述托盘结构的边缘。
3.如权利要求1或2所述的用于导电型碳化硅晶片的电流加热装置,其特征在于,所述第一电极对应于所述托盘结构的中心设置并呈圆柱形,多个所述第二电极沿所述托盘结构的周向均匀布置,且每一所述第二电极均具有一呈方形的接触部,所述接触部凸伸于所述容置槽内,所述第一电极、所述接触部均用于抵接所述碳化硅晶片。
4.如权利要求3所述的用于导电型碳化硅晶片的电流加热装置,其特征在于,所述接触部的边长大于等于所述第一电极的直径。
5.如权利要求3所述的用于导电型碳化硅晶片的电流加热装置,其特征在于,当所述第一电极电连接于所述电源控制模块的正极、所述第二电极电连接于所述电源控制模块的负极时,所述加热电路等效为由多个阻值为Ri的电阻并联的电阻加热电路;当所述第一电极电连接于所述电源控制模块的负极、所述第二电极电连接于所述电源控制模块的正极时,所述加热电路等效为多个阻值为Ri并且相互独立的电阻加热电路。
6.如权利要求1所述的用于导电型碳化硅晶片的电流加热装置,其特征在于,所述托盘结构包括石英玻璃基材,所述石英玻璃基材的厚度为1cm。
7.如权利要求6所述的用于导电型碳化硅晶片的电流加热装置,其特征在于,所述托盘结构还包括粘合于所述石英玻璃基材上方的区熔单晶硅层、成型于所述区熔单晶硅层上方的金刚石多晶涂层,其中,所述区熔单晶硅层的厚度为100μm~500μm,电阻率大于5000Ω·cm,所述金刚石多晶涂层的厚度为10μm~50μm。
8.如权利要求1-2、6-7任一项所述的用于导电型碳化硅晶片的电流加热装置,其特征在于,所述容置槽的直径为1520mm、深度为0.3mm。
9.如权利要求1或2所述的用于导电型碳化硅晶片的电流加热装置,其特征在于,所述测温单元设有多个,多个所述测温单元间隔地设于所述容置槽的上方,用于对所述碳化硅晶片的不同区域的表面温度进行检测。
CN202221248562.4U 2022-05-20 2022-05-20 用于导电型碳化硅晶片的电流加热装置 Active CN217922436U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202221248562.4U CN217922436U (zh) 2022-05-20 2022-05-20 用于导电型碳化硅晶片的电流加热装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202221248562.4U CN217922436U (zh) 2022-05-20 2022-05-20 用于导电型碳化硅晶片的电流加热装置

Publications (1)

Publication Number Publication Date
CN217922436U true CN217922436U (zh) 2022-11-29

Family

ID=84178524

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202221248562.4U Active CN217922436U (zh) 2022-05-20 2022-05-20 用于导电型碳化硅晶片的电流加热装置

Country Status (1)

Country Link
CN (1) CN217922436U (zh)

Similar Documents

Publication Publication Date Title
TWI608563B (zh) 半導體處理用之設有平坦加熱器區的加熱板
TWI634605B (zh) 用於半導體處理之使用交流驅動的多工加熱器陣列
US10720346B2 (en) Substrate support with thermal zones for semiconductor processing
KR101822318B1 (ko) 반도체 처리를 위한 평면형 열적 존을 갖는 열적 플레이트
US8624168B2 (en) Heating plate with diode planar heater zones for semiconductor processing
US10373853B2 (en) Electrostatic chuck and wafer processing apparatus
US9837297B2 (en) Tray and wafer holding apparatus
US20040007773A1 (en) Ceramic substrate for semiconductor fabricating device
JP3374033B2 (ja) 真空処理装置
TW201031280A (en) Workpiece support for a plasma reactor with controlled apportionment of RF power to a process kit ring
TW201620073A (zh) 用以監測多工加熱器陣列之溫度與控制該加熱器陣列的系統及方法
WO2015020810A1 (en) Electrostatic carrier for thin substrate handling
US9786539B2 (en) Wafer chuck
CN111490000A (zh) 静电卡盘及半导体加工设备
CN217922436U (zh) 用于导电型碳化硅晶片的电流加热装置
CN114808142A (zh) 用于导电型碳化硅晶片的电流加热装置
CN110387539A (zh) 晶片保持装置
CN211471547U (zh) 加热器
JP3904826B2 (ja) ウェハ加熱装置
KR20220063843A (ko) 기판 지지대 및 기판 지지대의 제조방법
KR20230138930A (ko) 세라믹 기판, 세라믹 기판의 제조 방법, 정전 척, 기판 고정 장치, 및 반도체 장치용 패키지
CN115261976A (zh) 降低碳化硅晶体生长过程中bpd缺陷的装置及方法
TW201542028A (zh) 具有改良溫度均勻性的加熱平台
KR20000005564A (ko) 고체 온도 제어 기판 지지대

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 523000 second floor office building, No.5, Gongye North 1st Road, Hubei Industrial City, Songshan, Dongguan City, Guangdong Province

Patentee after: Guangdong Tianyu Semiconductor Co.,Ltd.

Address before: 523000 second floor office building, No.5, Gongye North 1st Road, Hubei Industrial City, Songshan, Dongguan City, Guangdong Province

Patentee before: DONGGUAN TIANYU SEMICONDUCTOR TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder