CN211825683U - 一种基于法布里-珀罗干涉的光纤重金属离子传感器 - Google Patents

一种基于法布里-珀罗干涉的光纤重金属离子传感器 Download PDF

Info

Publication number
CN211825683U
CN211825683U CN202020328307.5U CN202020328307U CN211825683U CN 211825683 U CN211825683 U CN 211825683U CN 202020328307 U CN202020328307 U CN 202020328307U CN 211825683 U CN211825683 U CN 211825683U
Authority
CN
China
Prior art keywords
heavy metal
optical fiber
borosilicate glass
active layer
quartz glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN202020328307.5U
Other languages
English (en)
Inventor
王文华
吴伟娜
吴胜旭
李思东
赖学辉
田秀云
罗元政
陈芷珊
周裕华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Jiahe Detection Technology Services Co ltd
Guangdong Ocean University
Original Assignee
Guangzhou Jiahe Detection Technology Services Co ltd
Guangdong Ocean University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Jiahe Detection Technology Services Co ltd, Guangdong Ocean University filed Critical Guangzhou Jiahe Detection Technology Services Co ltd
Priority to CN202020328307.5U priority Critical patent/CN211825683U/zh
Application granted granted Critical
Publication of CN211825683U publication Critical patent/CN211825683U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本实用新型公开基于法布里‑珀罗干涉的光纤重金属离子传感器,包括单模光纤、石英玻璃毛细管、高硼硅玻璃、活性层;单模光纤插入石英玻璃毛细管的通孔内,石英玻璃毛细管的一侧端面与高硼硅玻璃的一侧端面固定连接;高硼硅玻璃的另一侧端面与活性层的一侧端面固定连接。利用光纤干涉的优点以及改性高分子化合物吸附重金属离子后导致其折射率和厚度的细微变化,从而引起干涉条纹的变化,依据高分辨率解调算法,可以快速方便高灵敏度地地测量环境中的重金属离子浓度,对环境或食品中的重金属污染情况进行有效评估。同时,可以通过高硼硅厚度变化引起的干涉条纹变化信息剔除活性层因环境温度变化引起的干涉条纹变化量,从而提高重金属离子的测量精度。

Description

一种基于法布里-珀罗干涉的光纤重金属离子传感器
技术领域
本实用新型涉及重金属离子检测领域,特别是涉及一种基于法布里-珀罗干涉的光纤重金属离子传感器。
背景技术
随着国民经济和社会的快速发展,各种工业废水排放、污水灌溉、化肥不合理实用、空气污染等现象不断发生,环境、水资源、土壤受到重金属污染的现象日益严重。重金属离子很难降解,容易通过饮用水或食物链被人体不断吸收,重金属离子沉积和富集于人体内,超过一定浓度后就会对人体有毒,对身体产生直接危害,危及人类的健康。重金属元素被人体吸收后将导致蛋白质变性、酶失去活性、组织细胞出现结构和功能上的损害,因此,重金属含量的检测对人们的健康生活非常重要,研究对重金属离子有选择性的高灵敏检测方法有重要意义。
重金属含量的传统检测方法主要有原子吸收光谱法、原子发射光谱法、原子荧光光谱法、质谱法、酶抑制法和电化学分析检测法。这些仪器的分析测试方法有各自的优点,但是检测繁琐,耗时长,操作复杂等缺点,一直困扰目前重金属离子的检测。现在急需一种能够方便快捷高灵敏度地检测重金属离子含量的传感器。
实用新型内容
本实用新型的目的是提供一种基于法布里-珀罗干涉的光纤重金属离子传感器,以解决上述现有技术存在的问题,能够高效地测定环境中的重金属离子含量。
为实现上述目的,本实用新型提供了如下方案:本实用新型提供一种基于法布里-珀罗干涉的光纤重金属离子传感器,包括单模光纤、石英玻璃毛细管、高硼硅玻璃、活性层;
所述单模光纤插入所述石英玻璃毛细管内,所述单模光纤的一端伸出所述石英玻璃毛细管的一端;所述石英玻璃毛细管的另一端与所述高硼硅玻璃的一端固定连接;
所述高硼硅玻璃的另一端与所述活性层的一端固定连接。
优选地,所述石英玻璃毛细管的内径为126-128微米,外径为 1-2.5毫米;所述高硼硅玻璃的厚度为100-500微米。
优选地,所述石英玻璃毛细管与所述高硼硅玻璃相接触的端面、所述单模光纤与所述高硼硅玻璃相接触的端面都应具有12级或以上光洁度。
优选地,所述单模光纤和所述石英玻璃毛细管通过环氧胶固定连接。
本实用新型公开了以下技术效果:本实用新型利用光纤干涉的优点以及改性高分子化合物吸附重金属离子后导致其折射率和厚度的细微变化,从而引起干涉条纹的变化,依据高分辨率解调算法,可以快速方便高灵敏度地地测量环境中的重金属离子浓度,从而能够对环境或食品中的重金属污染情况进行有效评估。同时,由于环境温度变化的时候会引起高硼硅玻璃的厚度变化,同时也会引起活性层厚度的变化,因此,可以通过高硼硅厚度变化引起的干涉条纹变化信息剔除活性层因环境温度变化引起的干涉条纹变化量,从而提高重金属离子的测量精度。
附图说明
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型基于法布里-珀罗干涉的光纤重金属离子传感器的结构图;
图2为本实用新型基于法布里-珀罗干涉的光纤重金属离子传感器的光信号传输原理图;
图3为利用本实用新型基于法布里-珀罗干涉的光纤重金属离子传感器进行重金属离子检测的系统示意图;
其中,1是单模光纤,2是石英玻璃毛细管,3是高硼硅玻璃,4 是活性层,5是第一反射面,6是第二反射面,7是活性层裸露的侧端面,8是石英玻璃毛细管端面和高硼硅玻璃的分界面反射的光信号, 9是高硼硅玻璃和活性层的分界面反射的光信号,10是活性层表面反射的光信号,11是光源,12是光纤耦合器,13是存放重金属离子溶液的容器,14是重金属离子传感器,15是信号解调和输出显示装置。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本实用新型作进一步详细的说明。
如图1所示,本实用新型提供一种基于法布里-珀罗干涉的光纤重金属离子传感器,包括单模光纤1、石英玻璃毛细管2、高硼硅玻璃3、活性层4。在结构上,所述单模光纤1的周面涂抹有环氧胶OE188 后插入所述石英玻璃毛细管2的通孔内并且二者的一侧端面平齐,所述石英玻璃毛细管2的一侧端面与所述高硼硅玻璃3的一侧端面固定连接;所述高硼硅玻璃3的另一侧端面与所述活性层4的一侧端面固定连接。
进一步优化方案,石英玻璃毛细管2的内径为126-128微米,外径为1-2.5毫米;高硼硅玻璃3的厚度为100-500微米,同时,石英玻璃毛细管2与高硼硅玻璃3相接触的端面、单模光纤1与高硼硅玻璃3相接触的端面都应具有12级或以上光洁度。单模光纤和石英玻璃毛细管通过环氧胶OE188固定连接。
下面结合附图2-3对本发明基于法布里-珀罗干涉的光纤重金属离子传感器的测量原理进行说明。
如图2所示,石英玻璃毛细管2和高硼硅玻璃3由于折射率不一样,在物理意义上,形成由石英玻璃毛细管2和高硼硅玻璃3相接触的端面5作为反射面的第一反射面;高硼硅玻璃3和活性层4的折射率也不一样,形成第二反射面6;第一反射面5和第二反射面6构成第一个法布里-珀罗腔的两个反射面,第二反射面6和活性层4的表面7构成第二个法布里-珀罗腔的两个反射面。光纤的光信号从左往右传输,传输至第二反射面6时产生部分反射8,即石英玻璃毛细管 2端面和高硼硅玻璃3的分界面反射的光信号,剩余光信号在高硼硅玻璃3继续向右传输,传输至分界面6即第二反射面时也将产生部分反射9,即高硼硅玻璃3和活性层4的分界面反射的光信号,然后剩下的光信号在活性层4内继续向右传输,最后在活性层4的外表面7 产生反射,石英玻璃毛细管2端面和高硼硅玻璃3的分界面反射的光信号8和高硼硅玻璃和活性层的分界面反射的光信号9产生干涉,高硼硅玻璃3和活性层4的分界面反射的光信号9和活性层表面反射的光信号10产生干涉,石英玻璃毛细管2端面和高硼硅玻璃3的分界面反射的光信号8和活性层表面反射的光信号10也会产生干涉(提取传感信号时这个干涉信号可忽略)。活性层4吸附重金属离子后,其折射率或厚度将发生变化,此时高硼硅玻璃3和活性层4的分界面反射的光信号9和活性层表面反射的光信号10产生的干涉信号将发生变化,反映了重金属离子含量的变化;周围环境温度变化时,高硼硅玻璃3的厚度也就发生变化,此时石英玻璃毛细管端面和高硼硅玻璃的分界面反射的光信号8和高硼硅玻璃和活性层的分界面反射的光信号9产生的干涉信号将发生变化,高硼硅玻璃3和活性层4的分界面反射的光信号9和活性层表面反射的光信号10产生的干涉信号也将发生变化,因此高硼硅玻璃3和活性层4的分界面反射的光信号 9和活性层表面反射的光信号10产生的总变化可以根据分界面反射的光信号8和9的干涉信号变化剔除检测重金属离子浓度时温度引起的误差。
如图3所示,重金属离子传感器14置于存放重金属离子溶液的容器13中,光源11发出的光信号经光纤耦合器12和光纤到达重金属离子传感器14,重金属离子传感器14获取重金属离子含量产生的反射干涉信号经光纤耦合器12和光纤送至信号解调和输出显示装置15处进行解调和输出显示。
本实用新型利用光纤干涉的优点以及改性高分子化合物吸附重金属离子后导致其折射率和厚度的细微变化,从而引起干涉条纹的变化,依据高分辨率解调算法,可以快速方便高灵敏度地地测量环境中的重金属离子浓度,从而能够对环境或食品中的重金属污染情况进行有效评估。同时,由于环境温度变化的时候会引起高硼硅玻璃的厚度变化,同时也会引起活性层厚度的变化,因此,可以通过高硼硅厚度变化引起的干涉条纹变化信息剔除活性层因环境温度变化引起的干涉条纹变化量,从而提高重金属离子的测量精度。
在本实用新型的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。
以上所述的实施例仅是对本实用新型的优选方式进行描述,并非对本实用新型的范围进行限定,在不脱离本实用新型设计精神的前提下,本领域普通技术人员对本实用新型的技术方案做出的各种变形和改进,均应落入本实用新型权利要求书确定的保护范围内。

Claims (4)

1.一种基于法布里-珀罗干涉的光纤重金属离子传感器,其特征在于包括单模光纤、石英玻璃毛细管、高硼硅玻璃、活性层;
所述单模光纤插入所述石英玻璃毛细管内,所述单模光纤的一端伸出所述石英玻璃毛细管的一端;所述石英玻璃毛细管的另一端与所述高硼硅玻璃的一端固定连接;
所述高硼硅玻璃的另一端与所述活性层的一端固定连接。
2.根据权利要求1所述的基于法布里-珀罗干涉的光纤重金属离子传感器,其特征在于,所述石英玻璃毛细管的内径为126-128微米,外径为1-2.5毫米;所述高硼硅玻璃的厚度为100-500微米。
3.根据权利要求1所述的基于法布里-珀罗干涉的光纤重金属离子传感器,其特征在于,所述石英玻璃毛细管与所述高硼硅玻璃相接触的端面、所述单模光纤与所述高硼硅玻璃相接触的端面都应具有12级或以上光洁度。
4.根据权利要求1所述的基于法布里-珀罗干涉的光纤重金属离子传感器,其特征在于:所述单模光纤和所述石英玻璃毛细管通过环氧胶固定连接。
CN202020328307.5U 2020-03-17 2020-03-17 一种基于法布里-珀罗干涉的光纤重金属离子传感器 Withdrawn - After Issue CN211825683U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020328307.5U CN211825683U (zh) 2020-03-17 2020-03-17 一种基于法布里-珀罗干涉的光纤重金属离子传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020328307.5U CN211825683U (zh) 2020-03-17 2020-03-17 一种基于法布里-珀罗干涉的光纤重金属离子传感器

Publications (1)

Publication Number Publication Date
CN211825683U true CN211825683U (zh) 2020-10-30

Family

ID=73012975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020328307.5U Withdrawn - After Issue CN211825683U (zh) 2020-03-17 2020-03-17 一种基于法布里-珀罗干涉的光纤重金属离子传感器

Country Status (1)

Country Link
CN (1) CN211825683U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111208088A (zh) * 2020-03-17 2020-05-29 广东海洋大学 一种基于法布里-珀罗干涉的光纤重离子传感器
CN114235729A (zh) * 2021-12-17 2022-03-25 吉林大学 基于并联法布里-珀罗干涉仪的重金属离子检测装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111208088A (zh) * 2020-03-17 2020-05-29 广东海洋大学 一种基于法布里-珀罗干涉的光纤重离子传感器
WO2021184675A1 (zh) * 2020-03-17 2021-09-23 广东海洋大学 一种基于法布里-珀罗干涉的光纤重金属离子传感器
CN114235729A (zh) * 2021-12-17 2022-03-25 吉林大学 基于并联法布里-珀罗干涉仪的重金属离子检测装置

Similar Documents

Publication Publication Date Title
CN111208088A (zh) 一种基于法布里-珀罗干涉的光纤重离子传感器
Arnold Enzyme-based fiber optic sensor
CN211825683U (zh) 一种基于法布里-珀罗干涉的光纤重金属离子传感器
CN102914519B (zh) 一种光纤式激光液体浊度测量装置及测量方法
Fuh et al. Single fiber-optic fluorescence enzyme-based sensor
CN103994954B (zh) 一种雾霾测量仪
CN203824907U (zh) 一种表面等离子体共振光纤pH传感芯片及检测系统
CA2552752A1 (en) A handheld device with a disposable element for chemical analysis of multiple analytes
CN100565188C (zh) 光纤生物传感器的应用方法
WO1995007457A3 (en) Bio-luminescence monitoring apparatus and method
CN204854887U (zh) 一种光纤点式液位传感器
CN102042973B (zh) 一种水浑浊程度实时在线监测系统
CN103645290A (zh) 一种水质在线检测仪
CN106323915A (zh) 一种基于光纤m‑z干涉仪检测硫化氢气体的装置
CN103759675B (zh) 一种用于光学元件非球面微结构的同步检测方法
CN105334190A (zh) 光纤纤芯与包层交界面的Bragg光栅生化传感器及方法
CN102175645B (zh) 一种基于偏振光检测的高灵敏光子晶体光纤折射率传感器
CN103884401A (zh) 光纤油水分界面的检测装置及检测方法
CN103115895B (zh) 基于光时域反射技术的拉锥传感光纤折射率多点检测方法及装置
CN215066128U (zh) 一种饮用水水质检测装置
CN200982952Y (zh) 双通道光纤折射率传感器
CN204302180U (zh) 一种痕量气体传感器光路系统及气室
CN101609000B (zh) 一种光纤倏逝波生物膜活性检测传感器
CN100412528C (zh) 气体和液体浓度检测传感器及检测系统
CN201028995Y (zh) 多光束悬浮物浓度测量装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20201030

Effective date of abandoning: 20220823

AV01 Patent right actively abandoned

Granted publication date: 20201030

Effective date of abandoning: 20220823