CN213027811U - 一种单相交错式和三相维也纳拓扑兼容输入的pfc装置 - Google Patents

一种单相交错式和三相维也纳拓扑兼容输入的pfc装置 Download PDF

Info

Publication number
CN213027811U
CN213027811U CN202021493892.0U CN202021493892U CN213027811U CN 213027811 U CN213027811 U CN 213027811U CN 202021493892 U CN202021493892 U CN 202021493892U CN 213027811 U CN213027811 U CN 213027811U
Authority
CN
China
Prior art keywords
circuit
input
coupled
phase
pfc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202021493892.0U
Other languages
English (en)
Inventor
杨国勋
罗嗣锦
寇秋林
杨后跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yichuang Zhilian Zhejiang Electronic Technology Co ltd
Original Assignee
Shanghai Wanji Electronic Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Wanji Electronic Technology Co ltd filed Critical Shanghai Wanji Electronic Technology Co ltd
Priority to CN202021493892.0U priority Critical patent/CN213027811U/zh
Application granted granted Critical
Publication of CN213027811U publication Critical patent/CN213027811U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Rectifiers (AREA)

Abstract

本实用新型公开了一种单相交错式和三相维也纳拓扑兼容输入的PFC装置,包括PFC单元和控制单元,PFC单元包括升压电路和与升压电路输出耦接的滤波电路,升压电路的输入端用于耦接外部交流电源,滤波电路的输出端用于耦接负载,控制单元包括输入电压采集电路、驱动电路,切换电路和数字信号处理电路,数字信号处理电路基于输入电压采集电路的采集电压值,控制切换电路和驱动电路,从而控制升压电路在单相交流电源输入时工作在单相交错式PFC模式,在三相交流电源输入时工作在三相维也纳拓扑PFC模式。解决电动汽车在高速公路上快速充电,又能在室内能及时补充电能的便捷需求,多重措施保证用电安全,并实现了体积小、成本低、效率高的目的。

Description

一种单相交错式和三相维也纳拓扑兼容输入的PFC装置
技术领域
本实用新型涉及无线充电领域,尤其涉及一种单相交错式和三相维也纳拓扑兼容输入的PFC装置。
背景技术
随着国家对环保越来越重视,大力提倡节能、减排、降污的越来越重视,新能源汽车逐渐成为消费者出行的首选,加上国家新能源补贴政策,越来越多的新能源汽车如雨后春笋般地涌出,新能源汽车在节能环保、无排放尤为突出,加之不限号,更方便出行。
然而,新能源汽车充电难、充电慢等问题成为电动汽车发展过程中面临的瓶颈,尤其是电动巴士和大型电动汽车的充电频繁、续航里程短、电池成本高昂等问题难以解决,在这种背景下,非接触式方式,在汽车行驶过程中,实时为电动汽车充电,显得迫在眉睫,然而无线充电地面线圈和车载线圈磁耦合损耗大,这就需要每一级功率传输损耗非常低,要求一款高效率的功率传输设备,而且,用户期盼充电设备在高速公路上可以快速充电,在室内也能慢速充电。
实用新型内容
本实用新型的目的是提供了一种单相交错式和三相维也纳拓扑兼容输入的PFC装置,该装置旨在为解决在高速公路上快速充电,又能在室内能及时补充电能的便捷需求,多重措施保证用电安全,并达到体积小、成本低、效率高的目的。
本实用新型采取如下技术方案实现:
一种单相交错式和三相维也纳拓扑兼容输入的PFC装置,包括PFC单元和控制单元,PFC单元包括升压电路和与其输出耦接的滤波电路,升压电路的输入端用于耦接外部交流电源,滤波电路的输出端用于耦接负载,控制单元包括输入电压采集电路、驱动电路,切换电路和数字信号处理电路,所述输入电压采集电路的输入端用于采集升压电路输入端的电压、输出端耦接数字信号处理电路,所述驱动电路和切换电路的输入端分别耦接数字信号处理电路,输出端分别耦接升压电路。数字信号处理电路基于输入电压采集电路的采集电压值,通过切换电路和驱动电路,控制升压电路在单相交流电源输入时工作在单相交错式PFC模式,在三相交流电源输入时工作在三相维也纳拓扑PFC模式。
进一步的,升压电路有4组,每组升压电路均包括升压电感,第一二极管和第二二极管,第一功率管和第二功率管,所述滤波电路包括滤波电容C1-C4;升压电感的一端用于耦接外部交流电源,另一端耦接第一二极管的正极、第二二极管的负极和第一功率管的漏极,第一二极管的负极、滤波电容C1、C3的正极用于耦接负载的正输入端,第二二极管的正极、滤波电容C2、C4的负极用于耦接负载的负输入端;第一功率管的源极耦接第二功率管的源极,第一功率管和第二功率管的栅极耦接驱动电路。第一组升压电路的第二功率管的漏极和第三组升压电路的第二功率管的漏极耦接作为第一引脚耦接切换电路,第二组升压电路的第二功率管的漏极和第三组升压电路的第二功率管的漏极耦接作为第二引脚耦接切换电路。
单相交错式PFC模式和三相维也纳拓扑PFC模式共用升压电路,当工作在
交错式PFC模式时,第一组升压电路和第二组升压电路并联用于输入单相交流的L或N,第三组升压电路和第四组升压电路并联用于输入单相交流的N或L.当工作在三相维也纳模式,第四组升压电路悬空。
进一步的,切换电路包括切换开关K1和切换控制电路,切换开关K1包括第一开关和第二开关,第一开关的引脚1耦接所述升压电路的第二输出端,引脚2和和第二开关的引脚2耦接,第二开关的引脚1耦接升压电路的第一输出端;切换控制电路的输入端耦接数字信号处理电路,输出端耦接所述第一开关和第二开关,并于单相交流输入时,控制第一开关和第二开关断开,在三相交流输入时,控制切换开关K1闭合。
进一步的,切换开关K1为单刀双掷开关、继电器或者由半导体开关构成。
外部电源输入为单相交流电时,K1断开,并一直保持断开状态,外部电源输入为三相交流电时,K1闭合,并一直保持闭合状态。
进一步的,控制单元还包括输入电流采集电路,所述输入电流采集电路的输入端耦接四组升压电路的升压电感Lu、Lv、Lw和Ln的另一端,输出端耦接数字信号处理电路,用于采集经升压电感后的输入电流值。
进一步的,控制单元还包括输出电压采集电路,所述输出电压采集电路的输入端耦接滤波电路的输出端,输出端耦接数字信号处理电路,用于采集输出电压值。
进一步的,还包括4个输入电源端子用于外部交流电源输入,所述单相交流输入,输入电源端子1和2合并输入交流L,3和4合并为输入交流N;所述三相交流输入,输入电源端子1-3分别输入三相交流的U、V、W,端子4悬空。
单相交流输入时,可在外部手动控制4个输入电源端子两两短接,或者数字信号处理电路控制升压电路前端,将4个输入电源端子两两短接。
进一步的,功率管为金属氧化物半导体场效应管,采用NTHL065N65S3,所述二极管为半导体二极管,采用STTH75S12。
进一步的,驱动电路包括功率管隔离驱动芯片,采用TLP5754D4-TP,数字信号处理电路包括DSP,采用TMS320F280049。
进一步的,输入电压采集电路包括输入电压差分采集芯片,采用MC33274ADR2G;所述输入电流采集电路包括输入电流隔离检测芯片,采用ACS730KLCTR-50AV-T。
本实用新型具有如下技术优点或有益效果:
1、本装置采用单相和三相均可以输入的方法,方便了用户既可以三相交流输入时进行快速充电(比如在高速公路上),又可以满足单相交流输入时进行慢速充电(比如在家、公共场所等地方)的双重需求,把两个充电设备合成为一个充电设备,减少了一套充电设备,大大节约了成本。
2、本装置既可以接入单相交流输入电压,也可以接入三相交流输入电压的一种合二为一的装置,将传统的单相PFC和三相PFC装置集成在一起,减小了装置的体积、降低了成本,方便无线充电系统的推广和发展。
3、无整流桥拓扑架构,在交流输入端无需交流电转换成直流电的三相整流桥,减少了三相整流二极管,节省了由整流二极管导致的损耗,降低了装置的体积和生产成本,减少了功率器件损耗,提高了电源效率,降低了器件的温升,采用三相维也纳拓扑PFC,有效降低了功率管的电压应力,采用单相交错式PFC,输入电流平均值为总电流的一般,功率管开关和导通损耗小,降低了成本,延长了产品使用寿命,达到高效节能低成本的目的。
4、通过输入电压检测控制切换开关切换工作模式,进一步保障无线充电系统用电的安全。
附图说明
图1为本实用新型实施例的电路原理图;
图2为本实用新型实施例第一种实施方式的电路原理图;
图3为本实用新型实施例第一组单相交错式PFC电路原理图;
图4为本实用新型实施例第二组单相交错式PFC电路原理图;
图5为本实用新型实施例单相交错式PFC模式功率管开通与关断电路原理示意图;
图6为本实用新型实施例第二种实施方式的电路原理图;
图7为本实用新型实施例三相维也纳拓扑PFC模式U相和V相功率管开通电路原理示意图;
图8为本实用新型实施例三相维也纳拓扑PFC装置U相和V相功率管截止电路原理示意图。
具体实施方式
为了便于本领域人员更好的理解本实用新型,下面结合附图和具体实施例对本实用新型做进一步详细说明,下述仅是示例性的,不限定本实用新型的保护范围。
结合图1本实用新型实施例的电路原理图对本实用新型的单相交错式和三相维也纳拓扑兼容输入的PFC装置进行进一步详细说明。
本实用新型所述的一种单相交错式和三相维也纳拓扑兼容输入的PFC装置,包括PFC单元和控制单元,PFC单元包括4组升压电路和与其输出耦接的滤波电路,升压电路的输入端用于耦接外部交流电源,滤波电路的输出端用于耦接负载。控制单元包括输入电压采集电路、驱动电路,切换电路、数字信号处理电路、输入电流采集电路和输出电压采集电路。
图2为本实用新型实施例的第一种实施方式的电路原理图,当汽车无线充电系统输入的外部电源为单相交流电源,手动将输入电源端子1和2合并为一个L端子,3和4合并为一个N端子,单相交流电分别从L端子和N端子输入。通过输入电压采集电路,输入电流采集电路,输出电压采集电路,把采集到的信号传送数字信号处理电路的DSP进行处理。DSP通过切换电路使切换开关K1断开,并保持断开状态。DSP采用脉宽调制模式(PWM)方式,通过驱动电路,控制开关管Sup、Sun、Svp、Svn、Swp、Swn、Snp、Snn导通与截止,此时本装置工作在单相交错式PFC模式。单相交错式PFC由两组单相PFC单元组成。如图3所示,第一组单相PFC单元包括升压电感Lu、Lw,二极管Dup、Dun、Dwp、Dwn,功率管Sup、Sun、Swp、Swn,滤波电容C1、C2。如图4所示,第二组单相PFC单元包括升压电感Lv、Ln,二极管Dvp、Dvn、Dnp、Dnn,开关管Svp、Svn、Snp、Snn,滤波电容C3、C4组成。R1和R2为负载电阻。其中驱动电路控制功率管的开关频率为50KHz,周期为20 uS。每间隔10uS开通一组PFC装置。第一组单相交错式PFC的四个功率管和第二组单相交错式PFC的四个功率管每间隔10uS导通一次,交替导通。
如图5中a部分所示,当L端子为交流正半周,N端子为交流负半周时,开关管Sup、Sun、Swn、Swp导通时,交流电流从L端子流入,流经电感Lu存储能量,开关管Sup、Sun体内二极管、Swn、Swp体内二极管,电感Lw ,从N端子流出。另一路单相PFC单元,存储在电容C1、C2内的能量释放给负载R1、R2。如图5中b部分所示,L端子仍为交流正半周时,开关管Sup、Sun、Swn、Swp截止时,储能电感Lw存储的能量释放,流经二极管Dup,储能电容C1、C2,二极管Dwn,电感Lw,从N端正流出;
图6为本实用新型实施例的第二种实施方式的电路原理图,当电动汽车无线充电系统的输入为三相交流输入时,本装置工作在三相维也纳拓扑PFC模式,U、V、W端子分别接入三相交流输入的三根火线,N相端子悬空;数字信号处理电路控制单刀双掷开关K1闭合,并保持闭合。切换开关K1第1端连接C3负极、C4正极,开关管Svn漏极,切换开关K1第3端连接C1负极、C2正极,开关管Sun漏极,开关管Swn漏极,切换开关K1第2端,第4端短接。
三相维也纳拓扑PFC装置分别由三组单相PFC电路组成,其中,第一组PFC电路,包括U相升压电感Lu,二极管Dup、Dun,开关管Sup、Sun,电容C1、C2。第二组PFC电路,包括V相升压电感Lv,二极管Dvp、Dvn,开关管Svp,Svn,电容C3、C4。第三组PFC电路,包括W相升压电感Lw,二极管Dwp、Dwn,开关管Swp、Swn,电容C1、C2。其中功率管Sup、Sun、Svp、Svn、Swp、Swn、Snp和Snn为金属氧化物半导体场效应管,采用NTHL065N65S3F;二极管Dup、Dun、Dvp、Dvn、Dwp、Dwn、Dnp、Dnn为半导体二极管,采用STTH75S12,驱动电路的功率管隔离驱动采用TLP5754D4-TP。
三相交流输入电源接入本装置后,通过输入电压采集电路,输入电流采集电路,输出电压采集电路,把采集到的信号传送数字信号处理电路的DSP进行处理。DSP采用脉宽调制模式(PWM)方式,通过驱动电路,控制开关管Sup、Sun、Svp、Svn、Swp、Swn、Snp、Snn导通与截止。其中电压检测电路检测交流输入电压波形,采用峰值电流检测模式。其中输入电压采集电路的输入电压差分采集芯片,采用MC33274ADR2G,输入电流采集电路的输入电流擦隔离检测芯片,采用ACS730KLCTR-50AV-T,数字信号处理电路的DSP采用TMS320F280049。
以U相位正,V相为负时为例说明三相维也纳拓扑PFC装置工作电流流向,如图7所示,当U端子为交流正半周时,交流电流从U端子流入,流经储能电感Lu,开关管Sup、Sun、Svn、Svp导通,电流从U->Lu->Sup->Sun->Svn->Svp->Lv->N。如图8所示,当开关管Sup、Sun、Svp、Svn截止,电流从U->Lu-Dup->C1、C2->Dvn->Lv->N。通过交流输入电压采集电路,交流输入电流采集电路,输出电压采集电路,把采集到的信号传送数字信号处理(DSP)电路,DSP通过切换控制电路,使切换开关K1吸合,DSP采用脉宽调制模式(PWM)方式,通过开关管驱动电路,控制开关管Sup、Sun、Svp、Svn、Swp、Swn、Snp、Snn导通与截止。在本装置工作在三相维也纳拓扑PFC模式下,切换开关K1必须处于吸和状态才能工作。
需要说明的是,以上所述的功率管、二极管、电压电流采集所需的集成电路、处理器的型号和规格,可以根据实际情况进行选择。如功率管选择的材料可以碳化硅、砷化镓,规格可以采用绝缘栅双极型晶体管等。
通过上述实施例可以看出,本实用新型的一种单相交错式和三相维也纳拓扑兼容输入的PFC装置、除在外部电源输入端对于输入电源端子的输入连接方式进行控制,还通过数字信号处理电路控制切换开关K1,实现单相或者三相交流兼容输入,并实现双层保护。其次,将电感、二极管、功率管、电容器件结合在一起,有效地降低了本装置的成本且减小了体积。另外,采用三相维也纳拓扑PFC,有效降低了功率管的电压应力,采用单相交错式PFC,输入电流平均值为总电流的一般,功率管开关和导通损耗小,降低了成本,提高了产品效率,满足了电动汽车无线大功率灵活、高效充电的目的。
以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以对本实用新型进行若干改进和修饰,这些改进和修饰也落入本发实用新型权利要求的保护范围内。

Claims (10)

1.一种单相交错式和三相维也纳拓扑兼容输入的PFC装置,其特征在于,包括PFC单元和控制单元;
所述PFC单元包括升压电路和与其输出耦接的滤波电路,所述升压电路的输入端用于耦接外部交流电源,滤波电路的输出端用于耦接负载;
所述控制单元包括输入电压采集电路、驱动电路,切换电路和数字信号处理电路,所述输入电压采集电路的输入端用于采集升压电路输入端的电压、输出端耦接数字信号处理电路,所述驱动电路和切换电路的输入端分别耦接数字信号处理电路,输出端分别耦接升压电路;
所述数字信号处理电路基于输入电压采集电路的采集电压值,通过切换电路和驱动电路,控制升压电路在单相交流电源输入时工作在单相交错式PFC模式,在三相交流电源输入时工作在三相维也纳拓扑PFC模式。
2.根据权利要求1所述的单相交错式和三相维也纳拓扑兼容输入的PFC装置,其特征在于:所述升压电路设置为4组,每组升压电路均包括升压电感,第一二极管、第二二极管、第一功率管和第二功率管,所述滤波电路包括滤波电容C1-C4;
所述升压电感的一端用于耦接外部交流电源,另一端耦接第一二极管的正极、第二二极管的负极和第一功率管的漏极,第一二极管的负极、滤波电容C1、C3的正极用于耦接负载的正输入端,第二二极管的正极、滤波电容C2、C4的负极用于耦接负载的负输入端;所述第一功率管的源极耦接第二功率管的源极,第一功率管和第二功率管的栅极耦接所述驱动电路;
第一组升压电路的第二功率管的漏极和第三组升压电路的第二功率管的漏极耦接作为第一输出端耦接切换电路,第二组升压电路的第二功率管的漏极和第四组升压电路的第二功率管的漏极耦接作为第二输出端耦接切换电路。
3.根据权利要求2所述的单相交错式和三相维也纳拓扑兼容输入的PFC装置,其特征在于:所述切换电路包括切换开关K1和切换控制电路,所述切换开关K1包括第一开关和第二开关,第一开关的引脚1耦接所述升压电路的第二输出端,引脚2和和第二开关的引脚2耦接,第二开关的引脚1耦接升压电路的第一输出端;
所述切换控制电路的输入端耦接数字信号处理电路,输出端耦接所述第一开关和第二开关,并于单相交流输入时,控制第一开关和第二开关断开,在三相交流输入时,控制切换开关K1闭合。
4.根据权利要求3所述的单相交错式和三相维也纳拓扑兼容输入的PFC装置,其特征在于:所述切换开关K1为单刀双掷开关、继电器或者半导体开关。
5.根据权利要求3所述的单相交错式和三相维也纳拓扑兼容输入的PFC装置,其特征在于:所述控制单元还包括输入电流采集电路,所述输入电流采集电路的输入端耦接四组升压电路的升压电感Lu、Lv、Lw和Ln的另一端,输出端耦接数字信号处理电路,用于采集经升压电感后的输入电流值。
6.根据权利要求3所述的单相交错式和三相维也纳拓扑兼容输入的PFC装置,其特征在于:所述控制单元还包括输出电压采集电路,所述输出电压采集电路的输入端耦接滤波电路的输出端,输出端耦接数字信号处理电路,用于采集输出电压值。
7.根据权利要求2-6任一所述的单相交错式和三相维也纳拓扑兼容输入的PFC装置,其特征在于:还包括4个用于外部交流电源输入的输入电源端子,所述单相交流输入,输入电源端子1和2合并输入交流L,3和4合并为输入交流N;所述三相交流输入,输入电源端子1-3分别输入三相交流的U、V、W,端子4悬空。
8.根据权利要求7所述的单相交错式和三相维也纳拓扑兼容输入的PFC装置,其特征在于:所述第一功率管和第二功率管为金属氧化物半导体场效应管,采用NTHL065N65S3,所述第一二极管和第二二极管为半导体二极管,采用STTH75S12。
9.根据权利要求7所述的单相交错式和三相维也纳拓扑兼容输入的PFC装置,其特征在于:所述驱动电路包括功率管隔离驱动芯片,采用TLP5754D4-TP,所述数字信号处理电路包括DSP,采用TMS320F280049。
10.根据权利要求5所述的单相交错式和三相维也纳拓扑兼容输入的PFC装置,其特征在于:所述输入电压采集电路包括输入电压差分采集芯片,采用MC33274ADR2G;所述输入电流采集电路包括输入电流隔离检测芯片,采用ACS730KLCTR-50AV-T。
CN202021493892.0U 2020-07-24 2020-07-24 一种单相交错式和三相维也纳拓扑兼容输入的pfc装置 Active CN213027811U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202021493892.0U CN213027811U (zh) 2020-07-24 2020-07-24 一种单相交错式和三相维也纳拓扑兼容输入的pfc装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202021493892.0U CN213027811U (zh) 2020-07-24 2020-07-24 一种单相交错式和三相维也纳拓扑兼容输入的pfc装置

Publications (1)

Publication Number Publication Date
CN213027811U true CN213027811U (zh) 2021-04-20

Family

ID=75518228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202021493892.0U Active CN213027811U (zh) 2020-07-24 2020-07-24 一种单相交错式和三相维也纳拓扑兼容输入的pfc装置

Country Status (1)

Country Link
CN (1) CN213027811U (zh)

Similar Documents

Publication Publication Date Title
CN111355287B (zh) 车载充电机
CN206250979U (zh) 一种准谐振有源箝位反激式变换器
CN210970736U (zh) 一种充电桩充电管理系统
CN110601525B (zh) 新能源汽车集成车载充电变换系统
CN204290416U (zh) 一种多能源应急供电系统
CN108988634B (zh) 一种三相交错式双向大变比dcdc变换器及其控制方法
CN110417268B (zh) 车载充电机和电动车辆
CN205232040U (zh) 一种单相升压变频器拓扑电路
CN105846674B (zh) 非隔离高变比双向直流变换器
CN111740584A (zh) 一种单相交错式和三相维也纳拓扑兼容输入的pfc装置
CN213027811U (zh) 一种单相交错式和三相维也纳拓扑兼容输入的pfc装置
CN107707010A (zh) 一种光伏充电电路系统
CN209516951U (zh) 一种电动汽车用集成多模式功率转换器
CN216252245U (zh) 一种插电式电动汽车多功能充电器
CN217087767U (zh) 一种超高增益dc/dc升压变换器
CN213937521U (zh) 具有高低压输出的三级拓扑结构充电机
CN209805671U (zh) 单三相输入电压兼容的磁集成无桥功率因数校正装置
CN212909346U (zh) 升压功率变换电路
CN211075561U (zh) 单三相兼容的高效车载双向充电机
CN210724230U (zh) 车载充放电系统
CN104685774A (zh) Dc-dc转换器、使用该dc-dc转换器的太阳能控制器及移动体
CN208971387U (zh) 一种基于耦合绕组单元的三电平升压型直流变换拓扑
CN105553316A (zh) 双功率通路三相交直流变换器
CN106253458A (zh) 一种不间断电源及其控制方法
CN206807284U (zh) 一种无桥pfc电路

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address
CP03 Change of name, title or address

Address after: 311305, Building 1, 101, 201, 301, Binhe Wealth Factory, No. 88 Binhe Road, Qingshanhu Street, Lin'an District, Hangzhou City, Zhejiang Province (self declared)

Patentee after: Yichuang Zhilian (Zhejiang) Electronic Technology Co.,Ltd.

Country or region after: China

Address before: 200120 2nd floor, building 1, 211 Chuanda Road, Pudong New Area, Shanghai

Patentee before: Shanghai Wanji Electronic Technology Co.,Ltd.

Country or region before: China