CN212905926U - 一种双模同步时钟系统 - Google Patents

一种双模同步时钟系统 Download PDF

Info

Publication number
CN212905926U
CN212905926U CN202020822390.1U CN202020822390U CN212905926U CN 212905926 U CN212905926 U CN 212905926U CN 202020822390 U CN202020822390 U CN 202020822390U CN 212905926 U CN212905926 U CN 212905926U
Authority
CN
China
Prior art keywords
module
time
voltage
crystal oscillator
digital converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020822390.1U
Other languages
English (en)
Inventor
吴为
洪潮
曾德辉
赵睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Southern Power Grid Co Ltd
Research Institute of Southern Power Grid Co Ltd
Original Assignee
China Southern Power Grid Co Ltd
Research Institute of Southern Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Southern Power Grid Co Ltd, Research Institute of Southern Power Grid Co Ltd filed Critical China Southern Power Grid Co Ltd
Priority to CN202020822390.1U priority Critical patent/CN212905926U/zh
Application granted granted Critical
Publication of CN212905926U publication Critical patent/CN212905926U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本实用新型公开了一种双模同步时钟系统,包括:锁相模块、PTP精密授时模块、交换机和SFP光模块;锁相模块包括控制器、GPS同步采样模块、北斗同步采样模块、时间数字转换器、压控恒温晶振调整电路和复杂可编程逻辑器件;控制器用于选通GPS同步采样模块或北斗同步采样模块;时间数字转换器与压控恒温晶振调整电路相连;同步采样模块分别与时间数字转换器和PTP精密授时模块相连;复杂可编程逻辑器件分别与时间数字转换器、压控恒温晶振调整电路和PTP精密授时模块相连;PTP精密授时模块与交换机相连,交换机与SFP光模块相连。本实用新型能够在同步时间基准信号短时失去或受到强干扰情况下仍能够维持较高的同步精度,确保同步相量测量的精度。

