CN214172502U - 双冷源热管背板多联机空调系统 - Google Patents

双冷源热管背板多联机空调系统 Download PDF

Info

Publication number
CN214172502U
CN214172502U CN202023029530.9U CN202023029530U CN214172502U CN 214172502 U CN214172502 U CN 214172502U CN 202023029530 U CN202023029530 U CN 202023029530U CN 214172502 U CN214172502 U CN 214172502U
Authority
CN
China
Prior art keywords
compressor
back plate
heat exchange
pipe
outdoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202023029530.9U
Other languages
English (en)
Inventor
朱建斌
王丁会
杨英
严峰
王建波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Sup Info Information Technology Co ltd
Original Assignee
Sichuan Sup Info Information Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Sup Info Information Technology Co ltd filed Critical Sichuan Sup Info Information Technology Co ltd
Priority to CN202023029530.9U priority Critical patent/CN214172502U/zh
Application granted granted Critical
Publication of CN214172502U publication Critical patent/CN214172502U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

本实用新型涉及双冷源热管背板多联机空调系统,双冷源室外机组在室外温度高时,机组切换进入压缩机制冷模式;当室外温度低时,机组切换进入双动力制冷模式,压缩机和氟泵双动力同时运行;当室外温度及其低更低时,机组切换进入氟泵循环模式,利用氟泵运行,压缩机停止工作。冷量通过中间换热单元换热导通给联结室内的热管背板制冷末端系统,热管背板末端中的液态制冷剂吸收了热空气的热量后,相变气化成为蒸汽状态,被输送至机房外的中间换热单元中,被冷却成液态制冷剂,在回流至热管背板末端中,如此循环往复从而达到冷却降温之目的,这样运行降低机组能耗,降低能耗成本,延长压缩机寿命。

Description

双冷源热管背板多联机空调系统
技术领域
本实用新型涉及空调制冷技术领域,尤其涉及双冷源热管背板多联机空调系统。
背景技术
随着大型计算机的广泛应用及移动通讯的普及,机房和基站专用制冷设备得到大量应用。5G基站比4G基站的电能消耗量高出3.5-4.5倍之多,高昂的电费被称为压垮运营商的稻草,成为运营商、铁塔公司的沉重负担。有专家指出,同样覆盖情况下,5G网络能耗将达到2430亿度,电费将达到2160亿元,降低5G基站的能耗,降低基站的PUE值,对于减少运营商、铁塔公司的运营成本,具有重要意义。
由于机房专用机是全年制冷运行的,即使在室外温度很低时,仍需对机房内进行制冷降温,造成全年的运行费用极高,制冷系统的启停损失增大、机器寿命缩短。如何降低制冷的运营成本是本领域亟待解决的技术问题。
实用新型内容
针对现有技术中的不足,本实用新型提供一种双冷源热管背板多联机空调系统,双冷源室外机组在室外温度高时,机组切换进入压缩机制冷模式;当室外温度低时,机组切换进入双动力制冷模式,压缩机和氟泵双动力同时运行;当室外温度及其低更低时,机组切换进入氟泵循环模式,利用氟泵运行,压缩机停止工作;该运行控制方式降低了机组能耗,降低了能耗成本,延长了压缩机寿命。
为达到上述目的,本实用新型提供了一种双冷源热管背板多联机空调系统,包括室内机组和室外机组;
所述室外机组包括中间换热单元、冷凝器、压缩机和氟泵;所述中间换热单元用于所述室内机组冷媒和室外机组冷媒进行热交换;所述冷凝器用于散热;
当室外温度高于第一阈值时,开启压缩机驱动冷媒循环,关闭氟泵;当温度不高于第一阈值且高于第二阈值时,开启压缩机驱动冷媒循环,控制氟泵对冷媒加压;当室外温度不高于第二阈值时,开启氟泵驱动冷媒循环制冷,关闭压缩机。
进一步地,所述室外机组包括中间换热单元室外输出管路,中间换热单元室外输入管路、第一气管、第二气管、第一液管、第二液管、主管路、压缩机、压缩机旁通电磁阀、氟泵旁通电磁阀和膨胀阀;
所述第一气管、第二气管并联连接在所述中间换热单元室外输出管路与主管路之间;所述第一气管设置压缩机,第二气管设置压缩机旁通电磁阀和止回阀;
所述主管路连接至所述冷凝器;
所述第一液管和第二液管并联在所述主管路与中间换热单元室外输入管路之间;所述第一液管设置氟泵旁通电磁阀,所述第二液管设置氟泵;
中间换热单元室外输入管路设置膨胀阀。
进一步地,还包括控制模块,当室外温度高于第一阈值时,所述控制模块控制开启压缩机、氟泵旁通电磁阀,关闭氟泵和压缩机旁通电磁阀;气态冷媒经中间换热单元室外输出管路进入所述第一气管,通过压缩机驱动循环,经冷凝器散发热量后转换为液态冷媒,经所述第一液管进入膨胀阀降低压力膨胀,再经过中间换热单元吸收热量转换为液态冷媒;
当温度不高于第一阈值且高于第二阈值时,所述控制模块控制开启压缩机、氟泵旁通电磁阀和氟泵,关闭压缩机旁通电磁阀;气态冷媒经中间换热单元室外输出管路进入所述第一气管,通过压缩机驱动循环,经冷凝器散发热量后转换为液态冷媒,经所述第二液管由氟泵加压,进入膨胀阀降低压力膨胀,再经过中间换热单元吸收热量转换为液态冷媒;
当室外温度不高于第二阈值时,所述控制模块控制开启氟泵和压缩机旁通电磁阀,关闭压缩机和氟泵旁通电磁阀;气态冷媒经中间换热单元室外输出管路进入所述第二气管,经冷凝器散发热量后转换为液态冷媒,经所述第二液管由氟泵加压,进入膨胀阀降低压力膨胀,再经过中间换热单元吸收热量转换为液态冷媒;所述第一阈值在15℃~25℃之间,所述第二阈值在1~5℃之间。
进一步地,还包括止回阀设置在第二液管上,止回阀防止气态冷媒流向压缩泵。
进一步地,还包括温度检测模块,检测室内、室外的温度发送给所述控制模块。
进一步地,所述冷凝器为风冷冷凝器或水冷冷凝器。
进一步地,所述中间换热单元为板式换热器或壳管式换热器。
进一步地,所述室内机组包括室内气管、室内液管和若干热管背板制冷末端系统;室内机组液态冷媒经室内液管进入热管背板制冷末端制冷后转换为气态冷媒进入中间换热单元,进行热交换后转换为液态冷媒。
进一步地,中间换热单元的位置高于热管背板制冷末端;
或者中间换热单元的位置不高于热管背板制冷末端,设置内机液态制冷剂氟泵,驱动室内机组冷媒循环。
进一步地,每个所述室外机组对应一个、两个或多个所述室内机组;所述室内机组采用背板式、吊顶式或落地式。
本实用新型的上述技术方案具有如下有益的技术效果:
(1)本实用新型在室外制冷机组系统中实现压缩机制冷、氟泵制冷系统双冷源制冷。当室外温度高时,机组切换进入压缩机制冷模式,启用压缩机进行制冷;当室外温度低时,机组切换进入双动力制冷模式,压缩机和氟泵双动力同时运行,提升制冷效率,满足室内冷量要求;当室外温度及其低更低时,机组切换进入氟泵循环模式,利用氟泵运行,压缩机停止工作,大大降低机组能耗,成本低、节能效果显著。室内机组采用热管背板形式,实现机柜级高效散热,提高单机柜散热功率(可达20kw),提高换热效率。
(2)本实用新型通过优化管路设计,仅需设置一个冷凝器,进一步降低成本。
(3)本实用新型设置止回阀,避免冷媒反向流入压缩机,提高了压缩机的使用寿命。
附图说明
图1为依靠重力循环的双冷源热管背板空调多联机系统多联机空调系统结构原理图;
图2为具有内机液态制冷剂氟泵的双冷源热管背板空调多联机系统多联机空调系统结构原理图。
具体实施方式
为使本实用新型的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本实用新型进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本实用新型的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本实用新型的概念。
如图1所示为双冷源热管背板多联机空调系统结构原理图,没有内机液态制冷剂氟泵,依靠重力循环室内冷媒。如图1所示,包括:室外机组1,冷凝器2,氟泵旁通电磁阀3,氟泵4,止回阀5,压缩机6,压缩机旁通电磁阀7,膨胀阀8,中间换热单元9,液管管路10,气管管路11,热管背板制冷末端系统12,室内机组13。
双冷源热管背板多联机空调系统,包括室内机组13和室外机组1,室外机组1包括中间换热单元室外输出管路,中间换热单元9,中间换热单元室外输入管路、第一气管15、第二气管16、第一液管18、第二液管19、主管路17、压缩机6、压缩机旁通电磁阀7、氟泵旁通电磁阀3、膨胀阀8以及止回阀5。第一气管15、第二气管16并联连接,设置在中间换热单元室外输出管路与主管路17之间;第一气管15上设置压缩机6,第二气管设置压缩机旁通电磁阀7和止回阀5;主管路17连接至冷凝器2。第一液管18和第二液管19并联,设置在主管路17与中间换热单元室外输入管路之间。第一液管18设置氟泵旁通电磁阀,第二液管19设置氟泵。中间换热单元室外输入管路设置膨胀阀8。
双冷源热管背板多联机空调系统,室外温度设定值可以预先设定,例如:室外温度设定值1常规设定为20℃,室外温度设定值2常规设定为5℃。设立温度阈值范围可以在5℃范围内变化。温度阈值1范围为25℃到15℃。温度阈值2范围为10℃到0℃。
在室外温度高(例如:室外温度>20℃)时,使用压缩机制冷模式时,压缩机6开启,氟泵4关闭。冷媒通过压缩机6进行强制冷媒循环,冷媒经过冷凝器2散发热量,再经过氟泵旁通电磁阀3,再通过膨胀阀8降低压力膨胀,再经过中间换热单元9吸收热量,蒸发完全成为气体冷媒,再进入压缩机6,完成压缩机制冷循环。
在室外温度低(例如:20℃≥室外温度>5℃)时,使用双动力制冷模式时,压缩机6和氟泵4同时开启。冷媒通过压缩机6进行强制冷媒循环,冷媒经过冷凝器2散发热量,再经过氟泵4加压,再通过膨胀阀8降低压力膨胀,再经过中间换热单元9吸收热量,蒸发完全成为气体冷媒,再进入压缩机6,完成双动力制冷循环。
在室外温度更低(例如:室外温度≤5℃)时,使用氟泵制冷模式时,压缩机6关闭,氟泵4开启。冷媒通过氟泵4进行强制冷媒循环,经过膨胀阀8降低压力膨胀,再经过中间换热单元9吸收热量,再经过压缩机旁通电磁阀7和止回阀5的管路,再经过冷凝器2散发热量,再经过氟泵4,完成氟泵制冷循环。止回阀5压差为正值的时候,止回阀开启。压差为负值的时候,止回阀关闭,制止介质回流。
可以采用控制模块控制压缩机6和氟泵4以及各个阀门,也可以手动操控。
冷凝器2可以是风冷冷凝器或水冷冷凝器。中间换热单元9可以是板式换热器或壳管式换热器。
中间换热单元9连接室内机组13的热管背板制冷末端系统12,热管背板制冷空调系统12的制冷剂管路包括气管管路11与液管管路10,气管管路11分为气管总管与气管支管,液管管路10分为液管总管与液管支管。热管背板末端中的液态制冷剂吸收了热空气的热量后,沸腾并气化成为蒸汽状态,蒸汽状态的制冷剂在自身压差的作用下,被输送至机房外的室外机组1的中间换热单元9中,并在中间换热单元9中重新被冷却成液态制冷剂,在重力作用下回流至热管背板末端12中。室内换热方式采用热管背板空调末端,实现机柜级散热,单机柜散热量可高达20kw,换热效率高,换热功耗低。
如图2所示为双冷源热管背板多联机空调系统另一种实施方式结构原理图,设置内机液态制冷剂氟泵14驱动室内冷媒循环。
双冷源热管背板多联机空调系统可以使用内机液态制冷剂氟泵,也可以不使用内机液态制冷剂氟泵。在不能把中间换热单元9的位置布置得比热管背板末端12的位置更高的特殊场合,可以增加内机液态制冷剂氟泵14,用以保证室内冷媒的流动。
双冷源热管背板多联机空调系统每个所述室外机组对应一个、两个或多个所述室内机组,可以一拖一,也可以一拖多。
冷源热管背板多联机空调系统可以采用多种室内机结构形式,包括:背板式、吊顶式、落地式。
综上所述,本实用新型涉及双冷源热管背板多联机空调系统,双冷源室外机组在室外温度高时,机组切换进入压缩机制冷模式;当室外温度低时,机组切换进入双动力制冷模式,压缩机和氟泵双动力同时运行;当室外温度及其低更低时,机组切换进入氟泵循环模式,利用氟泵运行,压缩机停止工作。冷量通过中间换热单元换热导通给联结室内的热管背板制冷末端系统,热管背板末端中的液态制冷剂吸收了热空气的热量后,相变气化成为蒸汽状态,被输送至机房外的中间换热单元中,被冷却成液态制冷剂,在回流至热管背板末端中,如此循环往复从而达到冷却降温之目的,这样运行降低机组能耗,降低能耗成本,延长压缩机寿命。
应当理解的是,本实用新型的上述具体实施方式仅仅用于示例性说明或解释本实用新型的原理,而不构成对本实用新型的限制。因此,在不偏离本实用新型的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。此外,本实用新型所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (10)

1.一种双冷源热管背板多联机空调系统,其特征在于,包括室内机组和室外机组;
所述室外机组包括中间换热单元、冷凝器、压缩机和氟泵;所述中间换热单元用于所述室内机组冷媒和室外机组冷媒进行热交换;所述冷凝器用于散热;
当室外温度高于第一阈值时,开启压缩机驱动冷媒循环,关闭氟泵;当温度不高于第一阈值且高于第二阈值时,开启压缩机驱动冷媒循环,控制氟泵对冷媒加压;当室外温度不高于第二阈值时,开启氟泵驱动冷媒循环制冷,关闭压缩机。
2.根据权利要求1所述的双冷源热管背板多联机空调系统,其特征在于,所述室外机组包括中间换热单元室外输出管路,中间换热单元室外输入管路、第一气管、第二气管、第一液管、第二液管、主管路、压缩机、压缩机旁通电磁阀、氟泵旁通电磁阀和膨胀阀;
所述第一气管、第二气管并联连接在所述中间换热单元室外输出管路与主管路之间;所述第一气管设置压缩机,第二气管设置压缩机旁通电磁阀和止回阀;
所述主管路连接至所述冷凝器;
所述第一液管和第二液管并联在所述主管路与中间换热单元室外输入管路之间;所述第一液管设置氟泵旁通电磁阀,所述第二液管设置氟泵;
中间换热单元室外输入管路设置膨胀阀。
3.根据权利要求2所述的双冷源热管背板多联机空调系统,其特征在于:还包括控制模块,当室外温度高于第一阈值时,所述控制模块控制开启压缩机、氟泵旁通电磁阀,关闭氟泵和压缩机旁通电磁阀;气态冷媒经中间换热单元室外输出管路进入所述第一气管,通过压缩机驱动循环,经冷凝器散发热量后转换为液态冷媒,经所述第一液管进入膨胀阀降低压力膨胀,再经过中间换热单元吸收热量转换为液态冷媒;
当温度不高于第一阈值且高于第二阈值时,所述控制模块控制开启压缩机、氟泵旁通电磁阀和氟泵,关闭压缩机旁通电磁阀;气态冷媒经中间换热单元室外输出管路进入所述第一气管,通过压缩机驱动循环,经冷凝器散发热量后转换为液态冷媒,经所述第二液管由氟泵加压,进入膨胀阀降低压力膨胀,再经过中间换热单元吸收热量转换为液态冷媒;
当室外温度不高于第二阈值时,所述控制模块控制开启氟泵和压缩机旁通电磁阀,关闭压缩机和氟泵旁通电磁阀;气态冷媒经中间换热单元室外输出管路进入所述第二气管,经冷凝器散发热量后转换为液态冷媒,经所述第二液管由氟泵加压,进入膨胀阀降低压力膨胀,再经过中间换热单元吸收热量转换为液态冷媒;所述第一阈值在15℃~25℃之间,所述第二阈值在1~5℃之间。
4.根据权利要求3所述的双冷源热管背板多联机空调系统,其特征在于:还包括止回阀设置在第二液管上,止回阀防止气态冷媒流向压缩泵。
5.根据权利要求3所述的双冷源热管背板多联机空调系统,其特征在于:还包括温度检测模块,检测室内、室外的温度发送给所述控制模块。
6.根据权利要求1或2或3或4所述的双冷源热管背板多联机空调系统,其特征在于:所述冷凝器为风冷冷凝器或水冷冷凝器。
7.根据权利要求1或2或3或4所述的双冷源热管背板多联机空调系统,其特征在于:所述中间换热单元为板式换热器或壳管式换热器。
8.根据权利要求1或2或3或4所述的双冷源热管背板多联机空调系统,其特征在于:所述室内机组包括室内气管、室内液管和若干热管背板制冷末端系统;室内机组液态冷媒经室内液管进入热管背板制冷末端制冷后转换为气态冷媒进入中间换热单元,进行热交换后转换为液态冷媒。
9.根据权利要求8所述的双冷源热管背板多联机空调系统,其特征在于:中间换热单元的位置高于热管背板制冷末端;
或者中间换热单元的位置不高于热管背板制冷末端,设置内机液态制冷剂氟泵,驱动室内机组冷媒循环。
10.根据权利要求1或2或3或4所述的双冷源热管背板多联机空调系统,其特征在于:每个所述室外机组对应一个、两个或多个所述室内机组;所述室内机组采用背板式、吊顶式或落地式。
CN202023029530.9U 2020-12-16 2020-12-16 双冷源热管背板多联机空调系统 Active CN214172502U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202023029530.9U CN214172502U (zh) 2020-12-16 2020-12-16 双冷源热管背板多联机空调系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202023029530.9U CN214172502U (zh) 2020-12-16 2020-12-16 双冷源热管背板多联机空调系统

Publications (1)

Publication Number Publication Date
CN214172502U true CN214172502U (zh) 2021-09-10

Family

ID=77606396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202023029530.9U Active CN214172502U (zh) 2020-12-16 2020-12-16 双冷源热管背板多联机空调系统

Country Status (1)

Country Link
CN (1) CN214172502U (zh)

Similar Documents

Publication Publication Date Title
CN112628963B (zh) 双冷源热管背板多联机空调系统及运行控制的方法
CN111457509B (zh) 一种节能型空调
EP4343214A1 (en) Multi-mode water-fluorine multi-split system
CN110953668A (zh) 双冷源空调系统
CN211953115U (zh) 一种节能型空调
CN112867374A (zh) 一种水冷热管双模机房空调
CN205332368U (zh) 一种自由冷却机房空调机组
CN112710041A (zh) 一种双泵混驱复合型热管节能空调系统
CN210951940U (zh) 一种氟泵多联制冷系统
CN214172502U (zh) 双冷源热管背板多联机空调系统
CN215529686U (zh) 一种冷水型冷站系统
CN215121658U (zh) 一种水冷热管双模机房空调多联机组
CN1381701A (zh) 一种适于大温差、可充分利用能源的溴化锂吸收式制冷机
CN215121657U (zh) 一种水冷热管双模机房空调
CN115682293A (zh) 一种空调控制系统
CN112867373A (zh) 一种水冷热管双模机房空调多联机组
CN210128524U (zh) 一种用于内藏式展示柜的多级换热风冷散热系统
CN110617591A (zh) 智能涡流喷射节能空调
CN218379833U (zh) 一种空调控制系统
CN216844940U (zh) 基于多联机的数据中心换热系统
CN204555407U (zh) 节能型机房空调
CN214381929U (zh) 用于通信机房的散热系统
CN215295215U (zh) 一种冷冻水系统
CN103528150A (zh) 通信机房用节能一体化空调
CN219243984U (zh) 分体便携移动制冷装置及其设备

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant