CN214470666U - 一种改进的斜照明式彩色共聚焦测量系统 - Google Patents

一种改进的斜照明式彩色共聚焦测量系统 Download PDF

Info

Publication number
CN214470666U
CN214470666U CN202120208346.6U CN202120208346U CN214470666U CN 214470666 U CN214470666 U CN 214470666U CN 202120208346 U CN202120208346 U CN 202120208346U CN 214470666 U CN214470666 U CN 214470666U
Authority
CN
China
Prior art keywords
light path
light
motion platform
horizontal
measurement system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202120208346.6U
Other languages
English (en)
Inventor
余卿
张雅丽
程方
王寅
尚文键
王翀
董声超
肖泽祯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaqiao University
Original Assignee
Huaqiao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaqiao University filed Critical Huaqiao University
Priority to CN202120208346.6U priority Critical patent/CN214470666U/zh
Application granted granted Critical
Publication of CN214470666U publication Critical patent/CN214470666U/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

本实用新型公开了一种改进的斜照明式彩色共聚焦测量系统,其包括照明光路、水平运动平台、反射光路、采集光路和计算模块。水平运动平台上能安装被测物。照明光路的入射光部分聚焦至被测物表面,再反射至所述反射光路,再在反射光路上反向射回,并经过反射光路上的分光镜侧向射出反射光路,射向所述采集光路。所述计算模块连接于所述采集光路和所述水平运动平台。本测量系统以倾斜射入测试光波的方式对被测物表面信息进行采集,采集光路采集到的波长信息代表当前测量物表面的相对轴向高度,计算模块通过结合水平运动平台扫描测量被测物整个表面的高度变化值,生成表面三维形貌图。本实用新型不仅适用于水平表面的探测,也适用于竖直表面的探测。

Description

一种改进的斜照明式彩色共聚焦测量系统
技术领域
本实用新型涉及非接触式表面三维形貌检测领域,具体而言,涉及一种改进的斜照明式彩色共聚焦测量系统。
背景技术
随着科学技术的快速发展,物体表面三维形貌测量领域受到越来越多学者的广泛关注,彩色共聚焦技术作为物体表面三维形貌重构技术之一,近几年也有了很大的发展。与传统的激光共聚焦技术相比,彩色共聚焦技术无需依赖位移平台的轴向扫描即可实现测量,对测量精度和测量效率都有了很大的提高。
然而,现有的一些彩色共聚焦技术只能实现对物体水平表面的测量,不能够实现对物体竖直表面的测量。应用范围具有一定的局限性。
实用新型内容
为了解决现有彩色共聚焦技术只能实现对物体水平表面的测量,不能够实现对物体竖直表面的测量技术问题,本实用新型提出了一种改进的斜照明式彩色共聚焦测量系统,本实用新型的技术方案如下。
本实用新型首先提出一种改进的斜照明式彩色共聚焦测量系统。该测量系统包括照明光路、水平运动平台、反射光路、采集光路和计算模块。水平运动平台上能安装被测物。照明光路的入射光部分聚焦至被测物表面,再反射至所述反射光路,再在反射光路上反向射回,并经过反射光路上的分光镜侧向射出反射光路,射向所述采集光路。所述计算模块连接于所述采集光路和所述水平运动平台。其中,照明光路的中心线与反射光路的中心线关于水平运动平台的法线对称,且与水平运动平台均呈夹角θ,且0<θ≤θmax,θmax为采集光路能接收到光波信号的倾斜临界角。当θ>θmax时,彩色相机采集到由被测物面反射回的能量将逐渐减少,将不再有光线返回探测器,此时彩色相机完全接受不到信号。
本实用新型的方案利用彩色共聚焦距离测量方法以倾斜射入测试光波的方式对被测物表面信息进行采集,测量光线由于倾斜角度偏转到其他方向无法直接由样品表面反射回光线采集器,故添加反射光路将聚焦光全反射回接收系统 (即采集光路)进行光束信息采集。采集光路采集到的波长信息代表当前测量物表面的相对轴向高度,计算模块通过结合水平运动平台扫描测量被测物整个表面的高度变化值,生成表面三维形貌图。本实用新型不仅适用于水平表面的探测,也适用于竖直表面的探测。将本实用新型的整个测量系统沿逆时针旋转 90度即可完成对竖直表面的探测。
作为本实用新型的改进的斜照明式彩色共聚焦测量系统的进一步改进,所述照明光路包括复色光源、光纤、照明小孔机构、第一色散管镜和第一聚焦透镜;光纤的一端连接到复色光源,另一端朝向照明小孔机构上的照明小孔,指向照明小孔后端的第一色散管镜;复色光源发出的光通过光纤和照明小孔,成为点光源,点光源的光通过第一色散管镜成为准直光,再通过第一聚焦透镜成为沿照明光路的中心线依次聚焦的多光束。其中,所述第一聚焦透镜为平凸透镜,能将准直线汇聚射出。
作为本实用新型的改进的斜照明式彩色共聚焦测量系统的进一步改进,所述水平运动平台为二维运动平台,由纵向分移动和横向分移动合成水平方向的运动;测量系统还包括能驱动水平运动平台沿水平横向和水平纵向移动的驱动模块,所述计算模块连接于所述驱动模块,实现对被测物的位移精确控制和记录,以进行后续的三维模型计算。
作为本实用新型的改进的斜照明式彩色共聚焦测量系统的进一步改进,所述反射光路包括第二聚焦透镜、分光镜、准直镜和角锥棱镜;经过被测物后的反射光依次通过第二聚焦透镜、分光镜和准直镜到达角锥棱镜,并在角锥棱镜上反向射回,经过分光镜的反射,侧向射至所述采集光路。其中,所述第二聚焦透镜为平凸透镜,能将分散的光束汇聚准直。其中,所述准直镜为凸透镜,能将通过的光线汇聚或者准直。
作为本实用新型的改进的斜照明式彩色共聚焦测量系统的进一步改进,所述采集光路包括:第二色散管镜、探测小孔机构和彩色相机;从分光镜反射出的光束,依次通过所述第二色散管镜、探测小孔机构上的探测小孔,到达彩色相机。
作为本实用新型的改进的斜照明式彩色共聚焦测量系统的进一步改进,所述计算模块包括计算机,计算机分别连接于所述彩色相机和水平运动平台的驱动机构,控制和记录二维运动平台的扫描路径。
本实用新型不仅适用于水平表面的探测,也适用于竖直表面的探测。将本实用新型的整个测量装置沿竖直面旋转90度即可完成对竖直表面的探测。
本实用新型其次还提出一种改进的斜照明式彩色共聚焦检测方法,应用于上述的改进的斜照明式彩色共聚焦测量系统,本检测方法包括以下步骤:
P1,在照明光路上:先发出复色入射光,再将光束色散,然后将光束按波长沿照明光路中心线依次聚焦。
P2,将被测物移动至步骤P1的光束聚焦线上,使被测物表面出现聚焦光斑,计算模块控制水平运动平台的水平移动路径,使被测物表面各个测试位置均经过光束聚焦线。水平运动平台主要用于带动被测物进行二维扫描运动,结合对水平运动平台的二维扫描从而完成对整个被测物表面的测量。
P3,在光斑的反射路径上设置反射光路,在反射光路上,将光线汇聚为准直光,再透过分光镜,最后被反射光路末端的回射器件反向射回,再次经过分光镜,在分光镜上反射向所述采集光路。
P4,采集光路采集光波信息,计算模块进行图像处理得到物体表面三维形貌特征。
作为本实用新型的改进的斜照明式彩色共聚焦检测方法的进一步改进,步骤P1具体包括:复色光源发出复色光,通过光纤和照明小孔形成复色点光源,复色点光源经过所述第一色散管镜形成色散光,色散之后的光经过第一聚焦透镜聚焦到被测物表面。这里,色散就是将一束复色光色散成具有不同波长的多束光线,使得不同波长的光线分别聚焦于光轴(照明光路中心线)的不同轴向高度位置处,随着光线波长的增加,光线的孔径角变小,即波长越长的光线聚焦位置越远离第一聚焦透镜。
作为本实用新型的改进的斜照明式彩色共聚焦检测方法的进一步改进,步骤P3具体包括:被测物上的光斑反射后,依次通过第二聚焦透镜、分光镜和准直镜后,到达角锥棱镜,角锥棱镜将光线沿原方向反射,先透过准直镜到达分光镜,经过分光镜的反射,侧向射至所述采集光路。
作为本实用新型的改进的斜照明式彩色共聚焦检测方法的进一步改进,步骤P4具体包括:从分光镜反射向采集光路的光线,依次通过第二色散管镜、探测小孔机构上的探测小孔,到达彩色相机;彩色相机作为光学传感器,其接收光波信号,并将光信号转化为电信号,接着将电信号传输至计算机;计算机根据该电信号以及水平运动平台的扫描路径,进行数字图像处理得到物体表面三维形貌特征。这里,需要说明的是,只有聚焦于被测物表面的光线经反射后才能够通过探测小孔,非聚焦于被测物表面的光线会被探测小孔滤除。也就是说,照明小孔、被测物焦点以及探测小孔三者具有共轭的关系。
本测量系统和检测方法适用于在检测如航空发动机转子叶片的表面形貌等几何空间受到限制的情况下,检测样品表面形貌、台阶高度、表面粗糙度、平面度和透明材料的厚度等。
附图说明
为了更清楚地说明本实用新型实施方式的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本实用新型的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是本实用新型的改进的斜照明式彩色共聚焦测量系统的整体结构图;
图2是本实用新型的改进的斜照明式彩色共聚焦测量系统的针对竖直表面测量的整体示意图。
图中标记:复色光源1、光纤2、照明小孔机构3-1、探测小孔机构3-2、第一色散管镜4-1、第二色散管镜4-2、第一聚焦透镜5-1、第二聚焦透镜5-2、被测物6、水平运动平台7、分光镜8、准直镜9、角锥棱镜10、彩色相机11、计算机12。
具体实施方式
本实用新型的一种改进的斜照明式彩色共聚焦测量系统,目的在于实现对水平表面和竖直表面的同时检测。以下结合附图对本实用新型技术方案装置结构及操作步骤进行详细描述,以便于更容易理解和掌握本实用新型的目的、结构和功能,但不作为对本实用新型要求的保护范围的限制。
图1为本实用新型的一种改进的斜照明式彩色共聚焦测量系统,其处于针对水平表面的探测状态。总体而言,本测量系统包括照明光路、水平运动平台7、反射光路、采集光路和计算模块。水平运动平台7用于安装被测物6。照明光路的入射光部分聚焦至被测物6表面,再反射至所述反射光路,再在反射光路上反向射回,并经过反射光路上的分光镜8侧向射出反射光路,射向所述采集光路。所述计算模块连接于所述采集光路和所述水平运动平台7。采集光路采集光波信息,将光信号转化为电信号输送至计算模块,计算模块结合该电信号和水平运动平台7的位置信息,计算出被测物6的三维表面形貌。
本测量系统中,照明光路的中心线与反射光路的中心线关于水平运动平台7 的法线对称,且与水平运动平台7均呈夹角θ,且0<θ≤θmax,θmax为采集光路能接收到光波信号的倾斜临界角。当θ>θmax时,彩色相机采集到由被测物面反射回的能量将逐渐减少,将不再有光线返回探测器,此时彩色相机完全接受不到信号。θmax可以是50°、60°、65°等。
本实施方式利用彩色共聚焦距离测量方法以倾斜射入测试光波的方式对被测物表面信息进行采集,测量光线由于倾斜角度偏转到其他方向无法直接由样品表面反射回光线采集器,故添加反射光路将聚焦光全反射回接收系统(即采集光路)进行光束信息采集。采集光路采集到的波长信息代表当前测量物表面在竖直方向(图1中垂直于水平运动平台7的方向)的相对轴向高度,计算模块通过结合水平运动平台7扫描测量被测物6整个表面的高度变化值,生成表面三维形貌图。本实用新型不仅适用于水平表面的探测(如图1),也适用于竖直表面的探测(如图2),将图1的整个测量系统沿逆时针旋转90度即可得到图2的对竖直表面探测的测量系统。
如图1所示,本测量系统中,所述照明光路包括复色光源1、光纤2、照明小孔机构3-1、第一色散管镜4-1和第一聚焦透镜5-1。光纤2的一端连接到复色光源1,另一端朝向照明小孔机构3-1上的照明小孔,指向照明小孔后端的第一色散管镜4-1。所述复色光源1为海洋光学公司的HL-2000-fhsa卤钨灯光源,复色光源1发出的复色光束是具有连续光谱信息的白光,光谱波长为可见光波长。光纤2由石英材料构成包括了纤芯、包层和涂覆层。第一聚焦透镜5-1为平凸透镜,能将准直线汇聚射出。
复色光源1发出的光通过光纤2和照明小孔,成为点光源,点光源的光通过第一色散管镜4-1成为准直光并被色散,再通过第一聚焦透镜5-1成为沿照明光路的中心线依次聚焦的多光束,可以聚焦到被测物6的表面。这里,色散就是将一束复色光色散成具有不同波长的多束光线,使得不同波长的光线分别聚焦于光轴的不同轴向高度位置处,随着光线波长的增加,光线的孔径角变小,即波长越长的光线聚焦位置越远离第一聚焦透镜5-1。
所述水平运动平台7为二维运动平台,由纵向y分移动和横向x分移动合成水平方向的运动。本测量系统还包括能驱动水平运动平台7沿水平横向和水平纵向移动的驱动模块,如电机,所述计算模块连接于所述驱动模块,实现对被测物6的位移精确控制和记录,以能结合反射光波信号进行三维模型计算。
图1中,被测物6上的两个聚焦点表示在两次测试过程中,在左右移动所述水平运动平台7后,在被测物6的表面高、低台阶处分别形成的光斑,两个光斑在同一聚焦轴线上。
所述反射光路包括第二聚焦透镜5-2、分光镜8、准直镜9和角锥棱镜10。经过被测物6后的反射光依次通过第二聚焦透镜5-2、分光镜8和准直镜9到达角锥棱镜10。所述第二聚焦透镜5-2为平凸透镜,能将分散的光束汇聚准直。所述准直镜9为凸透镜,能将通过的光线汇聚或者准直。角锥棱镜10为一种反射器,由三面相互垂直的平面镜构成的内部全反射器,光线会经角锥棱镜10沿原方向再次反射回分光镜8,再经过分光镜8的反射,侧向射至所述采集光路。由于照明光路产生的光线因为倾斜角度偏转到其他方向无法直接由采集光路进行采集,故添加反射光路中的分光镜8、准直镜9和角锥棱镜10将光线重新聚焦并全反射回分光镜8,再由采集光路进行光点颜色信息采集。
所述采集光路包括:第二色散管镜4-2、探测小孔机构3-2和彩色相机11。从分光镜8反射出的光束,依次通过所述第二色散管镜4-2、探测小孔机构3-2 上的探测小孔,到达彩色相机11。
所述计算模块包括计算机12,计算机12分别连接于所述彩色相机11和水平运动平台7的驱动机构,控制和记录二维运动平台7的扫描路径。
本实施方式中还提出一种改进的斜照明式彩色共聚焦检测方法,应用于上述的改进的斜照明式彩色共聚焦测量系统,本检测方法包括以下步骤:
P1,在照明光路上:复色光源1发出复色光,通过光纤2和照明小孔形成复色点光源,复色点光源经过所述第一色散管镜4-1形成色散光,色散之后的光经过第一聚焦透镜5-1聚焦到被测物6表面。这里,色散就是将一束复色光色散成具有不同波长的多束光线,使得不同波长的光线分别聚焦于光轴(照明光路中心线)的不同轴向高度位置处,随着光线波长的增加,光线的孔径角变小,即波长越长的光线聚焦位置越远离第一色散管镜。
P2,将被测物6移动至步骤P1的光束聚焦线上,使被测物6表面出现聚焦光斑,计算模块控制水平运动平台7的水平移动路径,使被测物表面各个测试位置均经过光束聚焦线。水平运动平台7主要用于带动被测物6进行二维扫描运动,结合对水平运动平台7的二维扫描从而完成对整个被测物表面的测量。
P3,在光斑的反射路径上设置反射光路,被测物6上的光斑反射后,依次通过第二聚焦透镜5-2将光线准直,再透过分光镜8,接着透过准直镜9将光线汇聚至角锥棱镜10,角锥棱镜10将光线沿原方向反射,先透过准直镜9将光线准直,再到达分光镜8,经过分光镜8的反射,侧向射至所述采集光路。
P4,从分光镜8反射向采集光路的光线,先通过第二色散管镜4-2将光线汇聚,再通过探测小孔机构3-2上的探测小孔过滤非目标光波,然后到达彩色相机 11。彩色相机11作为光学传感器,其接收光波信号,并将光信号转化为电信号,接着将电信号传输至计算机12。计算机12根据该电信号以及水平运动平台7的扫描路径,进行数字图像处理得到物体表面三维形貌特征。这里,需要说明的是,只有聚焦于被测物表面的光线经反射后才能够通过探测小孔,非聚焦于被测物表面的光线会被探测小孔滤除。也就是说,照明小孔、被测物焦点以及探测小孔三者具有共轭的关系。
本测量系统和检测方法适用于在检测如航空发动机转子叶片的表面形貌等几何空间受到限制的情况下,检测样品表面形貌、台阶高度、表面粗糙度、平面度和透明材料的厚度等。本实用新型不仅适用于水平表面的探测,也适用于竖直表面的探测。将本实用新型的整个测量装置沿逆时针旋转90度即可完成对竖直表面的探测。
以上所述仅为本实用新型的优选实施方式而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡在本实用新型的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (9)

1.一种改进的斜照明式彩色共聚焦测量系统,其特征在于:所述测量系统包括照明光路、水平运动平台(7)、反射光路、采集光路和计算模块;水平运动平台(7)上能安装被测物(6),照明光路的入射光部分聚焦至被测物(6)表面,再反射至所述反射光路,再在反射光路上反向射回,并经过反射光路上的分光镜(8)侧向射出反射光路,射向所述采集光路,所述计算模块连接于所述采集光路和所述水平运动平台;其中,照明光路的中心线与反射光路的中心线关于水平运动平台的法线对称,且与水平运动平台均呈夹角θ,且0<θ≤θmax,θmax为采集光路能接收到光波信号的倾斜临界角。
2.根据权利要求1所述的改进的斜照明式彩色共聚焦测量系统,其特征在于:所述照明光路包括复色光源(1)、光纤(2)、照明小孔机构(3-1)、第一色散管镜(4-1)和第一聚焦透镜(5-1);光纤(2)的一端连接到复色光源(1),另一端朝向照明小孔机构(3-1)上的照明小孔,指向照明小孔后端的第一色散管镜(4-1);复色光源(1)发出的光通过光纤(2)和照明小孔,成为点光源,点光源的光通过第一色散管镜(4-1)成为准直光,再通过第一聚焦透镜(5-1)成为沿照明光路的中心线依次聚焦的多光束。
3.根据权利要求2所述的改进的斜照明式彩色共聚焦测量系统,其特征在于:所述第一聚焦透镜(5-1)为平凸透镜。
4.根据权利要求1所述的改进的斜照明式彩色共聚焦测量系统,其特征在于:所述水平运动平台(7)为二维运动平台,由纵向分移动和横向分移动合成水平方向的运动;测量系统还包括能驱动水平运动平台(7)沿水平横向和水平纵向移动的驱动模块,所述计算模块连接于所述驱动模块。
5.根据权利要求4所述的改进的斜照明式彩色共聚焦测量系统,其特征在于:所述反射光路包括第二聚焦透镜(5-2)、分光镜(8)、准直镜(9)和角锥棱镜(10);经过被测物(6)后的反射光依次通过第二聚焦透镜(5-2)、分光镜(8)和准直镜(9)到达角锥棱镜(10),并在角锥棱镜(10)上反向射回,经过分光镜(8)的反射,侧向射至所述采集光路。
6.根据权利要求5所述的改进的斜照明式彩色共聚焦测量系统,其特征在于:所述第二聚焦透镜(5-2)为平凸透镜。
7.根据权利要求5所述的改进的斜照明式彩色共聚焦测量系统,其特征在于:所述准直镜(9)为凸透镜。
8.根据权利要求5所述的改进的斜照明式彩色共聚焦测量系统,其特征在于:所述采集光路包括:第二色散管镜(4-2)、探测小孔机构(3-2)和彩色相机(11);从分光镜(8)反射出的光束,依次通过所述第二色散管镜(4-2)、探测小孔机构(3-2)上的探测小孔,到达彩色相机(11)。
9.根据权利要求8所述的改进的斜照明式彩色共聚焦测量系统,其特征在于:所述计算模块包括计算机(12),计算机(12)分别连接于所述彩色相机(11)和水平运动平台(7)的驱动机构。
CN202120208346.6U 2021-01-25 2021-01-25 一种改进的斜照明式彩色共聚焦测量系统 Expired - Fee Related CN214470666U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202120208346.6U CN214470666U (zh) 2021-01-25 2021-01-25 一种改进的斜照明式彩色共聚焦测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202120208346.6U CN214470666U (zh) 2021-01-25 2021-01-25 一种改进的斜照明式彩色共聚焦测量系统

Publications (1)

Publication Number Publication Date
CN214470666U true CN214470666U (zh) 2021-10-22

Family

ID=78114034

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202120208346.6U Expired - Fee Related CN214470666U (zh) 2021-01-25 2021-01-25 一种改进的斜照明式彩色共聚焦测量系统

Country Status (1)

Country Link
CN (1) CN214470666U (zh)

Similar Documents

Publication Publication Date Title
CN109916909B (zh) 光学元件表面形貌及亚表面缺陷信息的检测方法及其装置
TW201205114A (en) Linear chromatic confocal microscope system
JPS6036908A (ja) 三角測量原理に基づく測定法を用いる、物体表面上の点と基準レベルとの間の距離を非接触的に測定するための測量方法
CN101135653A (zh) 光学平面表面疵病的激光散射检测系统
CN113589506B (zh) 一种基于光谱共焦原理的生物显微视觉预对焦装置及方法
CA1103497A (en) Optical inspection system employing spherical mirror
CN104224117B (zh) 一种光谱编码共焦与光学相干层析协同成像方法与系统
CN109163662A (zh) 基于波长扫描的光谱共焦位移测量方法及装置
CN109724955B (zh) 一种基于激发配准的塔姆耦合出射角测算方法与装置
CN109115723A (zh) 基于数字微镜设备的光学相干层析成像装置及成像方法
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
JP4884615B2 (ja) 並列処理光学距離計
CN112857262A (zh) 一种改进的斜照明式彩色共聚焦测量系统和检测方法
CN214470666U (zh) 一种改进的斜照明式彩色共聚焦测量系统
CN215984415U (zh) 一种线式扫描光谱共聚测量系统
CN112857263A (zh) 一种斜照明式的彩色共聚焦测量系统及检测方法
CN115655110A (zh) 点自聚焦原理的光探针测头精度自校准方法
CN214173285U (zh) 一种面型检测系统
CN114486912A (zh) 一种基于线光谱共焦技术的光学元件缺陷检测装置及方法
CN101751148B (zh) 一种不变形光斑的取像装置与方法
CN204147009U (zh) 一种光谱编码共焦与光学相干层析协同成像系统
CN213956278U (zh) 一种斜照明式的彩色共聚焦测量系统
CN213956279U (zh) 一种简易的斜照明式彩色共聚焦测量系统
CN115468742B (zh) 一种光波导测试系统
CN211317545U (zh) 一种采用激光干涉原理的实时波长检测装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211022