Description

一种双模同步时钟系统
技术领域
本实用新型涉及电力系统同步时钟技术领域,尤其涉及一种双模同步时钟系统。
背景技术
基于全球定位系统(GPS)的广域测量系统(WAMS)是近年迅速发展的一项新技术,它采用同步相角测量技术,通过逐步布局全网关键测点的同步相角测量单元(PMU),实现对全网同步相角及电网主要数据的实时高速率采集。而同步相量测量装置(PMU)作为广域测量系统(WAMS)中的重要设备,是一种能够测量母线电压相量的高精度测量装置,可用于电力系统的动态监测、系统保护和系统分析和预测等领域,是保障电网安全运行的重要设备。
同步时钟系统是一种能接收外部时间基准信号,并按照要求的时间精度向外输出时间同步信号和时间信息的系统,它通过建立时间同步协议,能使网络内其它时钟对准并同步。但是,在同步时间基准信号短时失去或受到强干扰情况下就无法维持较高的同步精度,导致同步相量测量的精度大大降低。
实用新型内容
本实用新型实施例提供一种双模同步时钟系统,能够在同步时间基准信号短时失去或受到强干扰情况下仍能够维持较高的同步精度,确保同步相量测量的精度。
本实用新型实施例提供了一种双模同步时钟系统,包括:锁相模块、PTP精密授时模块、交换机和SFP光模块;
所述锁相模块,包括控制器、同步采样模块、时间数字转换器、压控恒温晶振调整电路和复杂可编程逻辑器件;
所述同步采样模块包括GPS同步采样模块和北斗同步采样模块;
所述控制器分别与所述GPS同步采样模块和所述北斗同步采样模块相连,用于选通所述GPS同步采样模块或所述北斗同步采样模块;
所述时间数字转换器与所述压控恒温晶振调整电路相连;
所述GPS同步采样模块分别与所述时间数字转换器和所述PTP精密授时模块相连;所述北斗同步采样模块分别与所述时间数字转换器和所述PTP精密授时模块相连;
所述复杂可编程逻辑器件分别与所述时间数字转换器、压控恒温晶振调整电路和PTP精密授时模块相连;
所述PTP精密授时模块与所述交换机相连,所述交换机与SFP光模块相连。
作为上述方案的改进,所述锁相模块还包括:时间数字转换器和压控恒温晶振调整电路;
所述控制器分别与所述时间数字转换器和所述压控恒温晶振调整电路相连。
作为上述方案的改进,所述同步采样模块还包括BDS/GNSS全星座定位授时模块和射频功放电路;
所述射频功放电路与所述BDS/GNSS全星座定位授时模块相连;
所述BDS/GNSS全星座定位授时模块分别与所述时间数字转换器和所述控制器相连。
作为上述方案的改进,所述BDS/GNSS全星座定位授时模块的1PPS引脚与所述时间数字转换器相连,BDS/GNSS全星座定位授时模块的RXD引脚、TXD 引脚分别与所述控制器相连。
作为上述方案的改进,所述BDS/GNSS全星座定位授时模块采用ATGM322 授时模块。
作为上述方案的改进,所述射频功放电路采用AT2659 L1频段卫星导航射频前端低噪声放大器芯片。
作为上述方案的改进,所述时间数字转换器采用TDC-GP21时间数字转换芯片。
作为上述方案的改进,所述压控恒温晶振调整电路包括压控恒温晶振和D/A 转换器;
所述D/A转换器分别与所述控制器和所述压控恒温晶振相连;
所述压控恒温晶振与所述复杂可编程逻辑器件相连。
作为上述方案的改进,所述D/A转换器采用型号为DAC8551-Q1的16位数模转换器。
作为上述方案的改进,所述复杂可编程逻辑器件采用型号为XC2C64A的复杂可编程逻辑器件。
本实用新型实施例提供的一种双模同步时钟系统,与现有技术相比,具有如下有益效果:
本实用新型所设计的用于同步相量测量的双模同步时钟系统基于网络测量和控制系统的精密时钟同步协议标准IEEE1588v2,采用千兆以太网,可以实现同步相量测量装置与同步时钟装置的高精度高稳定同步对时,预计同步误差≤50ns,守时精度≤1.5us/24,可以满足同步相量测量的要求;
能够在同步采样模块中的GPS同步采样模块或北斗同步采样模块其一故障时,选通另一种同步采样模块进行锁相,实现故障时的自动切换;
采用了经过调整和校准的压控恒温晶振作为本地时钟守时的核心,在GPS 或北斗信号由于气象环境等因素可能会失去同步的情况下,能够保证时钟同步精度,甚至于在失去GPS或北斗同步信号的24小时后,仍能维持较高的同步精度,能够满足同步相量测量的要求。在此基础上,同步时钟系统可用于同步相量测量装置的时间的高精度高稳定对时,以保证各个PMU装置测量精度。
附图说明
图1是本实用新型实施例提供的一种双模同步时钟系统的结构示意图。
图2为本实用新型实施例提供的锁相模块原理图。
图3为本实用新型实施例的同步采样模块原理图。
图4为本实用新型实施例的时间数字转换电路原理图。
图5为本实用新型实施例的压控恒温晶振调整电路原理图。
附图标记:
1锁相模块,2PTP精密授时模块,3交换机,4SFP光模块,5同步采样模块,6时间数字转换器,7控制器,8压控恒温晶振调整电路,9复杂可编程逻辑器件。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
参见图1,是本实用新型实施例提供的一种双模同步时钟系统的结构示意图,包括:包括:锁相模块1、PTP精密授时模块、交换机3和SFP光模块4;
锁相模块1,包括控制器7、同步采样模块5、时间数字转换器6、压控恒温晶振调整电路8和复杂可编程逻辑器件9;
同步采样模块5包括GPS同步采样模块和北斗同步采样模块;
控制器7分别与GPS同步采样模块和北斗同步采样模块相连,用于选通GPS 同步采样模块或北斗同步采样模块;
时间数字转换器6与压控恒温晶振调整电路8相连;
GPS同步采样模块分别与时间数字转换器6和PTP精密授时模块2相连;北斗同步采样模块分别与时间数字转换器6和PTP精密授时模块2相连;
复杂可编程逻辑器件9分别与时间数字转换器6、压控恒温晶振调整电路8 和PTP精密授时模块2相连;
PTP精密授时模块2与交换机3相连,交换机3与SFP光模块4相连。
具体地,锁相模块1同时包含GPS同步采样模块和北斗同步采样模块,如果一种同步采样模块5出现故障,控制器7会选通另一种同步采样模块5进行锁相,实现故障时的自动切换。
进一步地,锁相模块1还包括:时间数字转换器6和压控恒温晶振调整电路8;
控制器7分别与时间数字转换器6和压控恒温晶振调整电路8相连。
在具体的实施例中,控制器7使用32位轻控制器7TMS320F28020。
进一步地,同步采样模块5还包括BDS/GNSS全星座定位授时模块和射频功放电路;
射频功放电路与BDS/GNSS全星座定位授时模块相连;
BDS/GNSS全星座定位授时模块分别与时间数字转换器6和控制器7相连。
在具体的实施例中,天线信号通过射频功放电路传输给BDS/GNSS全星座定位授时模块。其中,BDS(BeiDou Navigation Satellite System)即北斗卫星导航系统,GNSS(Global Navigation Satellite System)即全球导航卫星系统。
进一步地,BDS/GNSS全星座定位授时模块的1PPS引脚与时间数字转换器 6相连,BDS/GNSS全星座定位授时模块的RXD引脚、TXD引脚分别与控制器 7相连。
进一步地,BDS/GNSS全星座定位授时模块采用ATGM322授时模块。
进一步地,射频功放电路采用AT2659 L1频段卫星导航射频前端低噪声放大器芯片。
参见图2,同步采样模块5包括BDS/GNSS全星座定位授时模块和射频 (RadioFrequency,简称RF)功放电路,天线信号通过射频功放电路传输给 BDS/GNSS全星座定位授时模块。BDS/GNSS全星座定位授时模块与时间数字转换器6相连,并与控制器7相连。
在图3中,U1表示BDS/GNSS全星座定位授时模块,U2表示射频功放电路,E1表示天线,GPS_1PPS表示同步本地时钟信号,GPS_RST表示复位信号, GPS_RXD和GPS_TXD表示串口信号,L1表示电感,C1表示电容。
具体地,BDS/GNSS全星座定位授时模块采用中科微公司的ATGM322高性能授时模块设计,其支持多种卫星导航系统,包括中国的BDS,美国的GPS以及俄罗斯的GLONASS的多模卫星导航定位芯片,包含32个跟踪通道,可以同时接收六个卫星导航系统的GNSS信号,并且实现联合定位、导航与授时;其中,BDS/GNSS全星座定位授时模块U1的IPPS引脚(第3引脚)与时间数字转换器67相连,产生的GPS_IPPS信号可以同步本地时钟,用于时间数字转换器6,BDS/GNSS全星座定位授时模块的RXD引脚(第21引脚)、TXD引脚 (第20引脚)分别与控制器7相连,分别产生GPS_RXD信号和GPS_TXD信号,GPS_RXD信号和GPS_TXD信号为串口信号,用于控制器7的读取时间戳信息,通信协议为NMEA018,用于控制器7的时钟调整。
具体地,射频功放电路采用中科微公司的AT2659 L1频段卫星导航射频前端低噪声放大器芯片设计,该芯片具有高增益、低噪声系数的特点,支持L1频段多模式全球卫星定位,可以应用于GPS、北斗,Glonass等GNSS导航接收机中。
进一步地,时间数字转换器6采用TDC-GP21时间数字转换芯片。
如图2~图4所示,时间数字转换器6采用AMS公司的TDC-GP21时间数字转换芯片设计,该芯片的第31引脚与BDS/GNSS全星座定位授时模块的第3 引脚相连,该芯片的第30引脚与复杂可编程逻辑器件99相连,以BDS/GNSS 全星座定位授时模块产生的1PPS信号为START脉冲信号,以压控恒温晶振调整电路8中压控恒温晶振的本地时钟经过复杂可编程逻辑器件9分频产生的 1PPS信号为STOP脉冲信号,通过该芯片可测量两个1PPS信号的相位差,并通过SPI接口将相位差数据发送至控制器7,由控制器7控制压控恒温晶振调整电路8,调整时钟相位使本地时钟和GPS时钟达到同步;在图4中,U20表示时间数字转换器6,R20~R28表示电阻,L20表示电感,C20~C25表示电容, CRY20~CRY21表示晶振。
TDC-GP21时间数字转换芯片的主要技术参数如下:
1)双通道测量精度45ps,单通道测量精度达90ps,两通道精度完全相等;
2)每个通道默认4次脉冲输入,若选择队列模式,支持的脉冲输入数加倍;
3)具有多重触发能力;
4)测量范围700ns~4ms;
5)选择精度可调模式,芯片测量精度可通过程序设定;
6)内置16位算术逻辑单元,可对测量结果进行标定并数乘一个24位的整数;
7)标定和控制时,32kHz、4MHz;
8)环境工作环境温度为-40~85℃。
由TDC-GP21时间数字转换芯片的参数可见,其时间测量分辨率为90ps,意味着本地时钟与GPS时钟的同步误差将小于1ns。
进一步地,压控恒温晶振调整电路8包括压控恒温晶振和D/A转换器;
D/A转换器分别与控制器7和压控恒温晶振相连;
压控恒温晶振与复杂可编程逻辑器件9相连。
进一步地,D/A转换器采用型号为DAC8551-Q1的16位数模转换器。
如图2~图5所示,压控恒温晶振调整电路8包括压控恒温晶振和D/A转换器(数/模转换器),压控恒温晶振与D/A转换器相连,压控恒温晶振通过D/A 转换器与控制器7相连,且压控恒温晶振与复杂可编程逻辑器件9相连,控制器7通过D/A转换器控制压控恒温晶振,压控恒温晶振产生10MHz本地时钟,作用于复杂可编程逻辑器件9的分频;在图5中,U2表示D/A转换器,XO2 表示压控恒温晶振,C30表示电容,从图中可以看到电容C30的一端接在D/A转换器的输出端(第4引脚)与压控恒温晶振的输入端(第1引脚)之间,并且另一端接地,压控恒温晶振的输出端(第4引脚)与复杂可编程逻辑器件9 相连。
具体地,D/A转换器采用TI公司的DAC8851-Q1数模转换器设计,控制器 7通过SPI接口发送数据给该数模转换器,并由该芯片转换为0~2.5V的模拟量,用于控制压控恒温晶振。
具体地,压控恒温晶振可以校准时钟频率,从而实现本地时钟与GPS时钟同步。经同步后的10MHZ本地时钟被送至复杂可编程逻辑器件9。
进一步地,复杂可编程逻辑器件9采用型号为XC2C64A的复杂可编程逻辑器件9。
在一具体的实施例中,BDS/GNSS全星座定位授时模块输出日历时钟信号 (TOD:Time of day),复杂可编程逻辑器件9输出1PPS信号和10MHz信号,三个信号都输入PTP精密授时模块2,PTP精密授时模块2将日历时钟信号转化为以太网接口信号输入交换机3。
本实用新型实施例提供的一种双模同步时钟系统,与现有技术相比,具有如下有益效果:
本实用新型所设计的用于同步相量测量的双模同步时钟系统基于网络测量和控制系统的精密时钟同步协议标准IEEE1588v2,采用千兆以太网,可以实现同步相量测量装置与同步时钟装置的高精度高稳定同步对时,预计同步误差≤50ns,守时精度≤1.5us/24,可以满足同步相量测量的要求;
能够在同步采样模块中的GPS同步采样模块或北斗同步采样模块其一故障时,选通另一种同步采样模块进行锁相,实现故障时的自动切换;
采用了经过调整和校准的压控恒温晶振作为本地时钟守时的核心,在GPS 或北斗信号由于气象环境等因素可能会失去同步的情况下,能够保证时钟同步精度,甚至于在失去GPS或北斗同步信号的24小时后,仍能维持较高的同步精度,能够满足同步相量测量的要求。在此基础上,同步时钟系统可用于同步相量测量装置的时间的高精度高稳定对时,以保证各个PMU装置测量精度。
需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本实用新型提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本实用新型的保护范围。

Claims (10)

1.一种双模同步时钟系统,其特征在于,包括:锁相模块、PTP精密授时模块、交换机和SFP光模块;
所述锁相模块,包括控制器、同步采样模块、时间数字转换器、压控恒温晶振调整电路和复杂可编程逻辑器件;
所述同步采样模块包括GPS同步采样模块和北斗同步采样模块;
所述控制器分别与所述GPS同步采样模块和所述北斗同步采样模块相连,用于选通所述GPS同步采样模块或所述北斗同步采样模块;
所述时间数字转换器与所述压控恒温晶振调整电路相连;
所述GPS同步采样模块分别与所述时间数字转换器和所述PTP精密授时模块相连;所述北斗同步采样模块分别与所述时间数字转换器和所述PTP精密授时模块相连;
所述复杂可编程逻辑器件分别与所述时间数字转换器、压控恒温晶振调整电路和PTP精密授时模块相连;
所述PTP精密授时模块与所述交换机相连,所述交换机与SFP光模块相连。
2.如权利要求1所述的一种双模同步时钟系统,其特征在于,所述锁相模块还包括:时间数字转换器和压控恒温晶振调整电路;
所述控制器分别与所述时间数字转换器和所述压控恒温晶振调整电路相连。
3.如权利要求2所述的一种双模同步时钟系统,其特征在于,所述同步采样模块还包括BDS/GNSS全星座定位授时模块和射频功放电路;
所述射频功放电路与所述BDS/GNSS全星座定位授时模块相连;
所述BDS/GNSS全星座定位授时模块分别与所述时间数字转换器和所述控制器相连。
4.如权利要求3所述的一种双模同步时钟系统,其特征在于,所述BDS/GNSS全星座定位授时模块的1PPS引脚与所述时间数字转换器相连,BDS/GNSS全星座定位授时模块的RXD引脚、TXD引脚分别与所述控制器相连。
5.如权利要求4所述的一种双模同步时钟系统,其特征在于,所述BDS/GNSS全星座定位授时模块采用ATGM322授时模块。
6.如权利要求3~5中任意一项所述的一种双模同步时钟系统,其特征在于,所述射频功放电路采用AT2659 L1频段卫星导航射频前端低噪声放大器芯片。
7.如权利要求1~5中任意一项所述的一种双模同步时钟系统,其特征在于,所述时间数字转换器采用TDC-GP21时间数字转换芯片。
8.如权利要求1~5中任意一项所述的一种双模同步时钟系统,其特征在于,所述压控恒温晶振调整电路包括压控恒温晶振和D/A转换器;
所述D/A转换器分别与所述控制器和所述压控恒温晶振相连;
所述压控恒温晶振与所述复杂可编程逻辑器件相连。
9.如权利要求8所述的一种双模同步时钟系统,其特征在于,所述D/A转换器采用型号为DAC8551-Q1的16位数模转换器。
10.如权利要求1~5中任意一项所述的一种双模同步时钟系统,其特征在于,所述复杂可编程逻辑器件采用型号为XC2C64A的复杂可编程逻辑器件。
CN202020822390.1U 2020-05-15 2020-05-15 一种双模同步时钟系统 Active CN212905926U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020822390.1U CN212905926U (zh) 2020-05-15 2020-05-15 一种双模同步时钟系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020822390.1U CN212905926U (zh) 2020-05-15 2020-05-15 一种双模同步时钟系统

Publications (1)

Publication Number Publication Date
CN212905926U true CN212905926U (zh) 2021-04-06

Family

ID=75263644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020822390.1U Active CN212905926U (zh) 2020-05-15 2020-05-15 一种双模同步时钟系统

Country Status (1)

Country Link
CN (1) CN212905926U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117784580A (zh) * 2024-01-23 2024-03-29 星汉时空科技(长沙)有限公司 提升ptp点对点授时精度的方法和授时装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117784580A (zh) * 2024-01-23 2024-03-29 星汉时空科技(长沙)有限公司 提升ptp点对点授时精度的方法和授时装置

Similar Documents

Publication Publication Date Title
CN104330966B (zh) 多模高精度时间、频率标准设备
CN102006159B (zh) 基于ieee1588多从钟的采样值多接口同步系统
CN201812151U (zh) 铷原子频率标准校准装置
CN106656451B (zh) 一种基于卫星授时系统的守时、授时精度测试装置及方法
WO2018205811A1 (zh) 时钟同步的方法、时间基准源设备和时钟复现设备
CN111580380B (zh) 一种提高gnss同步授时精度方法
CN202008583U (zh) 一种同步相量测量装置时钟源
CN104460311A (zh) 时间校准方法及装置
CN114567926B (zh) 一种用于无线分布式测试系统的时钟同步和触发装置
CN111064536A (zh) 基于时钟同步的配电网监测装置及方法
CN202475769U (zh) Lte系统的高精度网络时钟服务器
CN212905926U (zh) 一种双模同步时钟系统
CN114142957B (zh) 一种远距离时频设备测试方法
US11956744B2 (en) Sampling synchronization through GPS signals
CN105846939B (zh) 一种精确保持多模块同步的系统与方法
CN209949115U (zh) 一种多时钟源综合网络时统卡
Castello et al. Hardware for PMU and PMU Integration
CN212675179U (zh) 一种基于卫星共视的可控时钟模块
CN211826913U (zh) 基于时钟同步器的高精度对时守时装置
RU172628U1 (ru) Сервер синхронизации времени
CN201707439U (zh) 北斗一号双向授时型用户机
CN112290935B (zh) 一种晶体振荡器频率调整方法及电路
CN201422104Y (zh) 一种用于实时数据采集的卫星时钟板
CN209198596U (zh) 同步采样装置及馈线自动化终端
CN105137753A (zh) 北斗多功能时统系统

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant