CN214588740U - Chip packaging structure with shielding function - Google Patents

Chip packaging structure with shielding function Download PDF

Info

Publication number
CN214588740U
CN214588740U CN202023229494.0U CN202023229494U CN214588740U CN 214588740 U CN214588740 U CN 214588740U CN 202023229494 U CN202023229494 U CN 202023229494U CN 214588740 U CN214588740 U CN 214588740U
Authority
CN
China
Prior art keywords
layer
substrate
chip
metal
metal shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202023229494.0U
Other languages
Chinese (zh)
Inventor
崔成强
杨斌
罗绍根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Fozhixin Microelectronics Technology Research Co ltd
Original Assignee
Guangdong Xinhua Microelectronics Technology Co ltd
Guangdong Fozhixin Microelectronics Technology Research Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Xinhua Microelectronics Technology Co ltd, Guangdong Fozhixin Microelectronics Technology Research Co ltd filed Critical Guangdong Xinhua Microelectronics Technology Co ltd
Priority to CN202023229494.0U priority Critical patent/CN214588740U/en
Application granted granted Critical
Publication of CN214588740U publication Critical patent/CN214588740U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

The utility model discloses a chip packaging structure with shielding function, include: the base for packaging the chip comprises a third substrate, a metal shielding layer positioned on one side of the third substrate and a plurality of conductive columns embedded into the third substrate and the metal shielding layer, wherein one end of each conductive column is flush with one surface of the third substrate, and the other end of each conductive column protrudes out of the metal shielding layer to form a boss; the metal shielding layer is provided with a metal pad area, a metal shielding layer is arranged on the metal shielding layer, a first heavy wiring layer with a plurality of grooves is embedded into the metal shielding layer, and a first seed layer made of copper is arranged on the first heavy wiring layer; the plurality of chip groups are inversely arranged on the third substrate and are electrically connected with the conductive columns; a plastic package layer on the third substrate and covering the chip set: and the implanted pad area is electrically connected with the first rewiring layer. The utility model discloses can effectively reduce the warpage that chip package produced, reinforcing chip electromagnetic shield function improves the product yield.

Description

Chip packaging structure with shielding function
Technical Field
The utility model relates to an integrated circuit encapsulates technical field, concretely relates to chip packaging structure with shielding function.
Background
With the trend of miniaturization and integration of electronic products, the densification of microelectronic packaging technology has gradually become the mainstream of new generation of electronic products. In order to comply with the development of new generation electronic products, especially the development of products such as mobile phones, notebooks, intelligent wearable devices, etc., chips are developed in the direction of higher density, faster speed, smaller size, lower cost, etc.
In the packaging process, due to the difference of the thermal expansion coefficients of materials such as plastic, silicon and metal, the volume changes of the materials are asynchronous, so that stress is generated and warping is caused. The difference between the thermal expansion coefficients of the chip and the injection molding material enables the stress generated in the cooling process of the injection molding material to be the most main cause of the warpage generation in the packaging technology.
In addition, in the chip fan-out package process, it is usually necessary to drill a plastic package layer of the covered flip chip and fabricate a conductive post by electroplating, so as to electrically lead out the flip chip. In the process of opening the holes, the depth of the holes is not easy to control, so that the chips are easily damaged or other conductive circuits are broken down, and the yield of the chip packaging structure is influenced.
SUMMERY OF THE UTILITY MODEL
An object of the utility model is to provide a chip packaging structure with shielding function can effectively reduce the warpage that the chip package produced to enable the chip and have electromagnetic shield function, improved chip packaging structure's yield.
To achieve the purpose, the utility model adopts the following technical proposal:
provided is a chip packaging structure with a shielding function, including:
the base for packaging the chip comprises a third substrate, a metal shielding layer and a plurality of conductive columns, wherein the metal shielding layer is positioned on one side of the third substrate, the conductive columns are embedded into the third substrate and the metal shielding layer, one end of each conductive column is flush with one surface of the third substrate, which is far away from the metal shielding layer, and the other end of each conductive column protrudes out of the metal shielding layer to form a boss; the metal shielding layer is arranged on the first substrate, the second substrate is arranged on the second substrate, the dielectric layer is arranged on one side, far away from the third substrate, of the metal shielding layer, the first redistribution layer with a plurality of grooves is embedded into the dielectric layer, the first seed layer made of copper is arranged on one side, far away from the dielectric layer, of the first redistribution layer, the openings of the grooves are arranged on one side, close to the metal shielding layer, of the first redistribution layer, the bosses are connected with the grooves in a one-to-one correspondence mode, and hole sites for exposing the pad area of the first redistribution layer are formed in the dielectric layer;
the plurality of chip groups are inversely arranged on one side of the third substrate far away from the metal shielding layer and are electrically connected with the conductive columns;
a plastic package layer on the third substrate and covering the chip set:
and the metal bumps are implanted into the pad area and are electrically connected with the first rewiring layer.
The utility model discloses a metallic shield layer is located chip packaging structure's inside to be located one side of third substrate, can effectively reduce the warpage phenomenon that the chip package in-process produced, strengthened chip packaging structure's electromagnetic shield effect, improved the yield of base structure for the chip package.
As a preferable scheme of the chip packaging structure with the shielding function, the chip packaging structure further includes a second seed layer located on the third substrate and a second redistribution layer located on the second seed layer, the second redistribution layer is electrically connected to the conductive pillars, a plurality of chips are inversely mounted on the second redistribution layer and electrically connected to the second redistribution layer, and the plastic package layer is located on one side of the third substrate far away from the metal shielding layer and covers the chips.
As a preferable scheme of the chip packaging structure with the shielding function, the substrate for chip packaging further includes a metal connection layer, and the metal connection layer is filled between the conductive pillar and the groove to connect the conductive pillar and the groove.
Furthermore, the metal connecting layer, the conductive column and the first redistribution layer are made of the same material, so that the connection stability is improved.
Furthermore, the metal connecting layer, the conductive column and the first redistribution layer are made of copper materials, so that the connection stability can be further improved, and the electric signal transmission is more stable.
As a preferred scheme of the chip packaging structure with the shielding function, the boss is of a hemispherical structure or a conical structure, and the groove is of a hemispherical structure or a conical structure matched with the boss.
As a preferable scheme of the chip packaging structure with the shielding function, the metal shielding layer is made of any one of copper, silver and tungsten titanium material, so as to improve the electromagnetic shielding effect of the chip packaging structure.
As a preferable aspect of the chip packaging structure having the shielding function, the third substrate is made of glass.
The utility model has the advantages that: the utility model discloses the shaping has groove structure's first rewiring layer directly on glass's second substrate, and the preparation has the boss on glass's third substrate and leads electrical pillar, insert the recess through leading electrical pillar in be connected with first rewiring layer in order to make the chip packaging that is used for the encapsulated chip and use the basement, the harmful effects of leading the electrical pillar production has been avoided trompil preparation again behind the surface mounted chip, the warpage phenomenon that produces has reduced the chip packaging in-process simultaneously, the metallic shield level is located chip packaging structure's inside and is located one side of chipset, can effectively strengthen chip packaging structure's electromagnetic shield effect, the product yield is improved.
Drawings
In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings required to be used in the embodiments of the present invention will be briefly described below. It is obvious that the drawings described below are only some embodiments of the invention, and that for a person skilled in the art, other drawings can be obtained from these drawings without inventive effort.
Fig. 1 is a schematic cross-sectional view illustrating a first photosensitive dry film attached to a first substrate according to a first embodiment of the present invention.
Fig. 2 is a schematic cross-sectional view of the first photosensitive dry film after exposure and development according to the first embodiment of the present invention.
Fig. 3 is a schematic cross-sectional view of a first redistribution layer formed on a first substrate according to a first embodiment of the present invention.
Fig. 4 is a schematic cross-sectional view of the first photosensitive dry film removed according to the first embodiment of the present invention.
Fig. 5 is a schematic cross-sectional view of a dielectric layer attached to a first substrate and covering a first redistribution layer according to a first embodiment of the present invention.
Fig. 6 is a schematic cross-sectional view of the first embodiment of the present invention after removing the first substrate and attaching the dielectric layer to the second substrate.
Fig. 7 is a schematic cross-sectional view of a third substrate after a metal shielding layer is formed thereon according to a first embodiment of the present invention.
Fig. 8 is a schematic cross-sectional view of a third substrate and a metal shielding layer after TGV through holes are formed in the third substrate and the metal shielding layer according to a first embodiment of the present invention.
Fig. 9 is a schematic cross-sectional view of a TGV through hole with conductive posts formed therein by electroplating according to an embodiment of the present invention.
Fig. 10 is a schematic cross-sectional view of the first sub-substrate and the second sub-substrate after being attached according to the first embodiment of the present invention.
Fig. 11 is a schematic cross-sectional view of a chip set according to an embodiment of the present invention, after the chip set is inversely mounted on a substrate for chip packaging and electrically connected to an end surface of a conductive pillar.
Fig. 12 is a schematic cross-sectional view of the chip set after being molded according to the first embodiment of the present invention.
Fig. 13 is a schematic cross-sectional view of the metal bump according to the first embodiment of the present invention after being implanted.
Fig. 14 is a schematic cross-sectional view of a second redistribution layer formed on a third substrate according to a second embodiment of the present invention.
Fig. 15 is a schematic cross-sectional view illustrating a chipset according to the second embodiment of the present invention being inversely mounted on a second redistribution layer.
Fig. 16 is a schematic cross-sectional view of the chip set after being molded according to the second embodiment of the present invention.
Fig. 17 is a schematic cross-sectional view of the metal bump according to the second embodiment of the present invention after being implanted.
In the figure:
11. a first substrate; 12. salient points; 13. a first photosensitive dry film; 14. a first rewiring layer; 15. a dielectric layer; 16. a second substrate; 17. a groove; 21. a third substrate; 22. a metal shielding layer; 23. a TGV through hole; 24. a conductive post; 25. a second rewiring layer; 31. a chipset; 32. a plastic packaging layer; 33. and a metal bump.
Detailed Description
The technical solution of the present invention is further explained by the following embodiments with reference to the accompanying drawings.
Wherein the showings are for the purpose of illustration only and are shown by way of illustration only and not in actual form, and are not to be construed as limiting the present patent; for a better understanding of the embodiments of the present invention, some parts of the drawings may be omitted, enlarged or reduced, and do not represent the size of an actual product; it will be understood by those skilled in the art that certain well-known structures in the drawings and descriptions thereof may be omitted.
The same or similar reference numerals in the drawings of the embodiments of the present invention correspond to the same or similar parts; in the description of the present invention, it should be understood that if the terms "upper", "lower", "left", "right", "inner", "outer", etc. are used to indicate the orientation or positional relationship based on the orientation or positional relationship shown in the drawings, it is only for convenience of description and simplification of description, but it is not indicated or implied that the device or element referred to must have a specific orientation, be constructed in a specific orientation, and be operated, and therefore, the terms describing the positional relationship in the drawings are used only for illustrative purposes and are not to be construed as limiting the present patent, and the specific meaning of the terms will be understood by those skilled in the art according to the specific circumstances.
In the description of the present invention, unless otherwise explicitly specified or limited, the term "connected" or the like, if appearing to indicate a connection relationship between the components, is to be understood broadly, for example, as being either a fixed connection, a detachable connection, or an integral part; can be mechanically or electrically connected; they may be directly connected or indirectly connected through intervening media, or may be connected through one or more other components or may be in an interactive relationship with one another. The specific meaning of the above terms in the present invention can be understood in specific cases to those skilled in the art.
Example one
The chip packaging method with the shielding function in the embodiment comprises the following steps:
step S10, preparing a first sub-substrate:
s10a, providing a first substrate 11 which is made of glass and provided with a plurality of hemispherical bumps 12 on one surface, and depositing a first seed layer made of copper on the first substrate 11;
s10b, referring to fig. 1, fabricating a first photosensitive dry film 13 on the first seed layer, and opening a patterned window exposing at least each bump 12 through exposure and development, referring to fig. 2;
s10c, manufacturing a first redistribution layer 14 in the patterned window by electroplating, wherein an upper surface of the first redistribution layer 14 is flush with an upper surface of the first photosensitive dry film 13, referring to fig. 3;
s10d, removing the residual first photosensitive dry film 13, referring to fig. 4;
s10e, etching away the first seed layer exposed from the first redistribution layer 14;
s10f, pressing a dielectric material on the first redistribution layer 14 to form a dielectric layer 15, referring to fig. 5;
s10g, providing a second substrate 16 made of glass, and attaching the dielectric layer 15 to the second substrate 16 by using temporary bonding glue;
s10h, removing the first substrate 11, and forming a hemispherical groove 17 on the first redistribution layer 14, referring to fig. 6.
Step S20, preparing a second sub-substrate:
s20a, providing a third substrate 21 made of glass, and forming a metal shielding layer 22 made of copper material on one side of the third substrate 21 by electroplating, referring to fig. 7;
s20b, forming TGV through holes 23 on the third substrate 21 and the metal shielding layer 22, referring to fig. 8;
s20c, forming a conductive pillar 24 in the TGV through hole 23 by electroplating, and making one end of the conductive pillar 24 flush with a surface of the third substrate 21 away from the metallic shielding layer 22, and making the other end protrude from the metallic shielding layer 22 to form a hemispherical boss, referring to fig. 9.
Step S30, preparing a substrate for chip packaging:
the first sub-substrate and the second sub-substrate are respectively stained with nano copper powder, a boss on the second sub-substrate is inserted into a groove 17 on the first sub-substrate in an aligning manner, the nano copper powder is melted and filled between the boss and the groove 17 through hot pressing to form a metal connecting layer, and the first sub-substrate and the second sub-substrate are attached and connected with each other, referring to fig. 10.
Step S40, chip packaging:
s40a, providing a plurality of chip sets 31, and inversely installing the chip sets 31 on the exposed surfaces of the conductive pillars 24, referring to fig. 11;
s40b, performing plastic package on the chipset 31 to form a plastic package layer 32, referring to fig. 12;
s40c, removing the second substrate 16, and opening the dielectric layer 15 to expose the pad region of the first redistribution layer 14;
s40d, providing a plurality of metal bumps 33, and implanting the metal bumps 33 into the pad region to electrically connect with the first redistribution layer 14, referring to fig. 13.
The metal bump 33 is solder, silver solder or gold-tin alloy solder, and the embodiment is preferably a solder ball made of solder.
In other embodiments, the number of chipsets and the number of chips in each chipset are determined according to specific design requirements, and are not limited specifically.
As shown in fig. 13, the chip packaging structure with a shielding function manufactured by the chip packaging method with a shielding function according to the embodiment includes:
the base for chip packaging comprises a third substrate 21, a metal shielding layer 22 made of copper and located on one side of the third substrate 21, and a plurality of conductive columns 24 embedded into the third substrate 21 and the metal shielding layer 22, wherein the conductive columns 24 are made of copper, one end of each conductive column 24 is flush with one surface of the third substrate 21, which is far away from the metal shielding layer 22, and the other end of each conductive column protrudes out of the metal shielding layer 22 to form a boss; the metal shielding layer 22 further comprises a dielectric layer 15 located on one side of the metal shielding layer 22 far away from the third substrate 21, a first redistribution layer 14 embedded in the dielectric layer 15 and provided with a plurality of grooves 17, and a first seed layer made of copper and located on one side of the first redistribution layer 14 far away from the dielectric layer 15, wherein an opening of each groove 17 is located on one side of the first redistribution layer 14 close to the metal shielding layer 22, the bosses are connected with the grooves 17 in a one-to-one correspondence manner, and the dielectric layer 15 is provided with hole sites for exposing a pad area of the first redistribution layer 14;
a plurality of chip sets 31, which are inversely installed on one side of the third substrate 21 far away from the metal shielding layer 22 and electrically connected with the conductive posts 24;
a molding layer 32 located on the third substrate 21 and covering the chip set 31:
and a plurality of solder balls (metal bumps 33) implanted in the pad region and electrically connected to the first redistribution layer 14.
In this embodiment, the metal shielding layer 22 is made of a copper material, is located inside the chip packaging structure, and is located on one side of the third substrate 21, so that a warpage phenomenon generated in a chip packaging process can be effectively reduced, an electromagnetic shielding effect of the chip packaging structure is enhanced, and a yield of the base structure for chip packaging is improved.
Further, the substrate for chip packaging further includes a metal connection layer, and the metal connection layer is filled between the conductive posts 24 and the grooves 17 to enhance the stability of chip signal transmission.
The boss is of a hemispherical structure, and the groove 17 is of a hemispherical structure matched with the boss.
Example two
This embodiment is substantially the same as the first embodiment (refer to some drawings in the first embodiment, and like parts are labeled with like numerals in the first embodiment), except for steps S30 and S40.
Specifically, the step S30 of preparing the substrate for chip packaging includes the steps of:
s30a, respectively dipping a first sub-substrate and a second sub-substrate with nano-copper powder, inserting a boss on the second sub-substrate into the groove 17 on the first sub-substrate in an aligning manner, and melting and filling the nano-copper powder between the boss and the groove 17 through hot pressing to form a metal connecting layer so as to enable the first sub-substrate and the second sub-substrate to be attached and connected;
s30b, forming a second seed layer electrically connected to the conductive pillar 24 on the third substrate 21 by vacuum sputtering;
pasting a second photosensitive dry film on the second seed layer, and forming a graphical window through exposure and development;
fabricating a second rewiring layer 25 within the patterned window by electroplating;
the remaining second photosensitive dry film and the second seed layer exposed from the second redistribution layer 25 are removed, so as to obtain the structure shown in fig. 14.
Specifically, the step S40 chip package includes the following steps:
s40a, providing a plurality of chipsets 31, and flip-mounting the chipsets 31 on the second redistribution layer 25, referring to fig. 15;
s40b, performing plastic package on the chipset 31 to form a plastic package layer 32, referring to fig. 16;
s40c, removing the second substrate 16, and opening the dielectric layer 15 to expose the pad region of the first redistribution layer 14;
s40d, providing a plurality of solder balls (metal bumps 33), and implanting the solder balls into the pad regions to electrically connect the solder balls to the first redistribution layer 14, referring to fig. 17.
The metal shielding layer 22 is a silver metal shielding layer prepared by electroless plating.
In this embodiment, the second seed layer and the second redistribution layer 25 are manufactured on the basis of the first embodiment, so that the mounting range of the chipset 31 is increased, the problem that the area of the exposed end surface of the conductive pillar 24 is too small to affect the smooth assembly of the chipset 31 is avoided, and the yield of the chip packaging structure is further improved.
The chip packaging structure manufactured by the chip packaging method with the shielding function in the present embodiment is basically the same as the chip packaging structure manufactured in the first embodiment, except that a second seed layer and a second rewiring layer 25 are further included.
As shown in fig. 17, the chip packaging structure with a shielding function in this embodiment further includes a second seed layer located on the third substrate 21 and a second redistribution layer 25 located on the second seed layer, where the second redistribution layer 25 is electrically connected to the conductive pillars 24 through the second seed layer, a plurality of chip sets 31 are flip-mounted on the second redistribution layer 25 and are electrically connected to the second redistribution layer 25, and the molding compound layer 32 is located on a side of the third substrate 21 away from the metal shielding layer 22 and covers the chip sets 31.
By manufacturing the second seed layer and the second redistribution layer 25 electrically connected to the conductive pillars 24 on the third substrate 21, the limited range of the chip set 31 during flip-chip mounting is reduced, the flip-chip mounting of the chip set 31 is facilitated, and the yield of the chip packaging structure is enhanced.
EXAMPLE III
This embodiment is substantially the same as the second embodiment (refer to the drawings in the first embodiment, and the same components are denoted by the same reference numerals in the first embodiment), except for the difference in S30a in step S30.
Specifically, the step S30a of preparing the substrate for chip packaging includes the steps of:
and carrying out plasma cleaning on the first sub-substrate and the second sub-substrate, aligning and embedding the lug boss into the groove 17 after removing surface impurities, and attaching and connecting the first sub-substrate and the second sub-substrate through electrostatic adsorption.
The chip package structure of this embodiment is substantially the same as the second embodiment, except that a metal connection layer is not included, and details are not repeated.
It should be understood that the above-described embodiments are merely illustrative of the preferred embodiments of the present invention and the technical principles thereof. It will be understood by those skilled in the art that various modifications, equivalents, changes, and the like can be made to the present invention. However, these modifications are within the scope of the present invention as long as they do not depart from the spirit of the present invention. In addition, certain terms used in the specification and claims of the present application are not limiting, but are used merely for convenience of description.

Claims (8)

1. A chip packaging structure with shielding function, comprising:
the base for packaging the chip comprises a third substrate, a metal shielding layer and a plurality of conductive columns, wherein the metal shielding layer is positioned on one side of the third substrate, the conductive columns are embedded into the third substrate and the metal shielding layer, one end of each conductive column is flush with one surface of the third substrate, which is far away from the metal shielding layer, and the other end of each conductive column protrudes out of the metal shielding layer to form a boss; the metal shielding layer is arranged on the first substrate, the dielectric layer is arranged on one side, far away from the third substrate, of the metal shielding layer, the first redistribution layer with a plurality of grooves is embedded into the dielectric layer, the first seed layer made of copper is arranged on one side, far away from the dielectric layer, of the first redistribution layer, the opening of each groove is arranged on one side, close to the metal shielding layer, of the first redistribution layer, the bosses are connected with the grooves in a one-to-one correspondence mode, and hole positions for exposing the bonding pad area of the first redistribution layer are formed in the dielectric layer;
the plurality of chip groups are inversely arranged on one side of the third substrate far away from the metal shielding layer and are electrically connected with the conductive columns;
a plastic package layer on the third substrate and covering the chip set:
and the metal bumps are implanted into the pad area and are electrically connected with the first rewiring layer.
2. The chip package structure with shielding function according to claim 1, further comprising a second seed layer on the third substrate and a second redistribution layer on the second seed layer, wherein the second redistribution layer is electrically connected to the conductive pillars, the plurality of chip sets are flip-mounted on the second redistribution layer and electrically connected to the second redistribution layer, and the molding compound layer is located on a side of the third substrate away from the metal shielding layer and covers the chip sets.
3. The chip packaging structure with shielding function according to claim 1, wherein the substrate for chip packaging further comprises a metal connection layer, and the metal connection layer is filled between the conductive pillar and the groove.
4. The chip package structure with shielding function according to claim 3, wherein the metal shielding layer is made of any one of copper, silver, and tungsten titanium.
5. The chip package structure with shielding function according to claim 1, wherein the boss is a hemispherical structure or a conical structure, and the recess is a hemispherical structure or a conical structure matched with the boss.
6. The chip package structure with shielding function according to claim 1, wherein the third substrate is made of glass.
7. The chip package structure with shielding function according to claim 3, wherein the metal connection layer, the conductive pillar and the first redistribution layer are made of the same material.
8. The chip package structure with shielding function according to claim 3, wherein the metal connection layer, the conductive pillar, and the first redistribution layer are all made of copper.
CN202023229494.0U 2020-12-28 2020-12-28 Chip packaging structure with shielding function Active CN214588740U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202023229494.0U CN214588740U (en) 2020-12-28 2020-12-28 Chip packaging structure with shielding function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202023229494.0U CN214588740U (en) 2020-12-28 2020-12-28 Chip packaging structure with shielding function

Publications (1)

Publication Number Publication Date
CN214588740U true CN214588740U (en) 2021-11-02

Family

ID=78334956

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202023229494.0U Active CN214588740U (en) 2020-12-28 2020-12-28 Chip packaging structure with shielding function

Country Status (1)

Country Link
CN (1) CN214588740U (en)

Similar Documents

Publication Publication Date Title
CN102479762B (en) Heat dissipation gain type semiconductor assembly
JP5183949B2 (en) Manufacturing method of semiconductor device
US7608929B2 (en) Electrical connector structure of circuit board and method for fabricating the same
TWI460845B (en) Stackable molded microelectronic packages with area array unit connectors
JP2019512168A (en) Fan-out 3D package structure embedded in silicon substrate
CN112802757B (en) Substrate preparation method, substrate structure, chip packaging method and chip packaging structure
CN101325188A (en) Wafer level semiconductor package with dual side build-up layers and method thereof
CN110600438A (en) Embedded multi-chip and element SIP fan-out type packaging structure and manufacturing method thereof
CN102153045B (en) Packaging structure with micro-electromechanical element and manufacturing method thereof
CN103887256B (en) High-cooling-performance chip-embedded type electromagnetic shielding encapsulating structure and manufacturing method thereof
CN110571201B (en) High-heat-dissipation fan-out type three-dimensional heterogeneous double-sided plastic package structure and preparation method thereof
CN109003959B (en) A kind of high thermal conductivity encapsulating structure that bonding wire is preforming and its manufacturing method
CN107958882A (en) Encapsulating structure of chip and preparation method thereof
CN112928035B (en) Board-level flip chip packaging structure with electromagnetic shielding function and preparation method thereof
CN113725094B (en) Multi-chip hybrid packaging method
CN107195617A (en) Three-dimension packaging structure and its manufacture method based on different height copper post
CN112768364A (en) Board-level three-dimensional chip packaging structure and preparation method thereof
CN112687549A (en) Chip packaging structure with shielding function and packaging method thereof
CN214588740U (en) Chip packaging structure with shielding function
CN111106013B (en) Preparation method of TMV structure, large-board fan-out heterogeneous integrated packaging structure and preparation method thereof
CN112635335B (en) Chip packaging method and chip packaging structure
CN112802758B (en) Substrate preparation method, substrate structure, chip packaging method and chip packaging structure
CN210575902U (en) High-heat-dissipation fan-out type three-dimensional heterogeneous double-sided plastic package structure
CN210575899U (en) Embedded multi-chip and element SIP fan-out type packaging structure
CN203787410U (en) High radiating chip embedded electromagnetic shielding packaging structure

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230418

Address after: Room A107, scientific research building, block a, neifo high tech think tank center, Nanhai Software Science Park, Shishan town, Nanhai District, Foshan City, Guangdong Province, 528225

Patentee after: Guangdong fozhixin microelectronics technology research Co.,Ltd.

Address before: Room A107, scientific research building, block a, neifo high tech think tank center, Nanhai Software Science Park, Shishan town, Nanhai District, Foshan City, Guangdong Province, 528225

Patentee before: Guangdong fozhixin microelectronics technology research Co.,Ltd.

Patentee before: Guangdong Xinhua Microelectronics Technology Co.,Ltd.

TR01 Transfer of patent right