CN213596030U - 连续过滤膜浓缩装置 - Google Patents

连续过滤膜浓缩装置 Download PDF

Info

Publication number
CN213596030U
CN213596030U CN202022373387.9U CN202022373387U CN213596030U CN 213596030 U CN213596030 U CN 213596030U CN 202022373387 U CN202022373387 U CN 202022373387U CN 213596030 U CN213596030 U CN 213596030U
Authority
CN
China
Prior art keywords
filter
area
liquid
heat exchanger
water tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202022373387.9U
Other languages
English (en)
Inventor
何铁峰
卢松军
朱磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Hepper Environmental Technology Co ltd
Original Assignee
Suzhou Hepper Environmental Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Hepper Environmental Technology Co ltd filed Critical Suzhou Hepper Environmental Technology Co ltd
Priority to CN202022373387.9U priority Critical patent/CN213596030U/zh
Application granted granted Critical
Publication of CN213596030U publication Critical patent/CN213596030U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本实用新型公开了一种连续过滤膜浓缩装置,包括:框架,划分有第一区域和第二区域、第三区域和第四区域;第一过滤器,设置在第一区域;循环水箱,设置在第二区域,所述第一过滤器过滤后的含目标物质的液体流入所述循环水箱;进料泵和第二过滤器,设置在第三区域,所述进料泵分别连接循环水箱和第二过滤器;换热器,设置在第四区域,所述换热器连接第二过滤器;加压泵和第三过滤器,加压泵设置在第四区域,第三过滤器设置在第一区域,所述换热器流出的液体经加压泵加压后流入第三过滤器,第三过滤器用于过滤并截留液体中的目标物质,所述第三过滤器截留的目标物质浓缩液流入所述循环水箱。上述装置集成度高,能够获得高浓度的浓缩液。

Description

连续过滤膜浓缩装置
技术领域
本实用新型涉及膜处理技术领域,尤其涉及一种连续过滤膜浓缩装置。
背景技术
膜分离是借助膜的选择透过性,在推动力(压力差、浓度差、温度差、电位差等)的作用下,使混合物中的一种或多种组分透过膜,达到对混合物的分离并实现产物的提取、纯化、浓缩、分级或富集等目的的一种新型分离过程,是一种速率控制分离过程。膜分离技术作为分离、浓缩、提纯及净化技术,具有分离效率高、操作方便、设备紧凑、工作环境安全、节能等优点,与其他传统的分离提纯技术相比具有无可比拟的优势。
公告号为CN101570503B的中国专利公开了一种低浓度己内酰胺水溶液的浓缩方法,适合于浓缩尼龙6聚合生产中产生的低浓度己内酰胺水溶液。该方法包括:收集罐中的低浓度己内酰胺水溶液未除杂质直接经进料泵进入冷却器冷却,在经细过滤器和精密过滤器过滤后,由高压泵送入反渗透模组和纳滤模组,CN101570503B的浓缩方法存在的问题是,未除杂质的低浓度己内酰胺水溶液容易堵塞进料泵和冷却器,造成系统故障,安全性降低,此外,浓缩液在纳滤膜组处直接向外排出,很难获得高浓度的浓缩液。
发明内容
本实用新型提供了解决上述问题的一种连续过滤膜浓缩装置,该装置集成度高,安全性高,能够获得高浓度的浓缩液。。
本实用新型采用以下技术方案实现:
一种连续过滤膜浓缩装置,包括:
框架,所述框架划分有并排的第一区域和第二区域、并排的第三区域和第四区域,所述第一区域和第四区域相邻,所述第二区域和第三区域相邻;
第一过滤器,所述第一过滤器设置在所述第一区域,含目标物质的液体流入所述第一过滤器,并通过所述第一过滤器过滤除去液体中的部分固体物质;
循环水箱,所述循环水箱设置在所述第二区域,所述循环水箱连接所述第一过滤器,所述第一过滤器过滤后的含目标物质的液体流入所述循环水箱;
进料泵和可拆卸和更换的第二过滤器,所述进料泵和第二过滤器设置在所述第三区域,所述进料泵分别连接所述循环水箱和第二过滤器,所述循环水箱流出的含目标物质的液体经所述进料泵流入所述第二过滤器,所述第二过滤器用于过滤除去液体中的部分固体物质;
可拆卸和更换的换热器,所述换热器设置在所述第四区域,所述换热器连接所述第二过滤器,所述第二过滤器过滤后的液体流入所述换热器,所述换热器用于对液体进行换热以将液体的温度维持在设定温度范围内;
加压泵和第三过滤器,所述加压泵设置在所述第四区域,所述第三过滤器设置在所述第一区域,所述加压泵分别连接所述换热器和第三过滤器,所述第三过滤器连接所述循环水箱,所述换热器流出的含目标物质的液体经所述加压泵加压后流入所述第三过滤器,所述第三过滤器用于对液体进行过滤并截留液体中的目标物质,所述第三过滤器截留的目标物质浓缩液流入所述循环水箱。
优选地,所述第一过滤器是微滤膜组件或超滤膜组件。
优选地,所述第二过滤器是可拆卸和更换的袋式过滤器、折叠滤芯过滤器或熔喷式滤芯过滤器。
优选地,所述第三过滤器是反渗透膜组件或纳滤膜组件。
优选地,所述进料泵是变频水泵。
优选地,所述循环水箱内设置有液位计和温度计,所述液位计用于检测所述循环水箱中液体的液位,所述温度计用于检测所述循环水箱中液体的温度。
优选地,还包括第一压力传感器和第二压力传感器,所述第一压力传感器设置在所述进料泵和第二过滤器之间的管路上以检测管路内液体的压力,所述第二压力传感器设置在所述第二过滤器和换热器之间的管路以检测管路内液体的压力。
优选地,还包括第三压力传感器和第四压力传感器,所述第三压力传感器设置在所述加压泵和所述换热器之间的管路上以检测管路内液体的压力,所述第四压力传感器设置在所述加压泵和所述第三过滤器之间的管路上以检测管路内液体的压力。
优选地,还包括手动阀,所述手动阀设置在所述第三过滤器和所述循环水箱之间的管路上,用于手动调节所述第三过滤器的运行压力。
优选地,所述第一过滤器上还设置有反冲洗进水管和反冲洗出水管,所述反冲洗进水管用于供水进入对所述第一过滤器进行反向冲洗,所述反冲洗出水管用于排出反向冲洗的废水。
与现有技术相比,本实用新型的有益效果至少包括:
本实用新型的连续过滤膜浓缩装置中,先由第一过滤器对含有目标物质的液体进行过滤,除去液体中的大部分固体物质,保证后续处理过程中基本无大颗粒杂质,不会堵塞后续的过滤膜元件、管路和设备,系统运行的安全性高。同时,浓缩过程循环进行,直到循环水箱的液体中目标物质的浓度达到设定范围才排出,因此,能够获得高浓度的浓缩液。
此外,上述连续过滤膜浓缩装置集成在框架内,具有一体化、结构紧凑、占用空间小的优点,集成度高,便于安装,上述装置能够低成本回收浓缩液体中的目标物质,该装置采用了新型的过滤技术,不需蒸发、蒸馏,尤其是采用微滤/超滤、反渗透膜进行过滤操作,能耗低,浓缩倍数高,实现了大部分物质的回收利用,工序比较简单,管理较方便,并且不产生污染。现有的浓缩方法需要先将物料降温,浓缩后再升温制成固体,本实用新型的连续过滤膜浓缩装置的浓缩过程是在高温条件下进行,可直接处理较高温度的原废水,为最终的固体提取提供了必要温度条件,与现有方案相比,不需要先降温再升温,能耗显著降低。
附图说明
图1是本实用新型实施例的连续过滤膜浓缩装置的原理示意图。
图2是本实用新型实施例的连续过滤膜浓缩装置的一个视角的结构示意图。
图3是本实用新型实施例的连续过滤膜浓缩装置的另一视角的结构示意图。
图4是本实用新型实施例的己内酰胺废水浓缩回收处理方法的流程示意图。
图中:10、第一过滤器;11、反冲洗进水管;12、反冲洗出水管;20、循环水箱;30、进料泵;40、第二过滤器;50、换热器;51、进水管;52、出水管;60、加压泵;70、第三过滤器;80、框架;81、第一区域;82、第二区域;83、第三区域;84、第四区域;91、第一压力传感器;92、第二压力传感器;93、第三压力传感器;94、第四压力传感器;100、手动阀。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本实用新型更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。
本实用新型中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本实用新型保护范围内。
参照图1至图3,本实用新型实施例提供一种连续过滤膜浓缩装置,包括:第一过滤器10、循环水箱20、进料泵30、第二过滤器40、换热器50、加压泵60和第三过滤器70,进一步包括控制器(未示出)、框架80、第一压力传感器91、第二压力传感器92、第三压力传感器93、第四压力传感器94、手动阀100,控制器与第一过滤器10、循环水箱20、进料泵30、第二过滤器40、换热器50、加压泵60、第三过滤器70、第一压力传感器91至第四压力传感器94通信连接。
本实用新型的连续过滤膜浓缩装置可以用于浓缩处理液体中的目标物质,例如可以用于回收浓缩废水中的有机物质,有机物质例如是废水中溶解的己内酰胺,还可以用于浓缩处理水中的蛋白或氨基酸,还可以用于浓缩处理溶剂中溶解的药物,此外,还可以用于水的淡化处理。下面以连续过滤膜浓缩装置回收浓缩废水中的己内酰胺为例对本实用新型的连续过滤膜浓缩装置进行详细描述。
框架80大致呈长方体结构,框架80划分有并排的第一区域81和第二区域82、并排的第三区域83和第四区域84,第一区域81和第四区域84相邻,第二区域82和第三区域83相邻,第一区域81至第四区域84大致呈顺时针方向布置。框架80上可以设置护板(未示出),从而将框架80包围起来,形成一种长方体的箱体结构。将连续过滤膜浓缩装置的各部件布置在框架80第一区域81至第四区域84中,使连续过滤膜浓缩装置具有一体化、结构紧凑、占用空间小的优点。
第一过滤器10设置在框架80的第一区域81,含己内酰胺的废水流入第一过滤器10,并通过第一过滤器10过滤除去废水中的部分固体杂质。本实用新型一些实施例中,第一过滤器10是微滤膜组件或超滤膜组件。其中,微滤膜组件包括但不限于是管式微滤、中空纤维微滤、平板式微滤、卷式微滤的膜组件,微滤膜组件的微孔膜的孔径范围是0.1-0.5μm。超滤膜组件包括但不限于是管式超滤、中空纤维超滤、平板式超滤、卷式超滤的膜组件,超滤膜组件的微孔膜的孔径范围是1-20nm。
含己内酰胺的废水(浓度较低)由位于水池底部的外置物料输送泵提升流入第一过滤器10的膜组件内,外置物料输送泵输送的含己内酰胺的废水的温度例如是60-90℃,经微滤膜或超滤膜过滤掉大颗粒杂质,流入第一过滤器10的废水中己内酰胺的浓度优选为0.1-0.5wt%。第一过滤器10上还设置有反冲洗进水管11和反冲洗出水管12,反冲洗进水管11用于供水进入对第一过滤器10进行反向冲洗,反冲洗出水管12用于排出反向冲洗的废水。微滤膜组件和超滤膜组件需要定期进行反冲洗,自来水经过反冲洗进水管11对微滤膜组件和超滤模组件进行反向冲洗,反冲洗的废水通过反冲洗出水管12单独排放,防止微孔膜上的过滤孔被堵塞,使微滤膜组件和超滤膜组件保持较佳的过滤效果。
循环水箱20设置在框架80的第二区域82,循环水箱20连接第一过滤器10,第一过滤器10过滤后的废水流入循环水箱20。本实用新型一些实施例中,循环水箱20内设置有液位计和温度计,液位计例如是静压液位计,温度计例如是温度传感器,液位计用于检测循环水箱20中废水的液位,温度计用于检测循环水箱20中废水的温度。
当液位计检测到循环水箱20中废水的液位大于循环水箱20总液位的4/5时,循环水箱20中的废水存在溢出的风险,第一过滤器10过滤的废水停止流入循环水箱20中;当液位计检测到循环水箱20中废水的液位在循环水箱20总液位的3/5-4/5范围内时,第一过滤器10过滤的废水流入循环水箱20中,对循环水箱20中的废水进行补充,使循环水箱20中废水的液位保持在安全范围内;当液位计检测到循环水箱20中废水的液位小于循环水箱20总液位的1/2时,循环水箱20存在没有废水供给到后续的进料泵30和第二过滤器40的风险,导致进料泵30和第二过滤器40存在空转的风险,此时,控制器控制系统电源关闭,系统停止回收处理废水中的己内酰胺。
循环水箱20中废水的温度例如低于80℃,当温度计检测到循环水箱20中废水的温度高于80℃时,停止废水的回收处理。具体地说,温度计显示瞬时温度,高于设定温度时,控制器将发出警报并停止系统运行。
进料泵30和可拆卸和更换的第二过滤器40设置在框架80的第三区域83,进料泵30分别连接循环水箱20和第二过滤器40,循环水箱20流出的含己内酰胺的废水经进料泵30流入第二过滤器40,第二过滤器40用于过滤除去废水中的部分固体物质。通过将第二过滤器40设置成可拆卸和更换形式,使第二过滤器40成为一种即插即用型的模块化的过滤器,方便更换第二过滤器40。第二过滤器40除用于过滤杂质,还用于起到保险和保护作用,具体地说,流入第一过滤器10的废水,经过第一过滤器10过滤后,已除去大颗粒杂质,在废水循环处理过程中,流经第二过滤器40的废水中已基本不含有大颗粒杂质,因此,流向用于截留己内酰胺的第三过滤器70的废水也已基本不含有大颗粒杂质,但是存在一些意外情况,例如,当第一过滤器10反冲洗不及时,导致第一过滤器10没有有效过滤大颗粒杂质时,会导致循环水箱20的废水中含有一些大颗粒杂质,这些含有大颗粒杂质的废水一旦直接流入第三过滤器70,会导致第三过滤器70同时截留己内酰胺和大颗粒杂质,并容易导致第三过滤器70的性能下降,甚至破坏第三过滤器70,通过在进料泵30之后设置第二过滤器40,由第二过滤器40进行二次过滤,保证流向第三过滤器70的废水中不含有大颗粒杂质,从而起到保险和保护作用。
本实用新型一些实施例中,进料泵30优选是变频控制的变频水泵,进料泵30的开启和关闭均需要缓速变频,从而防止出现水锤现象破坏阀门和水泵。
本实用新型一些实施例中,第二过滤器40包括但不限于是可拆卸和更换的袋式过滤器、折叠滤芯过滤器或熔喷式滤芯过滤器,优选是过滤精度是1-100μm的袋式过滤器。
可拆卸和更换的换热器50设置在框架80的第四区域84,换热器50连接第二过滤器40,第二过滤器40过滤后的废水流入换热器50,换热器50用于对废水进行换热以将废水的温度维持在设定温度范围内,防止废水在循环处理过程中温度积累,设定温度范围优选是80-90℃。换热器50包括但不限于是可拆卸和更换的列管换热器、平板式换热器,换热器50上设置有进水管51和出水管52,进水管51用于供热交换的水进入,出水管52用于供与废水热交换后的水排出。
本实用新型一些实施例中,第一压力传感器91设置在进料泵30和第二过滤器40之间的管路上以检测管路内废水的压力,第二压力传感器92设置在第二过滤器40和换热器50之间的管路以检测管路内废水的压力。当第一压力传感器91和第二压力传感器92的检测的压力差值大于0.1MPa时,即大于1kg压力时,袋式过滤器的过滤性能下降,控制器发出报警,更换袋式过滤器的滤袋,换下当前的滤袋,换上新的滤袋,使袋式过滤器保持较佳的过滤性能。通过将换热器50设置成可拆卸和更换形式,使换热器50成为一种即插即用型的模块化的换热部件,方便更换换热器50。
加压泵60设置在第四区域84,加压泵60用于将废水压力加压至1.5-2MPa,第三过滤器70设置在第一区域81,第三过滤器70邻近第一过滤器10。本实用新型一些实施例中,第三过滤器70是反渗透膜组件或纳滤膜组件,第三过滤器70优选是反渗透膜组件,反渗透膜组件的脱盐率在95%-99.5%之间。
加压泵60分别连接换热器50和第三过滤器70,第三过滤器70连接循环水箱20,换热器50流出的废水经加压泵60加压后流入第三过滤器70,第三过滤器70用于对废水进行过滤并截留废水中的己内酰胺,第三过滤器70截留的己内酰胺浓缩液流入循环水箱20。随着处理流程的不断循环,己内酰胺浓缩液不断注入循环水箱20,循环水箱20中的己内酰胺浓度不断提高,当循环水箱20中废水中己内酰胺的浓度达到设定浓度时,将循环水箱20中的废水排出,设定浓度优选是10wt%,可以通过循环水箱20的底部阀门的开关获得达到可以回收再利用的标准的高浓度己内酰胺溶液,再提取己内酰胺用于其他用途。
本实用新型一些实施例中,第三压力传感器93设置在加压泵60和换热器50之间的管路上以检测管路内废水的压力,第四压力传感器94设置在加压泵60和第三过滤器70之间的管路上以检测管路内废水的压力。当第三压力传感器93检测的压力小于0.1MPa时,控制器发出警报,压力过小,第三过滤器70无法进行过滤;当第四压力传感器94检测的压力大于2MPa时,压力过大,可能破坏第三过滤器70的过滤组件,控制器控制电源关闭,停止废水的回收处理。
本实用新型一些实施例中,第三过滤器70截留的己内酰胺浓缩液流入循环水箱20的流量小于4m3/h。第三过滤器70和循环水箱20之间的管路上还设置有流量计,流量计例如是电磁流量计,电磁流量计显示瞬时流量,在流量高于设定的4m3/h时,控制器将发出警报提示需调节流量。
本实用新型一些实施例中,手动阀100设置在第三过滤器70和循环水箱20之间的管路上,用于手动调节第三过滤器70的运行压力,手动阀100例如是手动球阀,通过手动阀100手动调节第三过滤器70的运行压力,可以减少第三过滤器70的膜组件遭到损害。
上述连续过滤膜浓缩装置能够低成本回收液体中的目标物质,该装置采用了新型的过滤技术,不需蒸发、蒸馏,尤其是采用微滤/超滤、反渗透膜进行过滤操作,能耗低,浓缩倍数高,实现了大部分物质的回收利用或浓缩处理,工序比较简单,管理较方便,并且不产生污染。现有的浓缩方法需要先将物料降温,浓缩后再升温制成固体,本实用新型的浓缩过程是在高温条件下进行,可直接处理较高温度的原废水,为最终的固体提取提供了必要温度条件,与现有方案相比,不需要先降温再升温,能耗显著降低。
上述连续过滤膜浓缩装置集成在框架80内,具有一体化、结构紧凑、占用空间小的优点,便于安装。
本实用新型实施例还提供一种己内酰胺废水浓缩回收处理方法,参照图4,该处理方法包括步骤S1至步骤S4,该处理方法优选使用上述的连续过滤膜浓缩装置来完成。
步骤S1:将含有己内酰胺的废水通过第一过滤器10过滤,除去废水中的部分固体杂质,除去部分固体杂质的废水流入循环水箱20中。
流入第一过滤器10的废水中己内酰胺的浓度优选为0.1-0.5wt%,第一过滤器10优选是微滤膜组件或超滤膜组件,定期通过反冲洗进水管11和反冲洗出水管12对微滤膜组件或超滤膜组件进行反冲洗,从而使微滤膜组件和超滤膜组件保持较佳的过滤效果。
步骤S2:循环水箱20流出的废水经进料泵30流入第二过滤器40,第二过滤器40对废水进行过滤,除去废水中的部分固体杂质。
循环水箱20内设置有液位计和温度计。当液位计检测到循环水箱20中废水的液位大于循环水箱20总液位的4/5时,第一过滤器10过滤的废水停止流入循环水箱20中;当液位计检测到循环水箱20中废水的液位在循环水箱20总液位的3/5-4/5范围内时,第一过滤器10过滤的废水流入循环水箱20中,对循环水箱20中的废水进行补充;当液位计检测到循环水箱20中废水的液位小于循环水箱20总液位的1/2时,控制器控制系统电源关闭,系统停止回收处理废水中的己内酰胺。当温度计检测到循环水箱20中废水的温度高于80℃时,控制器同样控制停止废水的回收处理。
采用变频控制的进料泵30的开启和关闭均需要缓速变频,防止出现水锤现象破坏阀门和水泵。第二过滤器40优选是袋式过滤器,第二过滤器40进行二次过滤,保证流向第三过滤器70的废水中不含有大颗粒杂质,从而起到保险和保护作用。
步骤S3:第二过滤器40流出的废水流入换热器50,换热器50对废水进行换热以将废水的温度维持在设定温度范围内。
换热器50优选是可拆卸和更换的列管换热器,换热器50上的进水管51用于供热交换的水进入,出水管52用于供与废水热交换后的水排出,通过对废水进行换热,将废水的温度维持在设定温度范围内,如80-90℃,防止废水在循环处理过程中温度积累。
步骤S4:换热器50流出的废水流入加压泵60,加压泵60对废水加压后流入第三过滤器70,第三过滤器70用于对废水进行过滤并截留废水中的己内酰胺,第三过滤器70截留的己内酰胺浓缩液流入循环水箱20。
加压泵60用于将废水压力加压至1.5-2MPa,通过加压泵60前后的第三压力传感器93和第四压力传感器94检测管路中废水的压力,使第三过滤器70保持平稳运行。
第三过滤器70优选是反渗透膜组件,反渗透膜组件的产水向外排出,反渗透膜组件截留的己内酰胺浓缩液通过管路流入循环水箱20。
步骤S2-S4循环进行,随着废水的循环处理,循环水箱20中的己内酰胺浓度不断提高,当循环水箱20中废水中己内酰胺的浓度达到设定范围时,设定浓度优选是10wt%,将循环水箱20中的废水排出;当循环水箱20中废水量低于设定范围时,第一过滤器10过滤的废水流入循环水箱20中进行补充。
上述处理方法中,先对含有己内酰胺的废水进行过滤,除去废水中的大部分固体杂质,保证后续处理过程中基本无大颗粒杂质,不会堵塞后续的过滤膜元件、管路和设备,系统运行的安全性高。同时,己内酰胺废水浓缩过程循环进行,直到循环水箱的废水中己内酰胺的浓度达到设定范围才排出,因此,能够获得高浓度的浓缩液。
上述己内酰胺废水浓缩回收处理方法能够低成本回收废水中的己内酰胺,不需蒸发、蒸馏,尤其是采用微滤/超滤、反渗透膜进行过滤操作,能耗低,浓缩倍数高,实现了大部分物质的回收利用,工序比较简单,管理较方便,并且不产生污染。现有的浓缩方法需要先将物料降温,浓缩后再升温制成固体,本实用新型的浓缩过程是在高温条件下进行,可直接处理较高温度的原废水,为最终的固体提取提供了必要温度条件,与现有方案相比,不需要先降温再升温,能耗显著降低。
尽管上面已经示出和描述了本实用新型的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本实用新型的限制,本领域的普通技术人员在不脱离本实用新型的原理和宗旨的情况下,在实用新型的范围内可以对上述实施例进行变化、修改、替换和变型,所有的这些改变都应该属于本实用新型权利要求的保护范围之内。

Claims (10)

1.一种连续过滤膜浓缩装置,其特征在于,包括:
框架,所述框架划分有并排的第一区域和第二区域、并排的第三区域和第四区域,所述第一区域和第四区域相邻,所述第二区域和第三区域相邻;
第一过滤器,所述第一过滤器设置在所述第一区域,含目标物质的液体流入所述第一过滤器,并通过所述第一过滤器过滤除去液体中的部分固体物质;
循环水箱,所述循环水箱设置在所述第二区域,所述循环水箱连接所述第一过滤器,所述第一过滤器过滤后的含目标物质的液体流入所述循环水箱;
进料泵和可拆卸和更换的第二过滤器,所述进料泵和第二过滤器设置在所述第三区域,所述进料泵分别连接所述循环水箱和第二过滤器,所述循环水箱流出的含目标物质的液体经所述进料泵流入所述第二过滤器,所述第二过滤器用于过滤除去液体中的部分固体物质;
可拆卸和更换的换热器,所述换热器设置在所述第四区域,所述换热器连接所述第二过滤器,所述第二过滤器过滤后的液体流入所述换热器,所述换热器用于对液体进行换热以将液体的温度维持在设定温度范围内;
加压泵和第三过滤器,所述加压泵设置在所述第四区域,所述第三过滤器设置在所述第一区域,所述加压泵分别连接所述换热器和第三过滤器,所述第三过滤器连接所述循环水箱,所述换热器流出的含目标物质的液体经所述加压泵加压后流入所述第三过滤器,所述第三过滤器用于对液体进行过滤并截留液体中的目标物质,所述第三过滤器截留的目标物质浓缩液流入所述循环水箱。
2.根据权利要求1所述的连续过滤膜浓缩装置,其特征在于,所述第一过滤器是微滤膜组件或超滤膜组件。
3.根据权利要求1所述的连续过滤膜浓缩装置,其特征在于,所述第二过滤器是可拆卸和更换的袋式过滤器、折叠滤芯过滤器或熔喷式滤芯过滤器。
4.根据权利要求1所述的连续过滤膜浓缩装置,其特征在于,所述第三过滤器是反渗透膜组件或纳滤膜组件。
5.根据权利要求1所述的连续过滤膜浓缩装置,其特征在于,所述进料泵是变频水泵。
6.根据权利要求1所述的连续过滤膜浓缩装置,其特征在于,所述循环水箱内设置有液位计和温度计,所述液位计用于检测所述循环水箱中液体的液位,所述温度计用于检测所述循环水箱中液体的温度。
7.根据权利要求1所述的连续过滤膜浓缩装置,其特征在于,还包括第一压力传感器和第二压力传感器,所述第一压力传感器设置在所述进料泵和第二过滤器之间的管路上以检测管路内液体的压力,所述第二压力传感器设置在所述第二过滤器和换热器之间的管路以检测管路内液体的压力。
8.根据权利要求1所述的连续过滤膜浓缩装置,其特征在于,还包括第三压力传感器和第四压力传感器,所述第三压力传感器设置在所述加压泵和所述换热器之间的管路上以检测管路内液体的压力,所述第四压力传感器设置在所述加压泵和所述第三过滤器之间的管路上以检测管路内液体的压力。
9.根据权利要求1所述的连续过滤膜浓缩装置,其特征在于,还包括手动阀,所述手动阀设置在所述第三过滤器和所述循环水箱之间的管路上,用于手动调节所述第三过滤器的运行压力。
10.根据权利要求1所述的连续过滤膜浓缩装置,其特征在于,所述第一过滤器上还设置有反冲洗进水管和反冲洗出水管,所述反冲洗进水管用于供水进入对所述第一过滤器进行反向冲洗,所述反冲洗出水管用于排出反向冲洗的废水。
CN202022373387.9U 2020-10-22 2020-10-22 连续过滤膜浓缩装置 Active CN213596030U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202022373387.9U CN213596030U (zh) 2020-10-22 2020-10-22 连续过滤膜浓缩装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202022373387.9U CN213596030U (zh) 2020-10-22 2020-10-22 连续过滤膜浓缩装置

Publications (1)

Publication Number Publication Date
CN213596030U true CN213596030U (zh) 2021-07-02

Family

ID=76591923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202022373387.9U Active CN213596030U (zh) 2020-10-22 2020-10-22 连续过滤膜浓缩装置

Country Status (1)

Country Link
CN (1) CN213596030U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113599904A (zh) * 2021-08-04 2021-11-05 合肥信达膜科技有限公司 旋转陶瓷膜技术在毛发水解氨基酸工艺中的应用
CN115261175A (zh) * 2022-09-14 2022-11-01 江西省科学院应用化学研究所 一种发酵型蜂蜜酒常温除菌装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113599904A (zh) * 2021-08-04 2021-11-05 合肥信达膜科技有限公司 旋转陶瓷膜技术在毛发水解氨基酸工艺中的应用
CN115261175A (zh) * 2022-09-14 2022-11-01 江西省科学院应用化学研究所 一种发酵型蜂蜜酒常温除菌装置及方法

Similar Documents

Publication Publication Date Title
CN213596030U (zh) 连续过滤膜浓缩装置
US20080067071A1 (en) Concentrate recycle loop with filtration module
CN101254985B (zh) Pta装置精制母液回收方法和系统
CN102942265A (zh) 全膜法水处理一体化装置
CN201056504Y (zh) 车载海水淡化装置
CN106277517A (zh) 一种煤化工浓盐废水的再生回用处理方法及其实施系统
CN110818149A (zh) 一种pta精制母液回收方法和回收系统
JP2013085983A (ja) 有機排水の回収処理装置及び回収処理方法
EP3950603B1 (en) Drinking water purification system comprising a backwashable filter cartridge and a nanofiltration unit
CN112279409B (zh) 己内酰胺废水浓缩回收处理方法
CN213596031U (zh) 己内酰胺废水浓缩回收处理装置
CN212770906U (zh) 一种粗高铼酸铵溶液除杂过滤装置
CN202080970U (zh) 一种高回收率反渗透处理系统
CN211595106U (zh) 一种海水淡化用高效节能反渗透设备
CN211170219U (zh) 一种pta精制母液回收系统
CN211004887U (zh) 一种垃圾焚烧电站生产废水处理系统
CN211078673U (zh) 基于膜过滤技术的pta精制母液处理装置
CN207108709U (zh) 一种智能化高效反渗透膜系统
CN214243957U (zh) 一种废水回收装置
CN112642211A (zh) 一种脱除光刻胶剥离液中非游离态树脂的系统和方法
JP3058952B2 (ja) 硼酸含有液の処理方法
CN220745638U (zh) 一种利用含硼化工回用水制备脱盐水的系统
KR20170057491A (ko) 제어-삼투 및 역삼투를 이용한 담수화 시스템
KR20200101663A (ko) 축산폐수의 여과와 여과막의 세정이 가능한 장치
CN110862167A (zh) 电极箔腐蚀废水处理系统及其处理工艺

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant