CN211690906U - Wall unit and wall - Google Patents

Wall unit and wall Download PDF

Info

Publication number
CN211690906U
CN211690906U CN202020129587.7U CN202020129587U CN211690906U CN 211690906 U CN211690906 U CN 211690906U CN 202020129587 U CN202020129587 U CN 202020129587U CN 211690906 U CN211690906 U CN 211690906U
Authority
CN
China
Prior art keywords
photovoltaic
wall
wall body
groove
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020129587.7U
Other languages
Chinese (zh)
Inventor
刘佳颖
徐亚玲
邓平
钱君
林佳伟
吴姝娴
吴小琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Zhuzong Engineering Materials Co ltd
Original Assignee
Shanghai Zhuzong Engineering Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Zhuzong Engineering Materials Co ltd filed Critical Shanghai Zhuzong Engineering Materials Co ltd
Priority to CN202020129587.7U priority Critical patent/CN211690906U/en
Application granted granted Critical
Publication of CN211690906U publication Critical patent/CN211690906U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Abstract

A wall element and a wall, wherein the wall element comprises: the wall body comprises an inner surface and an outer surface which are opposite, and a groove is formed in the outer surface; and the photovoltaic photo-thermal assembly is installed in the groove. The embodiment of the utility model provides a wall body unit can realize the integration of photovoltaic light and heat subassembly and assembled wall body, can promote photovoltaic light and heat subassembly's generating efficiency simultaneously, improves the building environment under green energy-conserving prerequisite.

Description

Wall unit and wall
Technical Field
The utility model relates to a solar energy and building integration technical field, in particular to wall unit and wall body.
Background
Along with the continuous improvement of the living standard of people, the requirement on living comfort is higher and higher, the building energy consumption demand is continuously increased, along with the exhaustion of conventional energy, solar energy as a novel green energy becomes an important subject in the worldwide research work, and renewable energy such as solar energy is combined with a building, so that the solar energy and the like have important significance for relieving the energy crisis, realizing green energy conservation and improving the building environment.
The photovoltaic photo-thermal component is used as a component with the combined heat and power generation function, and can comprehensively utilize various renewable energy sources such as solar energy, an air source, a space low-temperature cold source and the like. When using in the building, present photovoltaic light and heat subassembly is used for existing building transformation usually, installs photovoltaic light and heat subassembly under the prerequisite that the building has been under construction and has been accomplished, carries out secondary construction and causes destruction to building outer envelope, architectural decoration easily, can produce a large amount of building rubbish, need install scaffold and support simultaneously, has reduced the building usable floor area.
Therefore, a building wall needs to be provided, which can realize integration of the photovoltaic photo-thermal assembly and the building, and avoid destroying the original structure and the aesthetic property of the building.
SUMMERY OF THE UTILITY MODEL
The utility model provides a technical problem provide a wall body unit and wall body realizes photovoltaic light and heat subassembly and assembled building integration, avoids destroying original structure and the aesthetic property of building.
In order to solve the above technical problem, an embodiment of the utility model provides a wall unit, include: the wall body comprises an inner surface and an outer surface which are opposite, and a groove is formed in the outer surface; and the photovoltaic photo-thermal assembly is installed in the groove.
Optionally, the method further includes: and the fixed frame is arranged at the edge of the photovoltaic photo-thermal assembly and used for fixing the photovoltaic photo-thermal assembly in the groove.
Optionally, a plurality of mounting holes are formed in the outer surface around the groove, mounting embedded parts are arranged in the mounting holes, a pressing strip corresponding to the mounting holes is arranged on the fixed frame, and the pressing strip is connected with the mounting embedded parts.
Optionally, the photovoltaic photo-thermal module comprises: the front surface of the photovoltaic panel and the outer surface of the wall body are positioned on the same side; and the photo-thermal assembly is positioned on the back surface of the photovoltaic panel and comprises a heat storage pipeline and a radiation plate, and the radiation plate is positioned between the photovoltaic panel and the heat storage pipeline.
Optionally, the photovoltaic panel comprises a stainless steel-based solar thin film cell.
Optionally, the heat storage pipeline has a heat conducting medium therein.
Optionally, the method further includes: and the pipeline perforation is arranged on the wall body at the bottom of the groove.
Optionally, the method further includes: a wire interface disposed on the outer surface.
Optionally, the method further includes: the insulating layer sets up the wall body with between the photovoltaic light and heat subassembly.
Optionally, the front face of the photovoltaic and photothermal assembly is flush with the outer surface of the wall body.
The embodiment of the utility model provides a wall body still provides, adopts above-mentioned wall body unit to assemble and form.
Compared with the prior art, the utility model discloses technical scheme has following beneficial effect:
the wall body unit comprises a wall body and a photovoltaic and photo-thermal assembly, a groove is formed in the outer surface of the wall body, and the photovoltaic and photo-thermal assembly is installed in the groove. When making the wall body, reserve out the recess for hold photovoltaic light and heat subassembly, when installing photovoltaic light and heat subassembly, need not carry out the secondary construction, can not lead to the fact destruction to original structure of wall body and aesthetic property, and photovoltaic light and heat subassembly installs in the recess on the wall body, has realized the integration of photovoltaic light and heat subassembly and building wall body. And, the photovoltaic light and heat subassembly that uses photovoltaic module and light and heat subassembly to combine has further improved the generating efficiency, can improve the travelling comfort of building environment for the building energy supply.
Drawings
Fig. 1 is an exploded schematic view of a wall unit according to an embodiment of the present invention;
fig. 2 is a front view of a wall unit according to an embodiment of the present invention;
fig. 3 is a side view of the wall element of fig. 2.
Detailed Description
Known by the background art, when present photovoltaic light and heat subassembly is used in the building, reform transform existing building usually, during the installation photovoltaic light and heat subassembly, can carry out the secondary construction, destroy building wall's original structure and aesthetic property easily, can produce building rubbish, need install scaffold and support simultaneously, reduce the usable floor area of building, cause very big inconvenience to the installation and the use of photovoltaic light and heat subassembly in the building, it is less to lead to the application of photovoltaic light and heat subassembly in building wall, be unfavorable for reducing the loss of the building energy and the improvement of building environment.
In order to solve the above problems, the inventor has studied and provided a wall unit, which includes a wall body, the wall body includes an inner surface and an outer surface opposite to each other, and a groove is formed on the outer surface; and the photovoltaic photo-thermal assembly is arranged in the groove. Through reserve the recess that can hold photovoltaic light and heat subassembly on the wall body, when installation photovoltaic light and heat subassembly, directly with photovoltaic light and heat subassembly installation in the recess, need not carry out the secondary construction to the wall body, avoid destroying original structure of wall body and aesthetic property, realized the integration of photovoltaic light and heat subassembly and wall body, be favorable to reducing the building energy consumption, promote the building travelling comfort of living.
In order to make the above objects, features and advantages of the present invention more comprehensible, embodiments of the present invention are described in detail below with reference to the accompanying drawings.
Fig. 1 is a schematic view of an exploded structure of a wall unit according to an embodiment of the present invention; fig. 2 is a front view of a wall unit according to an embodiment of the present invention; fig. 3 is a side view of the wall element of fig. 2.
Referring to fig. 1, the wall unit 1 includes: the wall body 10 comprises an inner surface 11 and an outer surface 12 which are opposite, wherein a groove 121 is formed in the outer surface 12; and a photovoltaic and thermal module 20, the photovoltaic and thermal module 20 being installed in the groove 121.
In this embodiment, the wall body 10 is a concrete wall.
In this embodiment, the inner surface 11 of the wall body 10 is a surface facing the indoor environment of the building, and the outer surface 12 of the wall body 10 is a surface facing the outdoor environment of the building. Since the photovoltaic and photothermal module needs to absorb sunlight and convert solar energy into electric energy and heat energy, the groove 121 is disposed on the outer surface 12, and when the photovoltaic and photothermal module is installed in the groove 121, it is convenient to collect energy from the sun.
In this embodiment, the size of the groove 121 is matched with the size of the photovoltaic photo-thermal module 20. Referring to fig. 3, the depth h of the groove 121 is equal to the thickness of the photovoltaic and thermal module 20, so that after the photovoltaic and thermal module 20 is installed in the groove 121, the surface of the photovoltaic and thermal module 20 is flush with the outer surface 12 of the wall body 10, thereby enhancing the overall aesthetic property of the wall unit 1.
In this embodiment, the photovoltaic and photothermal module 20 is installed in the groove 121 by using a press block connection method.
With continued reference to fig. 1, the wall unit 1 further includes a thermal insulation layer 30, and the thermal insulation layer 30 is disposed between the wall body 10 and the photovoltaic and photothermal module 20.
In this embodiment, the photovoltaic and photothermal element 20 is installed in the groove 121, the contact surfaces between the photovoltaic and photothermal element 20 and the wall body 10 are the bottom surface 1211 and the side surface 1212 of the groove 121, and the thermal insulation layer 30 is disposed between the bottom surface 1211 of the groove 121 and the photovoltaic and photothermal element 20.
In other embodiments, the thermal insulation layer 30 may be disposed between the bottom surface 1211 and the side surface 1212 of the groove 121 and the photovoltaic and thermal module 20.
The heat insulating layer 30 serves to prevent heat transfer from the photovoltaic and photothermal module 20 to the wall body 10, and to reduce heat loss of the photovoltaic and photothermal module 20.
In this embodiment, the thermal insulation layer 30 is made of self-adhesive thermal insulation cotton; in other embodiments, the material of the thermal insulation layer 30 may also be other thermal insulation materials such as polystyrene board.
Referring to fig. 2, the wall unit 1 further comprises: a fixing frame 40, wherein the fixing frame 40 is disposed at the edge of the photovoltaic and photo-thermal module 20, and is used for fixing the photovoltaic and photo-thermal module 20 in the groove 121.
In this embodiment, the fixing frame 40 includes a frame 41 adapted to the shape of the photovoltaic and photo-thermal module 20, and the frame 41 is disposed on the edge of the photovoltaic and photo-thermal module 20.
With continued reference to fig. 2, a plurality of mounting holes 122 are disposed on the outer surface 12 around the groove 121, mounting embedded parts (not shown) are disposed in the mounting holes 122, a pressing strip 42 corresponding to the positions of the mounting holes 122 is disposed on the fixing frame 40, and the pressing strip 42 is connected to the mounting embedded parts.
In this embodiment, the mounting holes 122 are uniformly arranged on the outer surface 12 around the groove 121, and the mounting holes 122 are spaced apart from each other by the same distance.
In this embodiment, the mounting embedded parts are members pre-buried in the wall body 10 during casting, and the photovoltaic and photo-thermal module 20 can be fixed in the groove 121 by being connected to the pressing strips on the fixing frame 40, so as to prevent the photovoltaic and photo-thermal module 20 from being separated from the groove 121 and causing loss.
In this embodiment, the pressing strip 42 is fixedly connected to the fixing frame 40, and the position of the pressing strip 42 on the fixing frame 40 corresponds to the position of the mounting hole 122, so that the connection between the pressing strip 42 and an embedded part mounted in the mounting hole 122 is facilitated.
In this embodiment, the pressing bar 42 is connected to the mounting embedded parts in the mounting holes 122 by bolts.
In other embodiments, the batten strip 42 can also be connected to the mounting embedment by riveting.
With continued reference to fig. 1, in the present embodiment, the photovoltaic photothermal assembly 20 includes: the front surface 211 of the photovoltaic panel 21 is positioned on the same side as the outer surface 12 of the wall body 10; and the photo-thermal assembly 22, the photo-thermal assembly 22 is located on the back of the photovoltaic panel 21, the photo-thermal assembly 22 comprises a heat storage pipeline (not shown) and a radiation plate (not shown), the radiation plate is located between the photovoltaic panel and the heat storage pipeline, one surface of the radiation plate is connected with the photovoltaic panel, and the other surface of the radiation plate is connected with the heat storage pipeline.
In this embodiment, the photovoltaic panel 21 includes a stainless steel-based solar thin film cell. Because when the photovoltaic light and heat subassembly 20 with when concrete wall body 10 combines, can produce in the manufacturing process and vibrate and pressure impact to solar cell, choose for use the solar energy thin film battery preparation photovoltaic board of stainless steel as the basement, can avoid the damage of battery.
In this embodiment, the front surface 211 of the photovoltaic panel 21 faces the outdoor space environment of the building, so as to absorb sunlight and convert solar energy into electric energy and heat energy. The photothermal element 22 is located on the back side of the photovoltaic panel 21, and can collect and transfer heat to the photovoltaic panel 21.
In this embodiment, the heat storage pipeline is provided with a heat conducting medium, and the heat conducting medium flows in the heat storage pipeline, so that heat of the photovoltaic panel can be rapidly collected and taken away, the photovoltaic panel 21 is effectively cooled, and the problem that the power generation efficiency of the solar cell is reduced due to the increase of temperature is solved. In addition, the heat collected by the heat-conducting medium can provide hot water or heating for the building, so that the utilization efficiency of solar energy is improved, the energy consumption of the building is reduced, and the purposes of environmental protection and energy conservation are achieved.
In this embodiment, the heat-conducting medium is water; in other embodiments, the heat transfer medium may also be a cooling heat absorption medium such as ethylene glycol, propylene glycol, or the like.
In this embodiment, the radiation plate can be used as a heater or a refrigerator, and in daytime, when the photovoltaic plate 21 absorbs sunlight to generate heat energy, the radiation plate and the heat storage pipeline act together to absorb the heat of the photovoltaic plate, so as to cool the photovoltaic plate; at night, the photovoltaic panel and the radiation plate radiate heat through long waves to collect certain cold quantity, and the photovoltaic panel can be used for cooling the photovoltaic panel in the daytime or used for cooling a building.
Referring to fig. 1, the wall unit 1 further includes a duct penetration hole 50, and the duct penetration hole 50 is formed in the wall body 10 at the bottom of the groove 121.
In this embodiment, the tube perforation 50 is disposed on the bottom surface 1211 of the groove 121.
In this embodiment, the pipe penetration holes 50 are two in number and symmetrically disposed at two corners of the bottom surface 1211.
In other embodiments, the tube perforations 50 may also be asymmetrically arranged.
In this embodiment, the pipe through hole 50 penetrates the wall body 10 from the bottom surface 1211 to the inner surface 11 of the wall body 10, and is connected to a heating system in a building, and the heat energy in the heat storage pipe can be transferred to the heating system in the building through the pipe through hole 50.
In this embodiment, the pipeline through hole 50 is reserved in the wall body 10, so that secondary construction of the wall body can be avoided, and the wall body structure is prevented from being damaged.
Referring to fig. 1, the wall unit 1 further comprises: a wire interface (not shown) disposed on the outer surface 12.
In this embodiment, the wire interface is mainly used to reserve a space for the circuit connection of the photovoltaic and photothermal module 20.
Correspondingly, the embodiment of the utility model provides a still provide a wall body, adopt foretell wall body unit to assemble and form.
The embodiment of the utility model provides a wall unit sets up the recess on the surface of wall body, and photovoltaic light and heat unit mount will carry out the secondary construction to the wall body when avoiding follow-up photovoltaic light and heat subassembly to be used in the building, avoids destroying building wall's original structure and aesthetic property, has realized the integration of photovoltaic light and heat subassembly and wall body in the recess. Simultaneously, adopt photovoltaic light and heat subassembly, dispel the heat to photovoltaic subassembly through light and heat subassembly, can improve the generating efficiency of photovoltaic board, further promote the utilization ratio of solar energy, provide more comfortable environment for the building on green energy-conserving basis.
Although the present invention is disclosed above, the present invention is not limited thereto. Various changes and modifications may be effected therein by one of ordinary skill in the pertinent art without departing from the scope or spirit of the present invention, and the scope of the present invention is defined by the appended claims.

Claims (11)

1. A wall element, comprising:
the wall body comprises an inner surface and an outer surface which are opposite, and a groove is formed in the outer surface;
and the photovoltaic photo-thermal assembly is installed in the groove.
2. The wall element of claim 1, further comprising: and the fixed frame is arranged at the edge of the photovoltaic photo-thermal assembly and used for fixing the photovoltaic photo-thermal assembly in the groove.
3. The wall unit of claim 2, wherein a plurality of mounting holes are formed in the outer surface around the recess, mounting embedments are disposed in the mounting holes, and the fixing frame has a bead thereon corresponding to the positions of the mounting holes, the bead being connected to the mounting embedments.
4. The wall element of claim 1, wherein the photovoltaic and photothermal assembly comprises:
the front surface of the photovoltaic panel and the outer surface of the wall body are positioned on the same side;
and the photo-thermal assembly is positioned on the back surface of the photovoltaic panel and comprises a heat storage pipeline and a radiation plate, and the radiation plate is positioned between the photovoltaic panel and the heat storage pipeline.
5. The wall element of claim 4, wherein the photovoltaic panel comprises stainless steel-based solar thin film cells.
6. A wall unit according to claim 4, wherein the heat storage conduit has a heat transfer medium therein.
7. The wall element of claim 1, further comprising: and the pipeline perforation is arranged on the wall body at the bottom of the groove.
8. The wall element of claim 1, further comprising: a wire interface disposed on the outer surface.
9. The wall element of claim 1, further comprising: the insulating layer sets up the wall body with between the photovoltaic light and heat subassembly.
10. The wall element of claim 4, wherein a front face of the photovoltaic and photothermal assembly is flush with the exterior surface of the wall body.
11. A wall assembled from wall elements as claimed in any one of claims 1 to 10.
CN202020129587.7U 2020-01-20 2020-01-20 Wall unit and wall Active CN211690906U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020129587.7U CN211690906U (en) 2020-01-20 2020-01-20 Wall unit and wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020129587.7U CN211690906U (en) 2020-01-20 2020-01-20 Wall unit and wall

Publications (1)

Publication Number Publication Date
CN211690906U true CN211690906U (en) 2020-10-16

Family

ID=72773801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020129587.7U Active CN211690906U (en) 2020-01-20 2020-01-20 Wall unit and wall

Country Status (1)

Country Link
CN (1) CN211690906U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113417403A (en) * 2021-06-25 2021-09-21 河南南秀建筑科技有限公司 Energy-saving intelligent radiating assembly type building component with built-in chip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113417403A (en) * 2021-06-25 2021-09-21 河南南秀建筑科技有限公司 Energy-saving intelligent radiating assembly type building component with built-in chip

Similar Documents

Publication Publication Date Title
CN102121298B (en) Air temperature self-adaptive energy-saving device and energy-saving wall body
CN205227491U (en) Solar energy comprehensive utilization system
US20120145223A1 (en) Solar thermal energy collector
CN113136980A (en) Wall unit and wall
EP3316478B1 (en) All-in-one integrated multifunctional triple power module "itm"
CN211690906U (en) Wall unit and wall
CN101812904B (en) Solar battery assembly for photovoltaic building integration
CN202888216U (en) Photovoltaic thin-film cell heat dissipation and waste heat recovery device
CN105220838A (en) The solar energy roof of a kind of energy automatic switch heat radiation
CN214154449U (en) Photovoltaic building energy-saving system based on photovoltaic array
CN205063204U (en) Can radiating solar energy roof of automatic switch
CN212772946U (en) Energy-saving wall structure
CN101100890A (en) Solar energy utilization system integrative combined with fastigium buildings
CN210685186U (en) Tile with heat dissipation function
CN202866150U (en) Solar building wallboard
CN113446741A (en) Novel solar energy electricity auxiliary heat collection device
KR20210098636A (en) Building integrated air type photohvoltaic-thermal collector
CN109888035A (en) A kind of photovoltaic and photothermal watt
JP2011119394A (en) Solar generation heat collecting unit
JPH11256787A (en) Photothermal hybrid module and building using it
CN101442281B (en) Method and apparatus for using solar through photoelectric photo-thermal homobody synchronous transition
KR200306350Y1 (en) Solar panel
CN212957078U (en) Passive house energy-saving outer wall
CN216356630U (en) Photovoltaic panel support system with heat preservation function
CN210985979U (en) Solar cell panel with thermoelectric auxiliary power generation structure

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant