CN203787410U - High radiating chip embedded electromagnetic shielding packaging structure - Google Patents
High radiating chip embedded electromagnetic shielding packaging structure Download PDFInfo
- Publication number
- CN203787410U CN203787410U CN201420143751.4U CN201420143751U CN203787410U CN 203787410 U CN203787410 U CN 203787410U CN 201420143751 U CN201420143751 U CN 201420143751U CN 203787410 U CN203787410 U CN 203787410U
- Authority
- CN
- China
- Prior art keywords
- chip
- copper
- metal
- support plate
- circuit layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004806 packaging method and process Methods 0.000 title abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 74
- 229910052751 metal Inorganic materials 0.000 claims abstract description 74
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 59
- 229910052802 copper Inorganic materials 0.000 claims abstract description 59
- 239000010949 copper Substances 0.000 claims abstract description 59
- 239000011810 insulating material Substances 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 22
- 230000005855 radiation Effects 0.000 claims description 14
- 238000000465 moulding Methods 0.000 abstract description 4
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000003384 imaging method Methods 0.000 description 22
- 238000000034 method Methods 0.000 description 10
- 238000007747 plating Methods 0.000 description 10
- 239000000758 substrate Substances 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 238000009713 electroplating Methods 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 238000005476 soldering Methods 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000006263 metalation reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000863 Ferronickel Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000011900 installation process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Provided is a high radiating chip embedded electromagnetic shielding packaging structure. The packaging structure comprises a metal carrier plate (1). The surface of the metal carrier plate (1) is provided with a chip (2). The periphery of the chip (2) is provided with a shielding copper column (8). The surface of the chip (2) is welded with copper balls (3). The copper balls (3) are flushed with an insulating material (4). The surfaces of the copper balls (3) and the insulating material (4) are provided with a metal circuit layer (5). The periphery of the metal circuit layer (5) is packaged by a photosensitive material (7). The surface of the metal circuit layer (5) is provided with metal balls (6). Beneficial effects of the structure are that the chip is disposed on the carrier plate by surface mounting, the copper balls are disposed on a PAD in a ball bonding manner, or the copper columns are disposed on the chip PAD, after molding and packaging, the copper balls or the copper columns are connected with external pins through thinning and re-wiring. In addition, the chip is provided with a heat radiating sheet which can provide efficient heat radiating function, so as to realize high performance electrically connection and good reliability guarantee.
Description
Technical field
The present invention relates to a kind of high heat radiation chip embedded-type electric magnetic screen encapsulating structure, belong to semiconductor packaging field.
Background technology
Current chip size packages (CSP) technique mainly contains:
One, after chip is first mounted on lead frame or substrate, at chip surface Bonding, or chip surface secondary wiring is made after salient point upside-down mounting and on lead frame or substrate, is carried out that molding is sealed and rear operation again;
Two, after the wiring of chip surface secondary, make soldered ball at wiring layer Pad place, then carry out molding and seal (or bare chip) and rear operation.
Current chip size packages (CSP) technique has the following disadvantages and defect:
1, along with little, thin, the highdensity requirement of product improves constantly, lead frame or substrate require little and thin, yielding, and manufacture difficulty is larger;
2, the product that adopts lead key closing process, is subject to the restriction of bonding wire camber and arc length, and the thickness of product and size all can not be done very littlely;
3, adopt the product of reverse installation process or wafer level packaging, chip needs secondary wiring to make salient point, and early stage, manufacturing cost was higher;
4, along with the increasing and chip size dwindled to the raising of requirement of chip pin number, when flip-chip and the aligning accuracy of substrate require very high;
5, in most flip chip bonding products, all adopted bottom filler, its effect is to alleviate between chip and substrate by the poor caused shear stress of thermal coefficient of expansion (CTE), but has discontented, the empty problem of filling;
6, be subject to external electromagnetic signal when product operation and disturb, and other device of the easy radiation of electromagnetic wave itself producing makes it produce bad phenomenon, less stable.
Summary of the invention
The object of the invention is to overcome above-mentioned deficiency, a kind of high heat radiation chip embedded-type electric magnetic screen encapsulating structure is provided, it is first at metal support plate surface electrical copper facing post, again at surface mount chip, stamp copper ball or on chip PAD, make copper post at PAD in ball bonding mode, molding is rerouted copper ball or copper post is connected with outer pin by attenuate after sealing, utilize in addition metal support plate as fin, efficient heat sinking function can be provided, thereby realize high performance electric connection and good reliability guarantee.
The object of the present invention is achieved like this: a kind of high heat radiation chip embedded-type electric magnetic screen encapsulating structure, it comprises metal support plate, described metal support plate surface label is equipped with chip, described chip periphery is provided with shielding copper post, described chip surface is welded with copper ball, described chip, copper ball and shielding copper post periphery are encapsulated with insulating material, described copper ball flushes with insulating material, described copper ball and insulating material surface are provided with metallic circuit layer, described metallic circuit layer periphery is encapsulated with photosensitive material, and described metallic circuit layer surface is provided with Metal Ball.
Described metallic circuit layer is multilayer, between described metallic circuit layer and metallic circuit layer, is connected by being connected copper post.
A manufacture method for high heat radiation chip embedded-type electric magnetic screen encapsulating structure, described method comprises the steps:
Step 1, get metal support plate
Get the metal support plate that a slice thickness is suitable;
Step 2, metal support plate surface preplating copper material
At metal support plate electroplating surface one deck copper material film;
Step 3, subsides photoresistance film
Stick respectively the photoresistance film that can carry out exposure imaging at the metal support plate front and the back side that complete preplating copper material film;
Step 4, exposure imaging
Part figure photoresistance film is carried out graph exposure, develops and removes in the metal support plate front that utilizes exposure imaging equipment that step 3 is completed to subsides photoresistance film, to expose the positive follow-up graphics field that need to carry out the plating of chip positioning district of metal support plate;
Step 5, electroplated metal layer
In step 4, in the positive region of removing part photoresistance film of metal support plate, electroplate metal level as pasting chip positioning area;
Step 6, removal photoresistance film
Remove the photoresistance film on metal support plate surface;
Step 7, subsides photoresistance film
In metal support plate front and the back side stick respectively the photoresistance film that can carry out exposure imaging;
Step 8, exposure imaging
Part figure photoresistance film is carried out graph exposure, develops and removes in the metal support plate front that utilizes exposure imaging equipment that step 7 is completed to subsides photoresistance film, the graphics field of electroplating to expose the positive follow-up needs of metal support plate;
Step 9, electro-coppering post
Electric plated with copper post in the positive region of removing part photoresistance film of metal substrate in step 8;
Step 10, removal photoresistance film
Remove the photoresistance film on metal support plate surface;
Step 11, pasting chip
Pasting chip on the metal support plate of having electroplated chip attachment positioning area;
Step 12, soldering copper salient point
At chip surface soldering copper salient point;
Step 13, at metal support plate front covering insulating material layer
At the positive one deck insulating material that covers of metal support plate;
Step 14, insulating material surface attenuate
Mechanical reduction is carried out in insulating material surface, until expose copper bump;
Step 15, insulating material surface metalation
Metalized is carried out in insulating material surface, make its follow-up can plating in surface;
Step 10 six, subsides photoresistance film
Stick the photoresistance film that can carry out exposure imaging completing metallized insulating material surface and the metal support plate back side;
Step 10 seven, exposure imaging
Utilize exposure imaging equipment that the metal layer of insulating material is carried out to graph exposure, develops and remove part figure photoresistance film, to expose the follow-up graphics field that need to carry out the plating of one deck line layer of metal layer;
Step 10 eight, plating one deck line layer
In step 10 seven, in the region of metal layer removal part photoresistance film, electroplate metallic circuit layer as one deck line layer that reroutes, form wiring board;
Step 10 nine, removal photoresistance film
Remove the photoresistance film in the metal support plate back side and wiring board front;
Step 2 ten, fast-etching
Fast-etching is carried out in wiring board front, remove one deck line layer metal layer in addition;
Step 2 11, coating photosensitive material
Complete the wiring board front surface coated photosensitive material of one deck line layer;
Step 2 12, exposure imaging
Utilize exposure imaging equipment that part figure photosensitive material is carried out to graph exposure, develops and removes in wiring board front, plant the graphics field of ball to expose the positive follow-up needs of wiring board;
Step 2 13, carry out the organic protection of metal
The metal level that wiring board is exposed carries out organic protection;
Step 2 14, plant ball
Plant ball region implanted metal ball in wiring board front;
Step 2 15, cutting
The product of having planted Metal Ball is cut into single product.
In described step 11, can directly mount the chip of having made copper post on PAD, omit step 12.
Described step 13 to step 2 ten can step 12 between step 2 11 repeatedly.
Compared with prior art, the present invention has following beneficial effect:
1, the present invention adopts direct pasting chip on common support plate, does not need custom lead-frame or substrate, and can carry out as required loading in mixture of multi-chip, has reduced manufacturing cost;
2, the present invention adopts ball bonding mode or directly on chip PAD, makes copper post and realized the process that on chip, salient point is made in secondary wiring, greatly reduces the manufacturing cost of chip, has improved production efficiency;
3, assembling mode of the present invention does not need the upside-down mounting of chip and the later end of upside-down mounting to fill out operation, has avoided the fill a vacancy risk in hole of the upside-down mounting contraposition that therefore produces and the end;
4, support plate used when the present invention can retain pasting chip according to product needed, as the fin of product, for product provides efficient radiating effect;
5, the present invention has anti-electromagnetic radiation to disturb design, has greatly strengthened the electromagnetic compatibility ability of product, has improved the stability of the performance of product own and affiliated circuit.
Brief description of the drawings
Fig. 1 ~ Figure 25 is a kind of high heat radiation chip embedded-type electric magnetic screen encapsulating structure of the present invention and preparation method thereof each operation schematic diagram.
Figure 26 is the schematic diagram of a kind of high heat radiation chip embedded-type electric magnetic screen encapsulating structure of the present invention.
Figure 27 is the schematic diagram of a kind of high another embodiment of heat radiation chip embedded-type electric magnetic screen encapsulating structure of the present invention.
Figure 28 is the vertical view of a kind of high heat radiation chip embedded-type electric magnetic screen encapsulating structure of the present invention.
Wherein:
Metal support plate 1
Chip 2
Copper ball 3
Insulating material 4
Metallic circuit layer 5
Metal Ball 6
Photosensitive material 7
Shielding copper post 8
Connect copper post 9.
Embodiment
Referring to Figure 26, a kind of high heat radiation chip embedded-type electric magnetic screen encapsulating structure of the present invention, it comprises metal support plate 1, described metal support plate 1 surface label is equipped with chip 2, described chip 2 peripheries are provided with shielding copper post 8, described chip 2 surface soldered have copper ball 3, described chip 2, copper ball 3 and shielding copper post 8 peripheries are encapsulated with insulating material 4, described copper ball 3 flushes with insulating material 4, described copper ball 3 and insulating material 4 surfaces are provided with metallic circuit layer 5, described metallic circuit layer 5 periphery are encapsulated with photosensitive material 7, and described metallic circuit layer 5 surface are provided with Metal Ball 6.
Referring to Figure 27, described metallic circuit layer 5 is multilayer, between described metallic circuit layer 5 and metallic circuit layer 5, is connected by being connected copper post 9.
Its manufacture method is as follows:
Step 1, get metal support plate
Referring to Fig. 1, get the metal support plate that a slice thickness is suitable, the material of metal support plate can convert according to the function of chip and characteristic, for example: copper material, iron material, ferronickel material or zinc-iron material etc.;
Step 2, metal support plate surface preplating copper material
Referring to Fig. 2, at metal support plate electroplating surface one deck copper material film, object is to do basis for follow-up plating, and the mode of described plating can adopt chemical plating or metallide;
Step 3, subsides photoresistance film
Referring to Fig. 3, stick respectively the photoresistance film that can carry out exposure imaging at the metal support plate front and the back side that complete preplating copper material film, described photoresistance film can adopt wet type photoresistance film or dry type photoresistance film;
Step 4, exposure imaging
Referring to Fig. 4, part figure photoresistance film is carried out graph exposure, develops and removes in the metal support plate front that utilizes exposure imaging equipment that step 3 is completed to subsides photoresistance film, the graphics field of electroplating to expose the positive follow-up needs of metal support plate;
Step 5, electroplated metal layer
Referring to Fig. 5, in step 4, in the positive region of removing part photoresistance film of metal support plate, electroplate metal level as pasting chip positioning area;
Step 6, removal photoresistance film
Referring to Fig. 6, remove the photoresistance film on metal support plate surface, removal method adopts chemical medicinal liquid softening (if desired and adopt high pressure water jets to remove);
Step 7, subsides photoresistance film
Referring to Fig. 7, in metal support plate front and the back side stick respectively the photoresistance film that can carry out exposure imaging;
Step 8, exposure imaging
Referring to Fig. 8, part figure photoresistance film is carried out graph exposure, develops and removes in the metal support plate front that utilizes exposure imaging equipment that step 7 is completed to subsides photoresistance film, the graphics field of electroplating to expose the positive follow-up needs of metal support plate;
Step 9, electro-coppering post
Referring to Fig. 9, electric plated with copper post in the positive region of removing part photoresistance film of metal substrate in step 8, copper post is arranged on the periphery of internal wiring, to reach the effect of electromagnetic shielding;
Step 10, removal photoresistance film
Referring to Figure 10, remove the photoresistance film on metal support plate surface;
Step 11, pasting chip
Referring to Figure 11, pasting chip on the metal support plate of having electroplated chip attachment positioning area, mounting method can adopt a glue, whirl coating, plumber's solder or upside-down mounting etc.;
Step 12, soldering copper salient point
Referring to Figure 12, at chip surface soldering copper salient point, copper bump can weld by routing mode;
Step 13, at metal support plate front covering insulating material layer
Referring to Figure 13, at the positive one deck insulating material that covers of metal support plate, object is in order to do the insulating barrier between chip and a sandwich circuit, to do basis for follow-up plating one sandwich circuit simultaneously;
Step 14, insulating material surface attenuate
Referring to Figure 14, mechanical reduction is carried out in insulating material surface, until expose copper bump.Object is in order to make copper ball and follow-up one deck connection, can increase the adhesion of subsequent chemistry copper simultaneously;
Step 15, insulating material surface metalation
Referring to Figure 15, metalized is carried out in insulating material surface, make its follow-up can plating in surface;
Step 10 six, subsides photoresistance film
Referring to Figure 16, stick the photoresistance film that can carry out exposure imaging completing metallized insulating material surface and the metal support plate back side;
Step 10 seven, exposure imaging
Referring to Figure 17, utilize exposure imaging equipment that the metal layer of insulating material is carried out to graph exposure, develops and remove part figure photoresistance film, to expose the positive follow-up graphics field that need to carry out the plating of one deck line layer of metal layer;
Step 10 eight, plated metal line layer (one deck line layer)
Referring to Figure 18, in step 10 seven, in the region of metal layer removal part photoresistance film, electroplate metallic circuit layer as one deck line layer, form wiring board;
Step 10 nine, removal photoresistance film
Referring to Figure 19, remove the photoresistance film in the metal support plate back side and wiring board front, the method for removing photoresistance film adopts chemical medicinal liquid to soften (if desired and adopt high pressure water jets to remove);
Step 2 ten, fast-etching
Referring to Figure 20, fast-etching is carried out in wiring board front, remove one deck line layer metal layer in addition;
Step 2 11, coating photosensitive material
Referring to Figure 21, complete the wiring board front surface coated photosensitive material of one deck line layer;
Step 2 12, exposure imaging
Referring to Figure 22, utilize exposure imaging equipment that part figure photosensitive material is carried out to graph exposure, develops and removes in wiring board front, the graphics field processing to expose the positive follow-up needs of wiring board;
Step 2 13, carry out the organic protection of metal
Referring to Figure 23, the metal level that wiring board is exposed carries out organic protection;
Step 2 14, plant ball
Referring to Figure 24, plant ball region implanted metal ball in wiring board front;
Step 2 15, cutting
Referring to Figure 25, the product of having planted Metal Ball is cut into single product.
In described step 11, can directly mount the chip of having made copper post on PAD, omit step 12.
Described step 13 to step 2 ten can step 12 between step 2 11 repeatedly, to form multiple layer metal line layer.
Claims (2)
1. one kind high heat radiation chip embedded-type electric magnetic screen encapsulating structure, it is characterized in that: it comprises metal support plate (1), described metal support plate (1) surface label is equipped with chip (2), described chip (2) periphery is provided with shielding copper post (8), described chip (2) surface soldered has copper ball (3), described chip (2), copper ball (3) and shielding copper post (8) periphery are encapsulated with insulating material (4), described copper ball (3) flushes with insulating material (4), described copper ball (3) and insulating material (4) surface are provided with metallic circuit layer (5), described metallic circuit layer (5) periphery is encapsulated with photosensitive material (7), described metallic circuit layer (5) surface is provided with Metal Ball (6).
2. the high heat radiation chip embedded-type electric of one according to claim 1 magnetic screen encapsulating structure, it is characterized in that: described metallic circuit layer (5) is multilayer, between described metallic circuit layer (5) and metallic circuit layer (5), is connected by being connected copper post (9).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420143751.4U CN203787410U (en) | 2014-03-27 | 2014-03-27 | High radiating chip embedded electromagnetic shielding packaging structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420143751.4U CN203787410U (en) | 2014-03-27 | 2014-03-27 | High radiating chip embedded electromagnetic shielding packaging structure |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203787410U true CN203787410U (en) | 2014-08-20 |
Family
ID=51323567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201420143751.4U Expired - Lifetime CN203787410U (en) | 2014-03-27 | 2014-03-27 | High radiating chip embedded electromagnetic shielding packaging structure |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203787410U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103887256A (en) * | 2014-03-27 | 2014-06-25 | 江苏长电科技股份有限公司 | High-cooling-performance chip-embedded type electromagnetic shielding encapsulating structure and manufacturing method thereof |
TWI665775B (en) * | 2017-09-25 | 2019-07-11 | 力成科技股份有限公司 | Package structure and chip structure |
-
2014
- 2014-03-27 CN CN201420143751.4U patent/CN203787410U/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103887256A (en) * | 2014-03-27 | 2014-06-25 | 江苏长电科技股份有限公司 | High-cooling-performance chip-embedded type electromagnetic shielding encapsulating structure and manufacturing method thereof |
CN103887256B (en) * | 2014-03-27 | 2017-05-17 | 江阴芯智联电子科技有限公司 | High-cooling-performance chip-embedded type electromagnetic shielding encapsulating structure and manufacturing method thereof |
TWI665775B (en) * | 2017-09-25 | 2019-07-11 | 力成科技股份有限公司 | Package structure and chip structure |
US10607860B2 (en) | 2017-09-25 | 2020-03-31 | Powertech Technology Inc. | Package structure and chip structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102456677B (en) | Packaging structure for ball grid array and manufacturing method for same | |
CN102446882B (en) | Semiconductor PiP (package in package) system structure and manufacturing method thereof | |
CN101165866B (en) | Integrated circuit package and method of making same | |
CN103887256A (en) | High-cooling-performance chip-embedded type electromagnetic shielding encapsulating structure and manufacturing method thereof | |
CN102543907B (en) | Package and manufacture method for thermal enhanced quad flat no-lead flip chip | |
CN103794587B (en) | Embedded type rewiring line packaging structure of chip with good heat dissipation performance and manufacturing method thereof | |
CN102543937B (en) | Flip chip on-chip package and manufacturing method thereof | |
US10283376B2 (en) | Chip encapsulating method and chip encapsulating structure | |
CN105575913A (en) | Fan-out type 3D packaging structure embedded in silicon substrate | |
CN209045532U (en) | A kind of semiconductor chip package | |
CN103456645B (en) | First lose and seal three-dimensional systematic chip afterwards and just filling stack package structure and processing method | |
US20090283900A1 (en) | Semiconductor device and manufacturing method for semiconductor device | |
CN102956594A (en) | Power overlay structure with leadframe connections | |
CN201904369U (en) | LED (light emitting diode) surface-mounting package structure based on silicon substrate | |
CN104505382A (en) | Wafer-level fan-out PoP encapsulation structure and making method thereof | |
CN107958882A (en) | Encapsulating structure of chip and preparation method thereof | |
CN105845585A (en) | Chip packaging method and chip packaging structure | |
CN102543908A (en) | Flip chip encapsulating piece and manufacturing method thereof | |
TW202025435A (en) | Package device and method of manufacturing the same | |
CN203787410U (en) | High radiating chip embedded electromagnetic shielding packaging structure | |
CN102403236A (en) | Chip exposed semiconductor device and production method thereof | |
CN111029260A (en) | Preparation method of fan-out type three-dimensional packaging structure and fan-out type three-dimensional packaging structure | |
CN204375727U (en) | The embedded encapsulating structure that reroutes of a kind of high heat radiation chip | |
CN213401181U (en) | Chip structure | |
CN211150512U (en) | Fan-out type three-dimensional packaging structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160429 Address after: 214434 Jiangyin, Jiangsu, Chengjiang city street, Long Hill Road, No. 78 Patentee after: Jiangyin Xinzhilian Electronic Technology Co.,Ltd. Address before: 214434 Jiangyin, Jiangsu Province, Chengjiang Mayor Hill Road, No. 78, No. Patentee before: JIANGSU CHANGJIANG ELECTRONICS TECHNOLOGY Co.,Ltd. |
|
CX01 | Expiry of patent term |
Granted publication date: 20140820 |
|
CX01 | Expiry of patent term |