CN217111752U - Novel loading device for shield tunnel model test - Google Patents
Novel loading device for shield tunnel model test Download PDFInfo
- Publication number
- CN217111752U CN217111752U CN202123445038.4U CN202123445038U CN217111752U CN 217111752 U CN217111752 U CN 217111752U CN 202123445038 U CN202123445038 U CN 202123445038U CN 217111752 U CN217111752 U CN 217111752U
- Authority
- CN
- China
- Prior art keywords
- spring
- loading
- steel plate
- tunnel model
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 30
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 42
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- 239000002689 soil Substances 0.000 claims abstract description 18
- 230000006835 compression Effects 0.000 claims abstract description 7
- 238000007906 compression Methods 0.000 claims abstract description 7
- 229910000831 Steel Inorganic materials 0.000 claims description 56
- 239000010959 steel Substances 0.000 claims description 56
- 238000003466 welding Methods 0.000 claims description 17
- 239000004033 plastic Substances 0.000 claims description 11
- 238000004026 adhesive bonding Methods 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 3
- 230000000452 restraining effect Effects 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 238000012545 processing Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 7
- 239000013307 optical fiber Substances 0.000 description 7
- 239000000835 fiber Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004379 similarity theory Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Images
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
本实用新型公开了一种用于盾构隧道模型试验的新型加载装置,该新型加载装置包括反力架部件、底座部件和加载部件;反力架用于安装加载部件和承担荷载及地层抗力的反力,底座用于放置模型和加载部件端头部位,加载部件通过弹簧施加荷载、约束变形并提供地层抗力。与现有技术相比,本装置操作简单,所需部件易于购买、加工方便、成本低廉;加载部件采用多弹簧并联的方式,通过调整弹簧刚度和压缩量,可以对不同尺寸的隧道模型进行多种工况的重复试验,解决了模型埋置于土体中试验所导致的重复性差、复杂性高等问题。
The utility model discloses a novel loading device for shield tunnel model test. The novel loading device comprises a reaction force frame part, a base part and a loading part; Reaction force, the base is used to place the model and the end of the loading part. The loading part applies the load through the spring, constrains the deformation and provides the formation resistance. Compared with the prior art, the device has the advantages of simple operation, easy purchase of the required components, convenient processing and low cost; the loading component adopts the method of multiple springs in parallel, and by adjusting the spring stiffness and compression amount, the tunnel models of different sizes can be multiplied. The repeated test of these working conditions solves the problems of poor repeatability and high complexity caused by the model embedded in the soil.
Description
技术领域technical field
本实用新型涉及工程结构试验辅助工具技术领域,具体涉及一种用于盾构隧道模型试验的新型加载装置。The utility model relates to the technical field of auxiliary tools for engineering structure testing, in particular to a novel loading device for shield tunnel model testing.
背景技术Background technique
盾构隧道作为地下工程中的一种特殊结构,工程规模大,服役时间长,在城市轨道交通运输领域承担着极其重要的作用,如果结构发生损坏、坍塌等事故,会不可避免地造成重大的人员伤亡和财产损失。所以,如何保证盾构隧道全生命周期内的安全是目前设计、施工和结构健康监测等领域研究的重点内容之一。As a special structure in underground engineering, shield tunnel has large scale and long service time, and plays an extremely important role in the field of urban rail transportation. If the structure is damaged or collapsed, it will inevitably cause major accidents. casualties and property damage. Therefore, how to ensure the safety of shield tunnels in the whole life cycle is one of the key contents of current research in the fields of design, construction and structural health monitoring.
考虑到地下环境的多样性和复杂性,结合盾构隧道自身构造的特殊性,该类型结构的受力情况和边界条件很难清楚准确的获得,即使大规模有限元方法极大地减小了结构计算的难度,但受限于理论研究的进展,现有的物理模型和力学机理也都是在诸多假定和简化的基础上得出的,计算结果无法准确真实反应实际结构的状态响应。而模型试验作为可以反映结构响应机理的重要途径和方法,因其自身具有的直观性和可控性,能够为解决盾构隧道力学理论研究和健康检测研究提供坚实的基础。Considering the diversity and complexity of the underground environment, combined with the particularity of the structure of the shield tunnel itself, it is difficult to obtain the force and boundary conditions of this type of structure clearly and accurately, even if the large-scale finite element method greatly reduces the structure. The difficulty of calculation is limited by the progress of theoretical research. The existing physical models and mechanical mechanisms are also derived on the basis of many assumptions and simplifications. The calculation results cannot accurately reflect the state response of the actual structure. As an important way and method to reflect the structural response mechanism, the model test can provide a solid foundation for the theoretical study of shield tunneling mechanics and health inspection because of its own intuition and controllability.
现有的盾构隧道试验方法多为原型试验或者是埋入土体的模型试验,存在诸如规模过大、成本过高、周期过长、操作复杂等缺陷,最重要的是可重复性差,极大的限制了研究内容的多样性,而且所采用的传感器多为土压力计、应变片、位移计等点式传感器,其操作复杂、信号易受干扰,且不能很好的探知结构响应的分布状态。因此急需一种新型装置进行辅助测试。Most of the existing shield tunnel test methods are prototype tests or model tests embedded in soil, which have defects such as excessive scale, high cost, long cycle, and complicated operation. It greatly limits the diversity of research contents, and the sensors used are mostly point sensors such as earth pressure gauges, strain gauges, displacement gauges, etc., which are complicated in operation, easily interfered with signals, and cannot well detect the distribution of structural responses. state. Therefore, a new type of device is urgently needed for auxiliary testing.
实用新型内容Utility model content
本实用新型的目的是提供一种用于盾构隧道模型试验的新型加载装置,其操作简单,所需部件易于购买、加工方便、成本低廉;通过调整弹簧刚度和压缩量,可以对不同尺寸的隧道模型进行多种工况的重复试验。The purpose of this utility model is to provide a new type of loading device for shield tunnel model test, which is simple to operate, easy to purchase, convenient to process and low cost; The tunnel model is subjected to repeated tests under various working conditions.
为实现上述目的,本申请提出一种用于盾构隧道模型试验的新型加载装置,包括用于施加荷载、约束隧道模型变形并提供地层抗力的加载部件,所述加载部件包括六角螺母B、六角螺母C、六角螺母D、螺杆、薄六角螺母、小直径扁平头铆钉、大直径扁平头铆钉、带孔钢板、钢板、小刚度加载弹簧、大刚度地层弹簧、橡胶连接块、方形塑料棒、圆形磁石、压力传感器和变直径转接头,所述六角螺母B通过焊接固定到螺杆的端部,六角螺母C和六角螺母D能在螺杆上自由旋转移动,所述六角螺母C位于矩形方管外侧,用于在荷载施加到位后能够将螺杆拧紧固定在矩形方管上,所述六角螺母D位于带孔钢板外侧,用于调整带孔钢板的位置,其作用相当于土弹簧的固定端;所述带孔钢板通过中心位置一个直径与螺杆相同的钻孔穿到螺杆上,相对设置的带孔钢板与钢板内侧四周通过焊接固定有大直径扁平头铆钉,相对设置的两个大直径扁平头铆钉之间套接有地层弹簧,所述钢板外侧通过胶粘固定有橡胶连接块,内侧通过圆形磁石吸附有压力传感器,该压力传感器上安装有变直径转接头,加载弹簧一端穿过小直径扁平头铆钉,另一端穿过变直径转接头,所述小直径扁平头铆钉和薄六角螺母通过焊接固定在一起,将薄六角螺母在螺杆的另一端拧紧。In order to achieve the above purpose, the present application proposes a novel loading device for shield tunnel model testing, including a loading component for applying loads, constraining the deformation of the tunnel model and providing formation resistance, the loading components include hexagonal nuts B, hexagonal Nut C, Hexagonal Nut D, Screw, Thin Hexagonal Nut, Small Diameter Flat Head Rivet, Large Diameter Flat Head Rivet, Steel Plate with Holes, Steel Plate, Small Stiffness Loading Spring, Large Stiffness Formation Spring, Rubber Connection Block, Square Plastic Rod, Round Magnet, pressure sensor and variable diameter adapter, the hexagonal nut B is fixed to the end of the screw rod by welding, the hexagonal nut C and the hexagonal nut D can rotate freely on the screw rod, the hexagonal nut C is located outside the rectangular square tube , used to tighten the screw on the rectangular square tube after the load is applied in place, the hexagonal nut D is located on the outside of the steel plate with holes, used to adjust the position of the steel plate with holes, and its function is equivalent to the fixed end of the soil spring; The perforated steel plate is penetrated to the screw rod through a drill hole with the same diameter as the screw rod at the center position, and the oppositely arranged perforated steel plate and the inner circumference of the steel plate are fixed with large-diameter flat head rivets by welding, and two large-diameter flat head rivets arranged opposite to each other are fixed by welding. A formation spring is sleeved between them, a rubber connecting block is fixed on the outside of the steel plate by gluing, and a pressure sensor is adsorbed on the inside through a circular magnet. The other end of the head rivet passes through the variable diameter adapter, the small diameter flat head rivet and the thin hexagonal nut are fixed together by welding, and the thin hexagonal nut is tightened on the other end of the screw rod.
进一步的,还包括用于支持加载部件和承担荷载及地层抗力的反力架部件,所述反力架部件包括矩形方管、六角螺母和正多边形框架,两个正多边形框架之间均匀焊接有多个矩形方管,所述矩形方管横截面长边的中点与正多边形框架边长的中点对齐,在矩形方管上设有多个钻孔,相邻钻孔之间距离相等,每个钻孔处焊接有六角螺母A,所述六角螺母A的直径与钻孔直径相等。Further, it also includes a reaction frame member used to support the loading member and bear the load and the resistance of the formation, the reaction frame member includes a rectangular square tube, a hexagonal nut and a regular polygon frame, and the two regular polygon frames are evenly welded. A rectangular square tube, the midpoint of the long side of the cross section of the rectangular square tube is aligned with the midpoint of the side length of the regular polygon frame, a plurality of drill holes are arranged on the rectangular square tube, and the distances between adjacent drill holes are equal. A hexagonal nut A is welded at each drilled hole, and the diameter of the hexagonal nut A is equal to the diameter of the drilled hole.
进一步的,还包括用于放置加载部件头部和隧道模型的底座部件,所述底座部件包括钢框架和木板,所述木板通过胶粘的方式固定到钢框架上,木板的长宽根据隧道模型的直径和加载部件头部的长度确定,木板的厚度保证放置其上的加载弹簧、地层弹簧的轴线方向与螺杆的轴线方向平行一致。Further, it also includes a base part for placing the head of the loading part and the tunnel model, the base part includes a steel frame and a wooden board, the wooden board is fixed to the steel frame by gluing, and the length and width of the wooden board are based on the tunnel model. The diameter of the board and the length of the head of the loading part are determined, and the thickness of the board ensures that the axial direction of the loading spring and the ground spring placed on it is parallel to the axial direction of the screw.
进一步的,所述底座部件的中心轴和反力架部件的中心轴重合。Further, the central axis of the base member coincides with the central axis of the reaction frame member.
进一步的,所述加载部件通过螺杆安装到反力架部件的矩形方管上;加载部件的头部通过方形塑料棒支撑在底座部件的木板上,从而保证加载弹簧、地层弹簧的轴线方向与螺杆的轴线方向平行一致。Further, the loading member is mounted on the rectangular square tube of the reaction frame member through a screw rod; the head of the loading member is supported on the wooden board of the base member through a square plastic rod, so as to ensure that the axis direction of the loading spring and the formation spring is consistent with the screw rod. The axis directions are parallel to each other.
更进一步的,所述方形塑料棒通过胶粘固定到带孔钢板上。Further, the square plastic rod is fixed to the steel plate with holes by gluing.
更进一步的,所述加载弹簧与小直径扁平头铆钉、压力传感器和变直径转接头之间为活动状态,地层弹簧与大直径扁平头铆钉之间能相互滑动,以此来模拟土体只受压不受拉的特性。Furthermore, the loading spring is in an active state with the small-diameter flat head rivet, the pressure sensor and the variable-diameter adapter, and the formation spring and the large-diameter flat head rivet can slide with each other, so as to simulate that the soil is only affected by Compression and not tension characteristics.
更进一步的,单个土弹簧等效为五个并联弹簧,具体设置为一个加载弹簧和四个地层弹簧;所述加载弹簧的刚度和地层弹簧的刚度之和等于土弹簧的刚度,加载弹簧的刚度和地层弹簧的刚度不一定相等;所述加载弹簧在试验中既用于施加外荷载,又提供因结构变形导致的地层抗力作用,所述地层弹簧在试验中仅用于提供因结构变形导致的地层抗力作用。Further, a single soil spring is equivalent to five parallel springs, specifically set as one loading spring and four formation springs; the sum of the stiffness of the loading spring and the stiffness of the formation spring is equal to the stiffness of the soil spring, and the stiffness of the loading spring is equal to that of the soil spring. The stiffness of the spring is not necessarily equal to that of the formation spring; the loading spring is used not only to apply external loads, but also to provide the formation resistance due to structural deformation in the test, and the formation spring is only used to provide the resistance caused by the structural deformation in the test. Ground resistance.
本实用新型采用的以上技术方案,具有的优点是:新型加载装置包括反力架部件、底座部件和加载部件;反力架用于安装加载部件和承担荷载及地层抗力的反力,底座用于放置模型和加载部件端头部位,加载部件通过弹簧施加荷载、约束变形并提供地层抗力。与现有技术相比,本装置所需部件易于购买、加工方便、成本低廉;加载部件采用多弹簧并联的方式,通过调整弹簧刚度和压缩量,可以对不同尺寸的隧道模型进行多种工况的重复试验,解决了模型埋置于土体中试验所导致的重复性差、复杂性高等问题。The above technical solution adopted by the present utility model has the advantages that: the novel loading device includes a reaction force frame part, a base part and a loading part; Place the model and the end of the loading part, which is loaded by springs, constrains deformation, and provides formation resistance. Compared with the prior art, the components required by the device are easy to purchase, convenient to process, and low cost; the loading components adopt the method of multiple springs in parallel, and by adjusting the spring stiffness and the compression amount, various working conditions can be performed on tunnel models of different sizes. It solves the problems of poor repeatability and high complexity caused by the model embedded in the soil.
附图说明Description of drawings
图1为用于盾构隧道模型试验的新型加载装置的正视图。Figure 1 is a front view of a new loading device for shield tunnel model testing.
图2为用于盾构隧道模型试验的新型加载装置的俯视图。Figure 2 is a top view of the new loading device used for the shield tunnel model test.
图3为反力架部件三维示意图。FIG. 3 is a three-dimensional schematic diagram of the reaction frame components.
图4为反力架部件的正视图。FIG. 4 is a front view of the reaction frame member.
图5为反力架部件的俯视图。FIG. 5 is a plan view of the reaction frame member.
图6为底座部件的正视图。Figure 6 is a front view of the base member.
图7为底座部件的仰视图。Figure 7 is a bottom view of the base member.
图8为加载部件的三维示意图。Figure 8 is a three-dimensional schematic view of the loading part.
图9为加载部件的正视图。Figure 9 is a front view of the loading member.
图10为加载部件的侧视图。Figure 10 is a side view of the loading member.
图11为加载部件的分解示意图。Figure 11 is an exploded schematic view of the loading part.
图12为新型加载装置应用于盾构隧道三环模型试验的俯视图。Figure 12 is a top view of the new loading device applied to the three-ring model test of the shield tunnel.
图13为新型加载装置应用于盾构隧道三环模型试验的剖视图。Figure 13 is a cross-sectional view of the new loading device applied to the three-ring model test of the shield tunnel.
图14为隧道模型分别处于健康状态和损伤状态时光纤传感器沿圆周采集到的应变数据示意图。Fig. 14 is a schematic diagram of the strain data collected by the optical fiber sensor along the circumference when the tunnel model is in a healthy state and a damaged state, respectively.
图中序号说明:1、等边角钢,2、矩形方管,3A-3D、六角螺母, 4、正多边形框架,5、钢框架,6、木板,7、螺杆,8、薄六角螺母, 9、小直径扁平头铆钉,10、大直径扁平头铆钉,11、带孔钢板,12、钢板,13、加载弹簧,14、地层弹簧,15、橡胶连接块,16、方形塑料棒,17、圆形磁石、18、压力传感器,19、变直径转接头,20、解调仪和配套数据采集计算机,21、连接跳线,22、模型损伤点位,23、桥盒,24、NI采集板卡,25、NI数据采集计算机,26、应变光纤, 27、温度光纤,28、隧道模型。Description of the serial numbers in the figure: 1. Equilateral angle steel, 2. Rectangular square tube, 3A-3D, hexagonal nut, 4. Regular polygon frame, 5. Steel frame, 6. Wooden board, 7. Screw, 8. Thin hexagonal nut, 9 , small diameter flat head rivets, 10, large diameter flat head rivets, 11, steel plate with holes, 12, steel plate, 13, loading spring, 14, formation spring, 15, rubber connecting block, 16, square plastic rod, 17, round Shaped magnet, 18, pressure sensor, 19, variable diameter adapter, 20, demodulator and supporting data acquisition computer, 21, connecting jumper, 22, model damage point, 23, bridge box, 24, NI acquisition board , 25, NI data acquisition computer, 26, strain fiber, 27, temperature fiber, 28, tunnel model.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请,即所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。In order to make the purpose, technical solutions and advantages of the present application more clearly understood, the present application will be described in further detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present application, but not to limit the present application, that is, the described embodiments are only a part of the embodiments of the present application, rather than all the embodiments. The components of the embodiments of the present application generally described and illustrated in the drawings herein may be arranged and designed in a variety of different configurations.
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。Thus, the following detailed description of the embodiments of the application provided in the accompanying drawings is not intended to limit the scope of the application as claimed, but is merely representative of selected embodiments of the application. Based on the embodiments of the present application, all other embodiments obtained by those skilled in the art without creative work fall within the protection scope of the present application.
实施例1Example 1
图1和图2展示了用于盾构隧道模型试验的新型加载装置的整体示意图,该新型加载装置包括反力架部件、底座部件和加载部件三个部分。反力架部件包括矩形方管2、六角螺母3A和正多边形框架4,底座部件包括钢框架5和木板6,加载部件包括六角螺母3B、3C、3D、螺杆7、薄六角螺母8、小直径扁平头铆钉9、大直径扁平头铆钉10、带孔钢板11、钢板12、小刚度加载弹簧13、大刚度地层弹簧 14、橡胶连接块15、方形塑料棒16、圆形磁石17、压力传感器18 和变直径转接头19。其中,反力架部件用于支持加载部件和承担荷载及地层抗力的反力;底座部件用于放置加载部件头部和隧道模型;加载部件用于施加荷载、约束模型变形并提供地层抗力;底座部件的中心轴和反力架部件的中心轴重合;加载部件通过螺杆7安装到反力架部件的矩形方管2上;加载部件的头部包括橡胶连接块15、大刚度地层弹簧14、小刚度加载弹簧13、钢板12、带孔钢板11、大直径扁平头铆钉10等,通过方形塑料棒16支撑在底座部件的木板6上,从而保证加载弹簧13、地层弹簧14的轴线方向与螺杆7的轴线方向平行一致。Figures 1 and 2 show the overall schematic diagram of the new loading device used for the shield tunnel model test. The new loading device includes three parts: the reaction frame part, the base part and the loading part. The reaction frame parts include rectangular
图3至图5展示了所述反力架部件的结构示意图。图中,正多边形框架4通过将等边角钢1进行切割焊接制作而成;矩形方管2通过将标准长度的方管切割钻孔制作而成,钻孔位于矩形方管2横截面长边的中点位置,且根据盾构隧道模型的特点,多个钻孔之间间隔距离相等;六角螺母3A的直径与钻孔直径相等,通过焊接的方式固定到矩形方管2上;矩形方管2横截面长边的中点与正多边形框架4边长的中点对齐,通过焊接的方式固定到正多边形框架4上。Figures 3 to 5 show schematic structural diagrams of the reaction frame components. In the figure, the regular polygon frame 4 is made by cutting and welding the
图6至图7展示了所述底座部件的结构示意图。图中,钢框架5 采用方管焊接制成;木板6通过胶粘的方式固定到钢框架5上,木板 6的长宽根据盾构隧道模型的直径和加载部件头部的长度确定,木板 6的厚度要能保证使放置其上的加载弹簧13、地层弹簧14的轴线方向与螺杆7的轴线方向平行一致。6 to 7 show the schematic structural diagrams of the base member. In the figure, the
图8至图11展示了所述加载部件的结构示意图。图中,六角螺母3B通过焊接固定到螺杆7的端部,六角螺母3C和3D可以在螺杆 7上自由旋转移动,六角螺母3C用于在荷载施加到位后,能够将螺杆7拧紧固定在矩形方管2上,通过六角螺母3D可以调整带孔钢板 11的位置,六角螺母3D的作用相当于土弹簧的固定端;将带孔钢板11通过中心位置一个直径与螺杆7相同的钻孔穿到螺杆7上;大直径扁平头铆钉10通过焊接固定到带孔钢板11上,方形塑料棒16通过胶粘固定到带孔钢板11上;薄六角螺母8和小直径扁平头铆钉9 通过焊接固定在一起,将薄六角螺母8在螺杆7的另一端拧紧;大直径扁平头铆钉10通过焊接固定在钢板12上,橡胶连接块15通过胶粘固定在钢板12上,压力传感器18通过圆形磁石17吸附在钢板12 上,变直径转接头19安装在压力传感器18上;小直径扁平头铆钉9 的直径略小于加载弹簧13的内径,大直径扁平头铆钉10的直径略小于地层弹簧14的内径,加载弹簧13一端穿过小直径扁平头铆钉9,另一端穿过安装在压力传感器18上的变直径转接头19;加载弹簧13与小直径扁平头铆钉9、压力传感器18和变直径转接头19之间为活动状态,地层弹簧14与大直径扁平头铆钉10之间可以相互滑动,以此来模拟土体只受压不受拉的特性。8 to 11 are schematic diagrams showing the structure of the loading part. In the figure, the
图12和图13展示了一种基于新型加载装置的盾构隧道模型环向应变检测试验的示意图。这种基于新型加载装置的盾构隧道模型环向应变检测试验方法可以采用以下步骤:Figures 12 and 13 show a schematic diagram of the hoop strain detection test of a shield tunnel model based on a new loading device. This test method for circumferential strain detection of shield tunnel model based on the new loading device can adopt the following steps:
第一步,通过相似理论得到隧道模型28的尺寸、外荷载和地层抗力的大小,确定所述隧道模型圆周加载点位的个数,确定等边角钢 1~变直径转接头19等各部分的尺寸、规格和数量;The first step is to obtain the size of the
第二步,将等边角钢1进行切割和焊接,加工成两个相同的正多边形框架4,然后对矩形方管2进行切割和钻孔,将六角螺母3A焊接到矩形方管2的钻孔位置处,再将多个矩形方管2均匀焊接到正多边形框架4上;The second step is to cut and weld the
第三步,将方管切割焊接制作底座钢框架5,切割加工木板6,将木板6胶粘固定到钢框架5上,木板6的尺寸要能同时放下隧道模型和加载部件的端头部位;The third step is to cut and weld the square tube to make the
第四步,将六角螺母3B和3C沿螺杆7的一端拧上,采用焊接方式把六角螺母3B固定在螺杆7的端部,然后将螺杆7旋转穿过矩形方管2上的钻孔和六角螺母3A,使螺杆7安装到反力架4上,此时六角螺母3C位于六角螺母3B和矩形方管2之间,从而保证在荷载施加到位后,能够将螺杆7拧紧固定在矩形方管2上;The fourth step, screw the hexagon nuts 3B and 3C along one end of the
第五步,在带孔钢板11的中心位置钻孔,将小直径扁平头铆钉 9焊接到薄六角螺母8上,将大直径扁平头铆钉10焊接到钢板11和 12的相对位置,将压力传感器18通过圆形磁石17吸附到钢板12一侧,然后将变直径转接头19安装到压力传感器18上,再将橡胶连接块15通过胶粘固定到钢板12另一侧;The fifth step is to drill a hole in the center of the
第六步,把六角螺母3D从螺杆7另一端拧上,把带孔钢板11 穿到螺杆7上,然后把焊接在一起的薄六角螺母8和小直径扁平头铆钉9从螺杆7另一端拧紧,之后在带孔钢板11上粘接方形塑料棒16,注意粘接位置关于带孔钢板11上下左右对称,最后在小直径扁平头铆钉9和变直径转接头19之间安装加载弹簧13,在大直径扁平头铆钉10之间安装地层弹簧14,将带孔钢板11和钢板12连接起来;The sixth step, screw the
第七步,将连接跳线21、分布式应变光纤26和分布式温度光纤 27通过焊接串联起来,在隧道模型28内表面粘贴分布式应变光纤26 和分布式温度光纤27,再将隧道模型28放置在木板6的中心位置;The seventh step is to connect the connection jumper 21, the distributed strain
第八步,将压力传感器18通过桥盒23连接至NI采集板卡24,所述NI采集板卡24连接至NI数据采集计算机25;In the eighth step, the
第九步,将加载装置中的橡胶连接块15与隧道模型28接触,通过扭力扳手转动六角螺母3B来调整螺杆7、薄六角螺母8和小直径扁平头铆钉9的位置,根据NI数据采集计算机25输出的力传感器 18的结果,保证加载弹簧13处于初始临界状态,然后通过扳手转动六角螺母3D,调整带孔钢板11的位置,通过测量带孔钢板11和钢板12之间的距离,保证地层弹簧14处于初始临界状态;The ninth step, contact the
第十步,将连接跳线21连接至基于布里渊散射(BOTDA、 BOFDA)的分布式光纤解调仪和配套数据采集计算机20,测量模型在未受荷载状态下的环向应变作为初值;The tenth step, connect the connecting jumper 21 to the distributed optical fiber demodulator based on Brillouin scattering (BOTDA, BOFDA) and the supporting
第十一步,施加荷载,首先使用扳手控制六角螺母3D不发生旋转,使其和带孔钢板11的位置保持不变,然后使用扭力扳手转动六角螺母3B,通过调整螺杆7在螺母3A处的旋进距离来控制加载弹簧 13的压缩量,达到施加荷载的目的,施加荷载的具体数值通过力传感器18的输出结果进行校核和调整;The eleventh step is to apply the load. First, use a wrench to control the
第十二步,使用光纤解调仪和配套数据采集计算机20采集隧道模型28在不同荷载作用下,分别处于健康状态和损伤状态时分布式应变光纤26和分布式温度光纤27的数据。通过对不同工况下的数据进行温度补偿处理,减去初值后即可获得沿环向的应变数据,根据模型损伤点位22对应的应变值,定性判断损伤程度的大小。In the twelfth step, the optical fiber demodulator and the supporting
上述中六角螺母3A、3B、3C和3D规格相同但作用不同。六角螺母3A的主要作用是限制螺杆7的移动;六角螺母3B为扭力扳手提供支点,并通过自身的旋转圈数和螺杆7的螺距来量化和控制加载弹簧13的压缩量;六角螺母3C是在荷载施加到位后,将螺杆7拧紧固定到矩形方管2上;六角螺母3D在加载前用于调整钢板11的位置,使地层弹簧14处于临界状态,在加载中和加载后其位置保持不变,用于模拟土弹簧的固定端。The above middle hexagon nuts 3A, 3B, 3C and 3D have the same specifications but different functions. The main function of the
所述加载弹簧13和地层弹簧14的刚度(单位:N/mm)可通过下列公式得到:The stiffness (unit: N/mm) of the
K=kr×AK=k r ×A
K'=K/CK'=K/C
K'=K0+4K1 K'=K 0 +4K 1
其中,kr表示地层抗力系数(单位:KN/m3),可通过经验取值或者理论计算公式确定。A表示与单个加载部件作用范围相对应的实际结构与地层的接触面积(单位:m2),作用范围根据模型环向布设的加载部件个数确定,如图12所示,圆环模型周围共有12个加载部件,则单个加载部件的作用范围为30°,根据实际盾构圆环的半径可以求出30°范围对应的弦长L,再乘以盾构圆环的幅宽B,即实际结构与地层的接触面积A=L×B。K表示实际结构上单个土弹簧的刚度,C表示原型和模型之间的相似比,K'表示通过相似比计算得到的模型结构单个加载部件的弹簧总刚度,K0表示单个加载部件中加载弹簧13的刚度,4K1表示单个加载部件中四个地层弹簧14的刚度。Wherein, k r represents the formation resistance coefficient (unit: KN/m 3 ), which can be determined through empirical values or theoretical calculation formulas. A represents the contact area between the actual structure and the formation corresponding to the action range of a single loading component (unit: m 2 ), and the action range is determined according to the number of loading components arranged in the circumferential direction of the model. If there are 12 loading parts, the action range of a single loading part is 30°. According to the radius of the actual shield ring, the chord length L corresponding to the range of 30° can be obtained, and then multiplied by the width B of the shield ring, that is, the actual The contact area between the structure and the formation is A=L×B. K represents the stiffness of a single soil spring on the actual structure, C represents the similarity ratio between the prototype and the model, K' represents the total spring stiffness of a single loaded component of the model structure calculated by the similarity ratio, and K 0 represents the loaded spring in a single loaded component The stiffness of 13, 4K 1 represents the stiffness of the four formation springs 14 in a single loaded part.
单个加载部件中六角螺母3B所需转动的圈数可以通过下列公式得到:The number of turns required to turn the
F=ΔL×K0 F=ΔL×K 0
ΔL=P×nΔL=P×n
其中,F表示所需施加荷载的大小(单位:N),ΔL表示加载弹簧13的压缩变形量(单位:mm),也即螺杆7的位移量,P表示螺杆7的螺距,n表示六角螺母3B的旋转圈数,圈数可根据所需施加荷载的大小除以加载弹簧13的刚度,然后再除以螺距得到。Among them, F represents the size of the required applied load (unit: N), ΔL represents the compressive deformation of the loading spring 13 (unit: mm), that is, the displacement of the
本实用新型将单个土弹簧等效为五个并联弹簧,具体设置为一个加载弹簧13和四个地层弹簧14;加载弹簧13的刚度和地层弹簧14 的刚度之和等于土弹簧的刚度,但加载弹簧13的刚度和地层弹簧14 的刚度不一定相等;加载弹簧13在试验中既用于施加外荷载,又可提供因结构变形导致的地层抗力作用,地层弹簧14在试验中仅用于提供因结构变形导致的地层抗力作用。In the present invention, a single soil spring is equivalent to five parallel springs, which are specifically set as one
前述对本实用新型的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本实用新型限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本实用新型的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本实用新型的各种不同的示例性实施方案以及各种不同的选择和改变。本实用新型的范围意在由权利要求书及其等同形式所限定。The foregoing descriptions of specific exemplary embodiments of the present invention have been presented for purposes of illustration and description. These descriptions are not intended to limit the invention to the precise form disclosed, and obviously many changes and variations are possible in light of the above teachings. The exemplary embodiments were chosen and described for the purpose of explaining certain principles of the invention and its practical applications, to thereby enable those skilled in the art to make and utilize various exemplary embodiments of the invention and various Different choices and changes. The scope of the present invention is intended to be defined by the claims and their equivalents.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202123445038.4U CN217111752U (en) | 2021-12-29 | 2021-12-29 | Novel loading device for shield tunnel model test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202123445038.4U CN217111752U (en) | 2021-12-29 | 2021-12-29 | Novel loading device for shield tunnel model test |
Publications (1)
Publication Number | Publication Date |
---|---|
CN217111752U true CN217111752U (en) | 2022-08-02 |
Family
ID=82593617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202123445038.4U Active CN217111752U (en) | 2021-12-29 | 2021-12-29 | Novel loading device for shield tunnel model test |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN217111752U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115452296A (en) * | 2022-09-20 | 2022-12-09 | 广州大学 | Visual multipurpose loading device suitable for tunnel shaking table test |
CN115541158A (en) * | 2022-09-20 | 2022-12-30 | 广州大学 | A loading device suitable for large-scale shaking table tests of tunnels passing through various strata |
CN116499901A (en) * | 2022-09-30 | 2023-07-28 | 天津大学 | Non-uniform soil counter force equivalent simulation device for buried tubular structure |
-
2021
- 2021-12-29 CN CN202123445038.4U patent/CN217111752U/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115452296A (en) * | 2022-09-20 | 2022-12-09 | 广州大学 | Visual multipurpose loading device suitable for tunnel shaking table test |
CN115541158A (en) * | 2022-09-20 | 2022-12-30 | 广州大学 | A loading device suitable for large-scale shaking table tests of tunnels passing through various strata |
CN115541158B (en) * | 2022-09-20 | 2023-10-31 | 广州大学 | Loading device suitable for large-scale vibration table test penetrating through various stratum tunnels |
CN115452296B (en) * | 2022-09-20 | 2024-05-17 | 广州大学 | A visual multi-purpose loading device suitable for tunnel shaking table test |
CN116499901A (en) * | 2022-09-30 | 2023-07-28 | 天津大学 | Non-uniform soil counter force equivalent simulation device for buried tubular structure |
CN116499901B (en) * | 2022-09-30 | 2025-06-24 | 天津大学 | An equivalent simulation device for non-uniform soil reaction force of buried tubular structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN217111752U (en) | Novel loading device for shield tunnel model test | |
CN114383932B (en) | A test method for circumferential strain detection of shield tunnel model | |
CN110082023B (en) | A kind of cable force real-time monitoring device and monitoring method | |
CN106092756B (en) | A kind of hollow ring shear apparatus applying confining pressure | |
Chenaghlou et al. | Axial force–bending moment interaction in a jointing system part I:(Experimental study) | |
CN106289622A (en) | A kind of device and method measuring high-strength bolt auxiliary connection torque coefficient | |
CN109470569A (en) | A kind of rock tensile shear test device and using method thereof | |
CN104697873A (en) | Sulfide stress corrosion cracking testing apparatus | |
US8230748B2 (en) | Apparatus for pre-stress-straining rod-type specimens in tension for in-situ passive fracture testing | |
CN103163016A (en) | Auxiliary device for carrying out axial tension test on quasi brittle materials | |
CN103487264A (en) | Testing device for single-wheel traction performance | |
CN103134701A (en) | Simultaneous monitoring method for welded steel truss structure fatigue failure process | |
CN110426289B (en) | Test device and method for simulating hole wall loading under in-situ stress condition | |
CN207019989U (en) | A kind of general planar material tension, strain and deflection test device | |
CN109520922A (en) | A kind of test device and test method of bolt coefficient of friction and torque coefficient | |
CN105890829A (en) | Device for comparing test performance of force measuring locking anchor pipes of tunnel and test method | |
CN105203239A (en) | Suspended unbalanced dynamic tension sensor | |
CN105043903A (en) | Rock burst/rock explosion analog simulation energy storage-time tank device | |
CN205691410U (en) | The damage concrete stress strain full curve test device that environmental corrosion causes | |
CN104344997A (en) | Passive type restraint loading device for triaxial test | |
CN104501773B (en) | A kind of hydraulic structure vertical deformation monitoring device and method | |
CN207689276U (en) | A kind of equidistance line marking device for concrete cylindrical sample strain testing | |
CN209911102U (en) | Triaxial test pressure chamber capable of simulating underground cavern and tunnel excavation unloading and supporting | |
CN205003062U (en) | Multispecimen bonds and connects creep experiment loading device | |
CN107255546B (en) | Release the calibration equipment and method of stress measurement method measurement accuracy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221221 Address after: 116024 No. 2 Ling Road, Ganjingzi District, Liaoning, Dalian Patentee after: DALIAN University OF TECHNOLOGY Patentee after: Dalian Public Transport Construction Investment Group Co.,Ltd. Patentee after: CHINA RAILWAY DALIAN METRO LINE 5 Co.,Ltd. Address before: 116024 No. 2 Ling Road, Ganjingzi District, Liaoning, Dalian Patentee before: DALIAN University OF TECHNOLOGY |