CN211825683U - Optical fiber heavy metal ion sensor based on Fabry-Perot interference - Google Patents
Optical fiber heavy metal ion sensor based on Fabry-Perot interference Download PDFInfo
- Publication number
- CN211825683U CN211825683U CN202020328307.5U CN202020328307U CN211825683U CN 211825683 U CN211825683 U CN 211825683U CN 202020328307 U CN202020328307 U CN 202020328307U CN 211825683 U CN211825683 U CN 211825683U
- Authority
- CN
- China
- Prior art keywords
- heavy metal
- optical fiber
- borosilicate glass
- active layer
- quartz glass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本实用新型公开基于法布里‑珀罗干涉的光纤重金属离子传感器,包括单模光纤、石英玻璃毛细管、高硼硅玻璃、活性层;单模光纤插入石英玻璃毛细管的通孔内,石英玻璃毛细管的一侧端面与高硼硅玻璃的一侧端面固定连接;高硼硅玻璃的另一侧端面与活性层的一侧端面固定连接。利用光纤干涉的优点以及改性高分子化合物吸附重金属离子后导致其折射率和厚度的细微变化,从而引起干涉条纹的变化,依据高分辨率解调算法,可以快速方便高灵敏度地地测量环境中的重金属离子浓度,对环境或食品中的重金属污染情况进行有效评估。同时,可以通过高硼硅厚度变化引起的干涉条纹变化信息剔除活性层因环境温度变化引起的干涉条纹变化量,从而提高重金属离子的测量精度。
The utility model discloses an optical fiber heavy metal ion sensor based on Fabry-Perot interference, comprising a single-mode optical fiber, a quartz glass capillary, a high borosilicate glass, and an active layer; the single-mode optical fiber is inserted into a through hole of the quartz glass capillary, and the quartz glass capillary One end face of the borosilicate glass is fixedly connected to one end face of the borosilicate glass; the other end face of the borosilicate glass is fixedly connected to one end face of the active layer. Using the advantages of optical fiber interference and the subtle changes in the refractive index and thickness of the modified polymer compounds after adsorbing heavy metal ions, the interference fringes are changed. The concentration of heavy metal ions can be effectively evaluated for heavy metal pollution in the environment or food. At the same time, the change amount of the interference fringe caused by the change of the active layer due to the change of the ambient temperature can be eliminated by the change information of the interference fringe caused by the change of the high boron silicon thickness, thereby improving the measurement accuracy of the heavy metal ions.
Description
技术领域technical field
本实用新型涉及重金属离子检测领域,特别是涉及一种基于法布里-珀罗干涉的光纤重金属离子传感器。The utility model relates to the field of heavy metal ion detection, in particular to an optical fiber heavy metal ion sensor based on Fabry-Perot interference.
背景技术Background technique
随着国民经济和社会的快速发展,各种工业废水排放、污水灌溉、化肥不合理实用、空气污染等现象不断发生,环境、水资源、土壤受到重金属污染的现象日益严重。重金属离子很难降解,容易通过饮用水或食物链被人体不断吸收,重金属离子沉积和富集于人体内,超过一定浓度后就会对人体有毒,对身体产生直接危害,危及人类的健康。重金属元素被人体吸收后将导致蛋白质变性、酶失去活性、组织细胞出现结构和功能上的损害,因此,重金属含量的检测对人们的健康生活非常重要,研究对重金属离子有选择性的高灵敏检测方法有重要意义。With the rapid development of the national economy and society, various industrial wastewater discharge, sewage irrigation, unreasonable and practical use of chemical fertilizers, air pollution and other phenomena continue to occur, and the environment, water resources, and soil are increasingly polluted by heavy metals. Heavy metal ions are difficult to degrade and are easily absorbed by the human body through drinking water or the food chain. Heavy metal ions are deposited and enriched in the human body. When the concentration exceeds a certain concentration, they will be toxic to the human body, causing direct harm to the body and endangering human health. The absorption of heavy metal elements by the human body will lead to protein denaturation, inactivation of enzymes, and structural and functional damage to tissue cells. Therefore, the detection of heavy metal content is very important to people's healthy life. Research on selective and highly sensitive detection of heavy metal ions method is important.
重金属含量的传统检测方法主要有原子吸收光谱法、原子发射光谱法、原子荧光光谱法、质谱法、酶抑制法和电化学分析检测法。这些仪器的分析测试方法有各自的优点,但是检测繁琐,耗时长,操作复杂等缺点,一直困扰目前重金属离子的检测。现在急需一种能够方便快捷高灵敏度地检测重金属离子含量的传感器。The traditional detection methods of heavy metal content mainly include atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, mass spectrometry, enzyme inhibition method and electrochemical analysis and detection method. The analysis and testing methods of these instruments have their own advantages, but the detection is cumbersome, time-consuming, and complicated to operate, which has always plagued the current detection of heavy metal ions. There is an urgent need for a sensor that can detect the content of heavy metal ions conveniently, quickly and with high sensitivity.
实用新型内容Utility model content
本实用新型的目的是提供一种基于法布里-珀罗干涉的光纤重金属离子传感器,以解决上述现有技术存在的问题,能够高效地测定环境中的重金属离子含量。The purpose of the present utility model is to provide an optical fiber heavy metal ion sensor based on Fabry-Perot interference, so as to solve the problems existing in the above-mentioned prior art, and can efficiently measure the heavy metal ion content in the environment.
为实现上述目的,本实用新型提供了如下方案:本实用新型提供一种基于法布里-珀罗干涉的光纤重金属离子传感器,包括单模光纤、石英玻璃毛细管、高硼硅玻璃、活性层;In order to achieve the above purpose, the utility model provides the following solutions: the utility model provides an optical fiber heavy metal ion sensor based on Fabry-Perot interference, comprising a single-mode optical fiber, a quartz glass capillary, a high borosilicate glass, and an active layer;
所述单模光纤插入所述石英玻璃毛细管内,所述单模光纤的一端伸出所述石英玻璃毛细管的一端;所述石英玻璃毛细管的另一端与所述高硼硅玻璃的一端固定连接;The single-mode optical fiber is inserted into the quartz glass capillary, and one end of the single-mode optical fiber protrudes from one end of the quartz glass capillary; the other end of the quartz glass capillary is fixedly connected to one end of the borosilicate glass;
所述高硼硅玻璃的另一端与所述活性层的一端固定连接。The other end of the borosilicate glass is fixedly connected to one end of the active layer.
优选地,所述石英玻璃毛细管的内径为126-128微米,外径为 1-2.5毫米;所述高硼硅玻璃的厚度为100-500微米。Preferably, the inner diameter of the quartz glass capillary is 126-128 microns, and the outer diameter is 1-2.5 mm; the thickness of the borosilicate glass is 100-500 microns.
优选地,所述石英玻璃毛细管与所述高硼硅玻璃相接触的端面、所述单模光纤与所述高硼硅玻璃相接触的端面都应具有12级或以上光洁度。Preferably, the end face of the quartz glass capillary in contact with the borosilicate glass and the end face of the single-mode optical fiber in contact with the borosilicate glass should have a smoothness of
优选地,所述单模光纤和所述石英玻璃毛细管通过环氧胶固定连接。Preferably, the single-mode optical fiber and the quartz glass capillary are fixedly connected by epoxy glue.
本实用新型公开了以下技术效果:本实用新型利用光纤干涉的优点以及改性高分子化合物吸附重金属离子后导致其折射率和厚度的细微变化,从而引起干涉条纹的变化,依据高分辨率解调算法,可以快速方便高灵敏度地地测量环境中的重金属离子浓度,从而能够对环境或食品中的重金属污染情况进行有效评估。同时,由于环境温度变化的时候会引起高硼硅玻璃的厚度变化,同时也会引起活性层厚度的变化,因此,可以通过高硼硅厚度变化引起的干涉条纹变化信息剔除活性层因环境温度变化引起的干涉条纹变化量,从而提高重金属离子的测量精度。The utility model discloses the following technical effects: the utility model utilizes the advantages of optical fiber interference and the modified polymer compound absorbs heavy metal ions to cause subtle changes in its refractive index and thickness, thereby causing changes in interference fringes. The algorithm can quickly, conveniently and highly sensitively measure the concentration of heavy metal ions in the environment, so that it can effectively evaluate the heavy metal pollution in the environment or food. At the same time, the thickness of the borosilicate glass will change when the ambient temperature changes, and the thickness of the active layer will also change. Therefore, the change information of the interference fringes caused by the thickness change of the borosilicate glass can be used to eliminate the change of the active layer due to the ambient temperature. The amount of interference fringes caused by the change, thereby improving the measurement accuracy of heavy metal ions.
附图说明Description of drawings
为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the accompanying drawings required in the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only of the present invention. For some embodiments of the present invention, for those of ordinary skill in the art, other drawings can also be obtained according to these drawings without any creative effort.
图1为本实用新型基于法布里-珀罗干涉的光纤重金属离子传感器的结构图;Fig. 1 is the structure diagram of the optical fiber heavy metal ion sensor based on Fabry-Perot interference of the present invention;
图2为本实用新型基于法布里-珀罗干涉的光纤重金属离子传感器的光信号传输原理图;Fig. 2 is the optical signal transmission principle diagram of the optical fiber heavy metal ion sensor based on Fabry-Perot interference of the present invention;
图3为利用本实用新型基于法布里-珀罗干涉的光纤重金属离子传感器进行重金属离子检测的系统示意图;3 is a schematic diagram of a system for detecting heavy metal ions using the optical fiber heavy metal ion sensor based on Fabry-Perot interference of the present invention;
其中,1是单模光纤,2是石英玻璃毛细管,3是高硼硅玻璃,4 是活性层,5是第一反射面,6是第二反射面,7是活性层裸露的侧端面,8是石英玻璃毛细管端面和高硼硅玻璃的分界面反射的光信号, 9是高硼硅玻璃和活性层的分界面反射的光信号,10是活性层表面反射的光信号,11是光源,12是光纤耦合器,13是存放重金属离子溶液的容器,14是重金属离子传感器,15是信号解调和输出显示装置。Among them, 1 is a single-mode fiber, 2 is a quartz glass capillary, 3 is a high borosilicate glass, 4 is an active layer, 5 is a first reflecting surface, 6 is a second reflecting surface, 7 is the exposed side end surface of the active layer, 8 is the optical signal reflected from the interface between the end face of the quartz glass capillary and the borosilicate glass, 9 is the optical signal reflected from the interface between the borosilicate glass and the active layer, 10 is the optical signal reflected from the surface of the active layer, 11 is the light source, 12 It is an optical fiber coupler, 13 is a container for storing heavy metal ion solution, 14 is a heavy metal ion sensor, and 15 is a signal demodulation and output display device.
具体实施方式Detailed ways
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。The technical solutions in the embodiments of the present utility model will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present utility model. Obviously, the described embodiments are only a part of the embodiments of the present utility model, rather than all the implementations. example. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative work fall within the protection scope of the present invention.
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本实用新型作进一步详细的说明。In order to make the above objects, features and advantages of the present utility model more clearly understood, the present utility model will be described in further detail below with reference to the accompanying drawings and specific embodiments.
如图1所示,本实用新型提供一种基于法布里-珀罗干涉的光纤重金属离子传感器,包括单模光纤1、石英玻璃毛细管2、高硼硅玻璃3、活性层4。在结构上,所述单模光纤1的周面涂抹有环氧胶OE188 后插入所述石英玻璃毛细管2的通孔内并且二者的一侧端面平齐,所述石英玻璃毛细管2的一侧端面与所述高硼硅玻璃3的一侧端面固定连接;所述高硼硅玻璃3的另一侧端面与所述活性层4的一侧端面固定连接。As shown in FIG. 1 , the present invention provides an optical fiber heavy metal ion sensor based on Fabry-Perot interference, comprising a single-mode optical fiber 1 , a
进一步优化方案,石英玻璃毛细管2的内径为126-128微米,外径为1-2.5毫米;高硼硅玻璃3的厚度为100-500微米,同时,石英玻璃毛细管2与高硼硅玻璃3相接触的端面、单模光纤1与高硼硅玻璃3相接触的端面都应具有12级或以上光洁度。单模光纤和石英玻璃毛细管通过环氧胶OE188固定连接。To further optimize the plan, the inner diameter of the
下面结合附图2-3对本发明基于法布里-珀罗干涉的光纤重金属离子传感器的测量原理进行说明。The measurement principle of the optical fiber heavy metal ion sensor based on Fabry-Perot interference of the present invention will be described below with reference to Figures 2-3.
如图2所示,石英玻璃毛细管2和高硼硅玻璃3由于折射率不一样,在物理意义上,形成由石英玻璃毛细管2和高硼硅玻璃3相接触的端面5作为反射面的第一反射面;高硼硅玻璃3和活性层4的折射率也不一样,形成第二反射面6;第一反射面5和第二反射面6构成第一个法布里-珀罗腔的两个反射面,第二反射面6和活性层4的表面7构成第二个法布里-珀罗腔的两个反射面。光纤的光信号从左往右传输,传输至第二反射面6时产生部分反射8,即石英玻璃毛细管 2端面和高硼硅玻璃3的分界面反射的光信号,剩余光信号在高硼硅玻璃3继续向右传输,传输至分界面6即第二反射面时也将产生部分反射9,即高硼硅玻璃3和活性层4的分界面反射的光信号,然后剩下的光信号在活性层4内继续向右传输,最后在活性层4的外表面7 产生反射,石英玻璃毛细管2端面和高硼硅玻璃3的分界面反射的光信号8和高硼硅玻璃和活性层的分界面反射的光信号9产生干涉,高硼硅玻璃3和活性层4的分界面反射的光信号9和活性层表面反射的光信号10产生干涉,石英玻璃毛细管2端面和高硼硅玻璃3的分界面反射的光信号8和活性层表面反射的光信号10也会产生干涉(提取传感信号时这个干涉信号可忽略)。活性层4吸附重金属离子后,其折射率或厚度将发生变化,此时高硼硅玻璃3和活性层4的分界面反射的光信号9和活性层表面反射的光信号10产生的干涉信号将发生变化,反映了重金属离子含量的变化;周围环境温度变化时,高硼硅玻璃3的厚度也就发生变化,此时石英玻璃毛细管端面和高硼硅玻璃的分界面反射的光信号8和高硼硅玻璃和活性层的分界面反射的光信号9产生的干涉信号将发生变化,高硼硅玻璃3和活性层4的分界面反射的光信号9和活性层表面反射的光信号10产生的干涉信号也将发生变化,因此高硼硅玻璃3和活性层4的分界面反射的光信号 9和活性层表面反射的光信号10产生的总变化可以根据分界面反射的光信号8和9的干涉信号变化剔除检测重金属离子浓度时温度引起的误差。As shown in Fig. 2, due to the difference in refractive index between the quartz glass capillary 2 and the
如图3所示,重金属离子传感器14置于存放重金属离子溶液的容器13中,光源11发出的光信号经光纤耦合器12和光纤到达重金属离子传感器14,重金属离子传感器14获取重金属离子含量产生的反射干涉信号经光纤耦合器12和光纤送至信号解调和输出显示装置15处进行解调和输出显示。As shown in FIG. 3 , the heavy
本实用新型利用光纤干涉的优点以及改性高分子化合物吸附重金属离子后导致其折射率和厚度的细微变化,从而引起干涉条纹的变化,依据高分辨率解调算法,可以快速方便高灵敏度地地测量环境中的重金属离子浓度,从而能够对环境或食品中的重金属污染情况进行有效评估。同时,由于环境温度变化的时候会引起高硼硅玻璃的厚度变化,同时也会引起活性层厚度的变化,因此,可以通过高硼硅厚度变化引起的干涉条纹变化信息剔除活性层因环境温度变化引起的干涉条纹变化量,从而提高重金属离子的测量精度。The utility model utilizes the advantages of optical fiber interference and the slight change of the refractive index and thickness of the modified polymer compound after adsorbing heavy metal ions, thereby causing the change of interference fringes. The concentration of heavy metal ions in the environment is measured, which enables an effective assessment of heavy metal contamination in the environment or food. At the same time, the thickness of the borosilicate glass will change when the ambient temperature changes, and the thickness of the active layer will also change. Therefore, the change information of the interference fringes caused by the thickness change of the borosilicate glass can be used to eliminate the change of the active layer due to the ambient temperature. The amount of interference fringes caused by the change, thereby improving the measurement accuracy of heavy metal ions.
在本实用新型的描述中,需要理解的是,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。In the description of the present invention, it should be understood that the terms "portrait", "horizontal", "upper", "lower", "front", "rear", "left", "right", "vertical" , "horizontal", "top", "bottom", "inside", "outside" and other indications of orientation or positional relationship are based on the orientation or positional relationship shown in the accompanying drawings, only for the convenience of describing the present utility model, not Indicates or implies that the referred device or element must have a particular orientation, be constructed and operate in a particular orientation, and therefore should not be construed as a limitation of the present invention.
以上所述的实施例仅是对本实用新型的优选方式进行描述,并非对本实用新型的范围进行限定,在不脱离本实用新型设计精神的前提下,本领域普通技术人员对本实用新型的技术方案做出的各种变形和改进,均应落入本实用新型权利要求书确定的保护范围内。The above-mentioned embodiments are only to describe the preferred mode of the present invention, and do not limit the scope of the present invention. Under the premise of not departing from the design spirit of the present invention, those of ordinary skill in the art can make the technical solutions of the present invention. Various deformations and improvements made shall fall within the protection scope determined by the claims of the present utility model.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020328307.5U CN211825683U (en) | 2020-03-17 | 2020-03-17 | Optical fiber heavy metal ion sensor based on Fabry-Perot interference |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020328307.5U CN211825683U (en) | 2020-03-17 | 2020-03-17 | Optical fiber heavy metal ion sensor based on Fabry-Perot interference |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211825683U true CN211825683U (en) | 2020-10-30 |
Family
ID=73012975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020328307.5U Withdrawn - After Issue CN211825683U (en) | 2020-03-17 | 2020-03-17 | Optical fiber heavy metal ion sensor based on Fabry-Perot interference |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211825683U (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111208088A (en) * | 2020-03-17 | 2020-05-29 | 广东海洋大学 | Optical fiber heavy ion sensor based on Fabry-Perot interference |
CN114235729A (en) * | 2021-12-17 | 2022-03-25 | 吉林大学 | Heavy metal ion detection device based on parallel Fabry-Perot interferometer |
-
2020
- 2020-03-17 CN CN202020328307.5U patent/CN211825683U/en not_active Withdrawn - After Issue
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111208088A (en) * | 2020-03-17 | 2020-05-29 | 广东海洋大学 | Optical fiber heavy ion sensor based on Fabry-Perot interference |
WO2021184675A1 (en) * | 2020-03-17 | 2021-09-23 | 广东海洋大学 | Fabry-pérot interference-based optical fiber heavy metal ion sensor |
CN111208088B (en) * | 2020-03-17 | 2024-08-06 | 广东海洋大学 | Optical fiber heavy metal ion sensor based on Fabry-Perot interference |
CN114235729A (en) * | 2021-12-17 | 2022-03-25 | 吉林大学 | Heavy metal ion detection device based on parallel Fabry-Perot interferometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111208088B (en) | Optical fiber heavy metal ion sensor based on Fabry-Perot interference | |
CN105158213B (en) | Glucometer device based on optical fiber surface plasmon resonance body and method | |
ES2573804T3 (en) | Test strip detection method for urine analysis compromised by ambient humidity | |
CN106596474B (en) | A three-channel SPR sensor based on seven-core fiber | |
CN211825683U (en) | Optical fiber heavy metal ion sensor based on Fabry-Perot interference | |
CN203824907U (en) | Surface plasma resonance optical fiber pH sensing chip and detecting system | |
CN105548128A (en) | Method and device for detecting chlorophyll of coastal zone water body in situ through double optical path method | |
CN103759675B (en) | A kind of synchronization detecting method for optical element aspheric surface micro structure | |
CN103884401A (en) | Detecting device and method for optical fiber oil-water interface | |
CN100460889C (en) | Optical fiber sensor for online measurement of lead-acid battery capacity | |
CN204964381U (en) | Gelatin concentration detection system based on different core fibre structure of single mode | |
CN206876574U (en) | A fiber-optic streptavidin detection system based on Fabry-Perot interference | |
CN110865052B (en) | All-fiber surface plasma resonance sensing analyzer | |
CN219532908U (en) | Device based on optical rotation measurement transparent liquid concentration | |
CN104034698B (en) | The optical fiber SPR sensor probe of portable replaceable | |
CN102445444A (en) | Optical fiber fluorescent probe and optical fiber fluorescent sensing system model based on solution | |
CN101609000A (en) | An optical fiber evanescent wave biofilm activity detection sensor | |
CN200993672Y (en) | Optical fiber-sensor for on-line measuring lead-acid battery capacity | |
CN205404410U (en) | Double -light -path method littoral zone water chlorophyll normal position monitoring devices | |
Motellier et al. | Fiber-optic pH sensor for in situ applications | |
CN110687163B (en) | Natural gas water dew point optical detector | |
CN114544636A (en) | Novel coronavirus detection optical system device and preparation method of biological detection sensing interface in detection section | |
CN206177752U (en) | A proportion refraction pipe for urine detection | |
CN101093193A (en) | Multiple optical fiber probe with temperature correction | |
CN112798585A (en) | A color developing tube and detection method for on-site determination of ferrous concentration in water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20201030 Effective date of abandoning: 20220823 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20201030 Effective date of abandoning: 20220823 |
|
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |