CN215418245U - 一种燃料电池水温控制系统 - Google Patents

一种燃料电池水温控制系统 Download PDF

Info

Publication number
CN215418245U
CN215418245U CN202121384139.2U CN202121384139U CN215418245U CN 215418245 U CN215418245 U CN 215418245U CN 202121384139 U CN202121384139 U CN 202121384139U CN 215418245 U CN215418245 U CN 215418245U
Authority
CN
China
Prior art keywords
fuel cell
flow path
control system
temperature control
water temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202121384139.2U
Other languages
English (en)
Inventor
闪念
丁铁新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Sinohytec Co Ltd
Original Assignee
Beijing Sinohytec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Sinohytec Co Ltd filed Critical Beijing Sinohytec Co Ltd
Priority to CN202121384139.2U priority Critical patent/CN215418245U/zh
Application granted granted Critical
Publication of CN215418245U publication Critical patent/CN215418245U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

本实用新型公开了一种燃料电池水温控制系统,属于燃料电池领域。本实用新型提供的燃料电池水温控制系统,燃料电池包括电堆,所述电堆设置有冷却液入口和冷却液出口,水温控制系统包括:第一控制阀、散热部件、发热部件、第二控制阀和水循环动力装置,冷却液入口、散热部件、水循环动力装置和冷却液出口依次通过管路连接构成大循环流路,冷却液入口、发热部件、水循环动力装置和冷却液出口依次通过管路连接构成小循环流路,大循环流路与小循环流路并联。本实用新型通过在大循环流路中串联第一控制阀、在小循环流路中串联第二控制阀来代替原有的节温器,通过独立的第一控制阀和第二控制阀,控制耦合自由度高,控制灵活。

Description

一种燃料电池水温控制系统
技术领域
本实用新型涉及燃料电池领域,尤其涉及一种燃料电池水温控制系统。
背景技术
燃料电池电堆的温度分布对燃料电池的安全与寿命有重要影响。为保持电堆内部的期望温度,必须耗散电堆电化学反应产生的热量,需要对系统进行热量管理。通常采用循环冷却液在电堆单片之间流动达到散热冷却目的,其热管理子系统架构如图1所示,水泵7驱动冷却液循环,将电堆1中的热量散出。冷却液循环分为大小循环流路,大循环流路4流经散热部件3,散热部件3转动强制空气对流加强散热;小循环流路6不经散热部件3,其大小循环流路流量由节温器12根据水温,自动调节开度调节分配。
根据燃料电池工作温度条件要求,热量管理通过要控制冷却液入堆温度Tin、入堆与出堆温差ΔTc=(Tout-Tin)实现。其中,控制冷却液入堆温度Tin能够确保电堆1,尤其是在低温条件下的正常工作。同时,为实现电堆1中温度均匀分布,温差ΔTc应尽可能小,但是温差ΔTc较小将导致冷却剂流量较大,从而增加寄生功耗,降低系统效率。另一方面,温差ΔTc较大将导致冷却液需要冷却到的温度较低,这将受限于环境温度和散热部件3的性能。温差ΔTc是与冷却液流量相关联的变量。
当入堆冷却液温度不满足目标温度Tin时,控制器9根据算法控制调节节温器12开度来调整大小循环流路的流量分配关系。然而,调节开度虽然可以实现大小循环流路分配比例变化,但由于开度改变时,大小循环流路两路流阻特性发生改变,可能会导致大小循环流路两路冷却液总流量瞬间增加或减小,从而造成系统温差产生较大波动,出现温度、温差控制不稳定的问题。
因此,亟需提供一种燃料电池水温控制系统,以解决现有技术中温度、温差控制不稳定的技术问题。
实用新型内容
本实用新型的目的在于提供一种燃料电池水温控制系统,其能够解决节温器调温过程中,由冷却液总流量发生变化而造成的系统温差波动问题,提高热管理子系统温度、温差控制稳定性。
为实现上述目的,提供以下技术方案:
本实用新型提供了一种燃料电池水温控制系统,燃料电池包括电堆,所述电堆设置有冷却液入口和冷却液出口,水温控制系统包括:第一控制阀、散热部件、发热部件、第二控制阀和水循环动力装置,所述冷却液入口、散热部件、水循环动力装置和冷却液出口依次通过管路连接构成大循环流路,所述冷却液入口、发热部件、水循环动力装置和冷却液出口依次通过管路连接构成小循环流路,所述大循环流路与所述小循环流路并联。
进一步地,所述水循环动力装置为水泵。
进一步地,所述燃料电池水温控制系统还包括控制器,所述第一控制阀和所述第二控制阀均与所述控制器通信连接。
进一步地,所述燃料电池水温控制系统还包括设置在所述冷却液入口管路上的入口温度传感器和设置在冷却液出口管路上的出口温度传感器,所述入口温度传感器和所述出口温度传感器均与所述控制器通信连接。
进一步地,所述水泵与所述控制器通信连接。
进一步地,所述散热部件和所述发热部件均与所述控制器通信连接。
进一步地,所述散热部件包括散热器和散热风扇。
进一步地,所述散热部件上还设置有散热器入口温度传感器,所述散热器入口温度传感器设置在所述散热器的入口处。
进一步地,所述发热部件为电阻器组件。
进一步地,所述燃料电池水温控制系统的大小循环并联流路的关系如下:
dP=K11Q1 2+K1Q1 2=K12Q2 2+K2Q2 2
Q=Q1+Q2
水泵MAP=f(Q,dP)
Figure DEST_PATH_GDA0003377644970000031
其中,K1为散热部件和大循环流路的阻力特性系数,接近定值,可推算得到;K2为发热部件和小循环流路的阻力特性系数,接近定值,可推算得到;K11为第一控制阀阻力系数;K12为第二控制阀阻力系数;Q1为大循环流路流量的目标值;Q2为小循环流路流量的目标值;Q为并联流路总流量的目标值;dP为并联流路总阻力。
与现有技术相比,本实用新型提供的燃料电池水温控制系统,通过在大循环流路中串联第一控制阀、在小循环流路中串联第二控制阀来代替原有的节温器,通过独立的第一控制阀和第二控制阀,控制耦合自由度高,控制灵活。具体地,通过控制器采集入堆温度、温差数据。当入堆温度不满足目标温度时:通过算法调节第一控制阀、第二控制阀的开度,使得流阻特性K11、K12改变,因 K11与K12相互独立,可自由调节。由算法中式(4)可知,大循环流路流量、小循环流路流量分配改变,实现对冷却液入堆温度调节。由算法的式(1)可知,并联流路总阻力dP也发生改变,为了保证调节前后并联流路总流量不变,根据式(3)的水泵特性曲线方程(即水泵MAP特性)、调节后dP、并联流路总流量,计算出对应水泵转速,输出给水泵。经过第一控制阀、第二控制阀和水泵的共同调控,实现大小循环流路流量分配改变,同时大小循环流路总流量保持不变。
附图说明
图1为现有技术的燃料电池水温控制系统的结构示意图;
图2为本实用新型实施例的燃料电池水温控制系统的结构示意图。
1-电堆;101-冷却液入口;102-冷却液出口;2-入口温度传感器;3-散热部件;301-散热器;302-散热风扇;4-大循环流路;5-发热部件;6-小循环流路;7-水泵;8-出口温度传感器;9-控制器;10-第一控制阀;11-第二控制阀; 12-节温器。
具体实施方式
为使本实用新型解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面将结合附图对本实用新型实施例的技术方案作进一步地详细描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
如图2所示,本实施例提供了一种燃料电池水温控制系统,燃料电池包括电堆1,电堆1设置有冷却液入口101和冷却液出口102,水温控制系统包括:第一控制阀10、散热部件3、发热部件5、第二控制阀11和水循环动力装置,冷却液入口101、散热部件3、水循环动力装置和冷却液出口102依次通过管路连接构成大循环流路4,冷却液入口101、发热部件5、水循环动力装置和冷却液出口102依次通过管路连接构成小循环流路6,大循环流路4与小循环流路6 并联。
优选地,水循环动力装置为水泵7,发热部件5为电阻器组件,即PCT组件,散热部件3包括散热器301和散热风扇302。
进一步地,燃料电池水温控制系统还包括控制器9、设置在冷却液入口101 管路上的入口温度传感器2和设置在冷却液出口102管路上的出口温度传感器 8,水泵7、第一控制阀10、第二控制阀11、入口温度传感器2、出口温度传感器8、散热部件3和发热部件5均与控制器9通信连接。
本实施例还提供了一种燃料电池水温控制系统的控制方法,控制方法包括如下步骤:
当入堆温度不满足目标温度时,通过算法调节第一控制阀10、第二控制阀 11的开度,保证大循环流路4和小循环流路6的并联流路总流量保持不变;
根据水泵特性曲线方程,即水泵MAP特性、大循环流路4和小循环流路6 的并联流路总阻力dP、并联流路总流量,计算出对应的水泵7转速,再反向调节水泵7转速;
对冷却液入堆温度调节至目标温度,结束。
具体地,上述算法如下:
dP=K11Q1 2+K1Q1 2=K12Q2 2+K2Q2 2 (1)
Q=Q1+Q2 (2)
水泵MAP=f(Q,dP) (3)
Figure DEST_PATH_GDA0003377644970000061
其中,K1为散热部件3和大循环流路4的阻力特性系数,接近定值,可推算得到;K2为发热部件5和小循环流路6的阻力特性系数,接近定值,可推算得到;K11为第一控制阀10阻力系数;K12为第二控制阀11阻力系数;Q1为大循环流路4流量的目标值;Q2为小循环流路6流量的目标值;Q为并联流路总流量的目标值;dP为并联流路总阻力。
具体地,设定某一工况的目标入堆温度为。通过控制器9采集入堆温度、温差数据。当入堆温度不满足目标温度时:通过算法调节第一控制阀10、第二控制阀11的开度,使得流阻特性K11、K12改变,K11与K12相互独立,可自由调节。由关系式(4)求得需求Q1/Q2流量配比对应的第一控制阀10、第二控制阀11 的开度,确定阻力特性系数K11、K12,从而根据关系式(1),求出此时对应的 dP,并联流路总阻力dP也发生改变,为了保证调节前后并联流路总流量Q不变,根据关系式(3),Q及dP已知,查找对应的目标水泵转速,调节转速。水泵 MAP特性是指水泵的能力,即不同水泵7转速对应的不同扬程下水泵流量关系图,通常通过测试得到。经过第一控制阀10、第二控制阀11和水泵7的共同调控,实现大小循环流路的流量分配改变,同时大小循环流路的并联流路总流量保持不变,实现对冷却液入堆温度调节。
本实施例提供的燃料电池水温控制系统及其控制方法,通过在大循环流路4中串联第一控制阀10、在小循环流路6中串联第二控制阀11来代替原有的节温器12,通过独立的第一控制阀10和第二控制阀11,控制耦合自由度高,控制灵活。具体地,通过控制器9采集入堆温度、温差数据。当入堆温度不满足目标温度时:通过算法调节第一控制阀10、第二控制阀11的开度,使得流阻特性K11、K12改变,因K11与K12相互独立,可自由调节。由算法可知,大循环流路4流量、小循环流路6流量分配改变,实现对冷却液入堆温度调节。由算法可知,并联流路总阻力dP也发生改变,为了保证调节前后并联流路总流量不变,根据算法中的水泵特性曲线方程(即水泵MAP特性)、调节后dP、并联流路总流量,计算出对应水泵7转速,输出给水泵7。经过第一控制阀10、第二控制阀11和水泵7的共同调控,实现大小循环流路流量分配改变,同时大小循环流路总流量保持不变。
注意,上述仅为本实用新型的较佳实施例及所运用技术原理。本领域技术人员会理解,本实用新型不限于这里的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本实用新型的保护范围。因此,虽然通过以上实施例对本实用新型进行了较为详细的说明,但是本实用新型不仅仅限于以上实施例,在不脱离本实用新型构思的情况下,还可以包括更多其他等效实施例,而本实用新型的范围由所附的权利要求范围决定。

Claims (10)

1.一种燃料电池水温控制系统,燃料电池包括电堆(1),所述电堆(1)设置有冷却液入口(101)和冷却液出口(102),其特征在于,水温控制系统包括:第一控制阀(10)、散热部件(3)、发热部件(5)、第二控制阀(11)和水循环动力装置,所述冷却液入口(101)、散热部件(3)、水循环动力装置和冷却液出口(102)依次通过管路连接构成大循环流路(4),所述冷却液入口(101)、发热部件(5)、水循环动力装置和冷却液出口(102)依次通过管路连接构成小循环流路(6),所述大循环流路(4)与所述小循环流路(6)并联。
2.根据权利要求1所述的燃料电池水温控制系统,其特征在于,所述水循环动力装置为水泵(7)。
3.根据权利要求2所述的燃料电池水温控制系统,其特征在于,还包括控制器(9),所述第一控制阀(10)和所述第二控制阀(11)均与所述控制器(9)通信连接。
4.根据权利要求3所述的燃料电池水温控制系统,其特征在于,还包括设置在所述冷却液入口(101)管路上的入口温度传感器(2)和设置在冷却液出口(102)管路上的出口温度传感器(8),所述入口温度传感器(2)和所述出口温度传感器(8)均与所述控制器(9)通信连接。
5.根据权利要求4所述的燃料电池水温控制系统,其特征在于,所述水泵(7)与所述控制器(9)通信连接。
6.根据权利要求5所述的燃料电池水温控制系统,其特征在于,所述散热部件(3)和所述发热部件(5)均与所述控制器(9)通信连接。
7.根据权利要求2所述的燃料电池水温控制系统,其特征在于,所述散热部件(3)包括散热器(301)和散热风扇(302)。
8.根据权利要求7所述的燃料电池水温控制系统,其特征在于,所述散热部件上还设置有散热器入口温度传感器,所述散热器入口温度传感器设置在所述散热器的入口处。
9.根据权利要求1所述的燃料电池水温控制系统,其特征在于,所述发热部件(5)为电阻器组件。
10.根据权利要求2-9任一项所述的燃料电池水温控制系统,其特征在于,所述燃料电池水温控制系统的大小循环并联流路的关系如下:
dP=K11Q1 2+K1Q1 2=K12Q2 2+K2Q2 2
Q=Q1+Q2
水泵MAP=f(Q,dP)
Figure DEST_PATH_FDA0003362200890000021
其中,K1为散热部件(3)和大循环流路(4)的阻力特性系数,接近定值,可推算得到;K2为发热部件(5)和小循环流路(6)的阻力特性系数,接近定直,可推算得到;K11为第一控制阀(10)阻力系数;K12为第二控制阀(11)阻力系数;Q1为大循环流路(4)流量的目标值;Q2为小循环流路(6)流量的目标值;Q为并联流路总流量的目标值;dP为并联流路总阻力。
CN202121384139.2U 2021-06-22 2021-06-22 一种燃料电池水温控制系统 Active CN215418245U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202121384139.2U CN215418245U (zh) 2021-06-22 2021-06-22 一种燃料电池水温控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202121384139.2U CN215418245U (zh) 2021-06-22 2021-06-22 一种燃料电池水温控制系统

Publications (1)

Publication Number Publication Date
CN215418245U true CN215418245U (zh) 2022-01-04

Family

ID=79640834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202121384139.2U Active CN215418245U (zh) 2021-06-22 2021-06-22 一种燃料电池水温控制系统

Country Status (1)

Country Link
CN (1) CN215418245U (zh)

Similar Documents

Publication Publication Date Title
US9060450B2 (en) Cooling arrangement and method of operation for a fan control
US10631442B2 (en) Cooling system, cooled computer system and computer facility
CN114447366A (zh) 一种抑制燃料电池冷却液温度过冲方法、系统及其控制器
CN114447379A (zh) 一种燃料电池冷却液温度控制方法、系统及其控制器
CN105070974A (zh) 一种电池组温度调节系统
CN113224348A (zh) 一种燃料电池水温控制系统及其控制方法
CN114929000A (zh) 一种WBG和Si器件混合的电源水冷系统及其控制策略
CN114727563A (zh) 流量控制液冷散热系统及其方法、液冷机柜
CN215418245U (zh) 一种燃料电池水温控制系统
CN104613808A (zh) 冷却系统及其控制方法
JP2007187027A (ja) コージェネレーションシステム
JP2006501612A (ja) 熱管理システム
JP2022084840A (ja) 電子ラックを冷却するための熱管理システム、情報技術部品冷却方法、非一時的な機械読み取り可能な媒体およびコンピュータプログラム
CN112952139B (zh) 一种燃料电池散热系统
CN108415543B (zh) 一种电脑机箱散热装置及其控制方法
CN210247374U (zh) 散热器、控制器和光伏用电设备
CN212179342U (zh) 水循环式冷却器
CN114087843B (zh) 采用单冷却循环系统对不同温度器件热管理的系统及方法
TWI767748B (zh) 無線感測網路及其相關氣體流量控制方法
CN111933968B (zh) 一种燃料电池冷却系统及其控制方法
TWI828578B (zh) 液冷機櫃設備及其控制方法
CN112930082B (zh) 吸油烟机控制板散热方法
CN112566468B (zh) 一种机载自适应换热系统
CN212204955U (zh) 一种液冷散热装置和空调器
US20230354548A1 (en) Air cooling, latent heat cooling, and power supply cooling

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant