CN211505200U - 一种生物检测芯片及生物传感器 - Google Patents

一种生物检测芯片及生物传感器 Download PDF

Info

Publication number
CN211505200U
CN211505200U CN201922500713.5U CN201922500713U CN211505200U CN 211505200 U CN211505200 U CN 211505200U CN 201922500713 U CN201922500713 U CN 201922500713U CN 211505200 U CN211505200 U CN 211505200U
Authority
CN
China
Prior art keywords
membrane
layer
substrate
biological
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201922500713.5U
Other languages
English (en)
Inventor
王诗琪
刘丽炜
任升
李少强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201922500713.5U priority Critical patent/CN211505200U/zh
Application granted granted Critical
Publication of CN211505200U publication Critical patent/CN211505200U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本实用新型公开了一种生物检测芯片,包括层叠设置的衬底、金属阵列层和膜吸附层;金属阵列层位于衬底上,具有使衬底露出的间隔区域;膜吸附层包覆金属阵列层和位于间隔区域的衬底表面,膜吸附层具有亲水性表面。利用膜吸附层的亲水性表面能够吸附具有生物膜结构的细胞、细胞器,目标生物分子负载于生物膜上,能够获得目标生物分子的表面增强红外吸收光谱,实现对目标分子的检测分析。本实用新型公开了一种生物传感器,包括上述的生物检测芯片,适于检测种类复杂的膜表面生物分子,且不会破坏分子结构,适用于各种生理、病理过程的研究以及药物筛选诊断等。

Description

一种生物检测芯片及生物传感器
技术领域
本实用新型涉及生物检测技术领域,具体涉及一种生物检测芯片、生物传感器。
背景技术
红外光谱是研究分子运动的吸收光谱,作为一种明确的、无破坏性的、无需标记的物质检测手段,红外光谱已经成为一种不可或缺的分析手段。将红外光谱用于研究生物大分子的振动情况,能够得到生物分子在生理状态下结构变化的信息,且红外光对生物样品没有损伤,使红外光谱成为目前研究生物分子结构变化和揭示生命现象本质的重要手段之一。然而,由于红外振动的分子吸收截面积很低,限制了分子红外吸收的强度,红外光谱的检测灵敏度存在局限。
表面增强红外吸收(Surface Enhanced IR Absorption,SEIRA)的出现为提高红外光谱固有灵敏度的局限提供了可能。当分子吸附于金属岛状薄膜或粗糙程度不同的连续金属薄膜上时,入射光照射到粗糙的金属表面,在金属表面激发表面等离子体,在满足表面等离子体的共振条件时,使表面局域电场极大增强,最终使吸附在金属表面的分子振动的振幅增加,分子的红外光谱得到显著增强。利用表面增强红外光谱的方法能够实现对单分子或小分子系统中化学键变化的检测,从而清楚的区分脂质、蛋白质、糖和核酸在内的生物分子。目前,基于SEIRA技术的生物传感器在生物学、生物医学、分析化学及环境保护等各个领域都有着广泛的应用。
基于SEIRA的生物传感器通常需要将一种具有特异识别属性的分子(配体),固定于金属表面,再加入含有待测分子的溶液,待测分子与传感器表面固定的配体相互作用,分子间的结合使表面增强红外光谱的特征峰发生变化,从而实现对待测分子的检测。然而,上述基于SEIRA的生物传感器一旦制备完成后,由于金属表面固定的特异识别分子无法更换,使SEIRA生物传感器仅能实现对固定种类的待测分子的检测,限制了对具有复杂成分的生物膜表面分子的研究、检测。此外,膜表面分子(例如,膜蛋白)是临床药物筛选的常用靶标,然而,膜表面分子在离开细胞环境后易失活,使其不能被有效固定于SEIRA生物传感器的金属表面以实现药物筛选、临床诊断。
实用新型内容
因此,本实用新型要解决的技术问题在于克服现有技术中SEIRA生物传感器仅能用于固定种类的待测分子检测,且不适于固定膜蛋白等膜表面分子的缺陷。
为此,本实用新型提供如下技术方案:
第一方面,本实用新型提供一种生物检测芯片,包括层叠设置的衬底、金属阵列层和膜吸附层;所述金属阵列层位于所述衬底上,具有使所述衬底露出的间隔区域;所述膜吸附层包覆所述金属阵列层和位于所述间隔区域的衬底表面,所述膜吸附层具有亲水性表面。
优选地,上述的生物检测芯片,所述生物检测芯片还包括生物膜构件,所述生物膜构件吸附于所述膜吸附层上,用于负载待测分子。
进一步优选地,上述的生物检测芯片,所述生物膜构件为囊泡。
优选地,上述的生物检测芯片,所述金属阵列层包括间隔设置的金属纳米元件;
优选地,所述金属纳米元件呈为长方体,所述长方体的长为2μm,宽为0.2μm,高为0.2μm;
优选地,相邻所述金属纳米元件的距离为2μm,所述金属阵列层的面积为200μm X200μm。
优选地,上述的生物检测芯片,所述衬底为氟化钙衬底,所述金属纳米元件为金纳米元件。
优选地,上述的生物检测芯片,所述膜吸附层由亲水材料形成,或者所述膜吸附层的表面覆盖亲水材料层;
优选地,所述亲水材料为二氧化硅。
第二方面,本实用新型提供一种生物传感器,包括上述的生物检测芯片。
进一步优选地,上述的生物传感器,所述生物传感器还包括:
壳体,具有内腔以及将所述内腔与外界连通的流入口和流出口,所述流入口和所述流出口开设于所述壳体的两个侧壁面上;
所述壳体避开所述流入口和所述流出口的侧壁面上开设有安装孔,所述生物检测芯片适于嵌入所述安装孔内,且使所述生物检测芯片的膜吸附层朝向所述内腔。
第三方面,本实用新型提供了上述的生物检测芯片,或上述的生物传感器在如下a1-a2至少一种中的用途:
a1,检测膜表面分子,或制备用于检测膜表面分子的产品;
a2,药物筛选,或制备用于药物筛选的产品。
第四方面,本实用新型提供一种生物检测芯片的制备方法,包括以下步骤:
S1,在衬底上制备光刻胶,对光刻胶进行曝光和显影处理,使光刻胶部分被去除,得到图案化的光刻胶;
S2,在图案化的光刻胶上沉积金属膜层,剥离光刻胶,使沉积于光刻胶上的金属膜层被去除,产生间隔区域,得到金属阵列层;
S3,在金属阵列层以及位于间隔区域的衬底上包覆膜吸附层,膜吸附层以背对衬底的一侧面形成亲水性表面。
本实用新型技术方案,具有如下优点:
1.本实用新型提供的生物检测芯片,包括层叠设置的衬底、金属阵列层和膜吸附层;所述金属阵列层位于所述衬底上,具有使所述衬底露出的间隔区域;所述膜吸附层包覆所述金属阵列层和位于所述间隔区域的衬底表面,所述膜吸附层具有亲水性表面。
对于具有生物膜结构的细胞、细胞器,由于生物膜以磷脂双分子层形成,磷脂双分子层中具有亲水性的磷酸酯头部向外,使生物膜能够吸附于具有亲水性表面的膜吸附层上。生物检测芯片中以膜吸附层包覆金属纳米元件以及衬底朝向金属阵列层的一侧表面,利用膜吸附层的亲水性表面选择吸附具有生物膜结构的细胞、细胞器,进而使定位于生物膜上的目标生物分子(例如,膜蛋白)附着于膜吸附层上。位于衬底上的金属阵列层具有使衬底露出的间隔区域,金属阵列层呈不连续结构,适于增强附着于膜吸附层上的目标生物分子的红外吸收强度,产生表面红外增强吸收光谱,获得目标生物分子的特征峰,从而实现对目标生物分子的检测。
上述的生物检测芯片,通过膜吸附层的亲水性表面吸附具有生物膜结构的细胞、细胞器,能够实现对生物膜上负载的待测生物分子检测,以及对待测生物分子的实时、动态监测。通过连续记录待测生物分子的变化过程,能够实现对不同生理或病理发展过程的研究。待测的目标生物分子负载在生物膜上,不需要在芯片中标记特定种类的特异性识别分子,极大丰富了可以检测的生物分子种类,能够实现对种类复杂的膜表面分子的检测及功能研究。同时,以生物膜负载待测生物分子,有利于继续维持膜蛋白等膜表面分子所处的细胞环境,避免膜蛋白在脱离磷脂双分子层后产生降解,在保持膜蛋白完整性的前提下实现对其结构功能的研究以及对药物分子的筛选。在每一轮检测完成后,通过以未含检测物的溶液冲刷膜吸附层的亲水表面,可将结合的具有生物膜结构的细胞、细胞器洗脱掉,再进行下一轮检测。由于生物检测芯片上不需要固定与待测生物分子结合的特异性识别分子,简化了生物检测芯片的结构及制备过程,降低了芯片的成本。
2.本实用新型提供的生物检测芯片,还包括生物膜构件,以生物膜构件负载待测分子后吸附于膜吸附层上,通过记录待测分子表面增强红外吸收光谱的特征峰,能够实现对待测分子的检测及实时、动态监测。以丰富芯片检测的膜表面生物分子的种类,且避免破坏膜表面生物分子的结构。
生物膜构件具体地可以选择囊泡,囊泡广泛存在于细胞内外,易于收集,且易于在体外制备,使利用生物膜构件负载待测分子易于实现。此外,通过分离特殊类型的细胞环境中的囊泡(例如,癌症细胞),能够实现对癌症等疾病发生、发展过程中膜表面分子的检测及变化研究。通过分离处于特殊生理过程的细胞环境中的囊泡(例如,细胞凋亡时期),能够实现对细胞生理过程的研究。
3.本实用新型提供的生物检测芯片,膜吸附层由亲水材料形成,后者在膜吸附层的表面覆盖亲水材料层,均能使膜吸附层具有亲水性表面,以吸附负载有待测生物分子的生物膜结构。
4.本实用新型提供的生物检测芯片,以氟化钙作为衬底,能够降低对目标生物分子检测的信噪比,提高检测精度。在氟化钙的衬底上设置金纳米元件,能够进一步增强目标生物分子的红外吸收,以增加信号强度,提高检测灵敏度、降低检测限。
5.本实用新型提供的生物检测芯片,以二氧化硅形成膜吸附层,利用二氧化硅的亲水性以及良好的生物相容性,能够实现对具有生物膜结果的细胞、细胞器的有效吸附。
6.本实用新型提供的生物传感器,包括上述的生物检测芯片,生物传感器中不需要标记特异性识别分子,即能实现对膜表面生物分子的检测;生物传感器能够用于检测通过生物膜附着于膜吸附层上的各类膜表面分子,突破了现有传感器仅能用于检测特定种类的目标分子的限制。此外,生物传感器在检测膜表面分子时能够避免破坏膜表面分子的结构,保证检测结果的可靠性。
7.本实用新型提供的生物检测芯片的制备方法简单、易于实施,适于制备上述能够用于各类膜表面生物分子检测、分析的生物检测芯片。
附图说明
为了更清楚地说明本实用新型具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本实用新型的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本实用新型的第一种实施方式中生物检测芯片的结构示意图;
图2为本实用新型的第一种实施方式中金属阵列层的结构示意图;
图3为本实用新型的第二种实施方式中生物检测芯片的结构示意图;
图4为本实用新型的第三种实施方式中生物传感器的结构示意图;
图5为本实用新型的第四种实施方式中生物传感器的结构示意图;
图6本实用新型的实施例1中生物检测芯片的SPR光谱图;
附图标记说明:
11-生物检测芯片,111-衬底,112-金属阵列层,1121-金属纳米元件,1122-间隔区域,113-膜吸附层,114-生物膜构件;
12-壳体,121-流入口,122-流出口,123-内腔。
具体实施方式
下面将结合附图对本实用新型的技术方案进行清楚、完整地描述,显然,所描述的实施例是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
在本实用新型的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本实用新型和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本实用新型的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本实用新型的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实用新型中的具体含义。
此外,下面所描述的本实用新型不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1
本实施提供一种生物检测芯片11,如图1所示,包括层叠设置的衬底111、金属阵列层112和膜吸附层113,其中,金属阵列层112位于衬底111上,具有使衬底111露出的间隔区域1122。膜吸收层包覆金属阵列层112和位于间隔区域1122的衬底111表面,具有亲水性表面。
现有基于SEIRA的生物传感器中,为实现对目标分子的检测,通常需要在SEIRA生物传感器中的金属表面上固定与目标分子结合的特异性识别分子。然而,由于金属表面仅能固定有限种类特异性识别分子,限制了SEIRA生物传感器所能检测的目标分子的种类,不适用于分析成分复杂、种类多样的膜表面生物分子。此外,由于膜表面生物分子在离开细胞环境后易降解,不适于固定在SEIRA生物传感器的金属表面,用于药物分子的筛选以及临床诊断等。
为解决上述问题,本实施例提供的生物检测芯片11在金属纳米元件1121及衬底111朝向金属纳米层的一侧表面上包覆具有亲水性表面的膜吸收层,生物检测芯片11在用于分析目标生物分子(例如,膜表面分子)时,将含有目标生物分子的待测溶液流经膜吸附层113。待测溶液中含有细胞或具有生物膜结构的细胞器,待测的膜表面生物分子镶嵌于细胞或细胞器的生物膜上。由于生物膜以磷脂双分子层形成,磷脂双分子层的亲水性磷酸酯头部朝向生物膜外侧,能够吸附于具有亲水性表面的膜吸附层113上,待测的膜表面生物分子通过负载于生物膜结构上而附着于生物检测芯片11的膜吸附层113上。金属阵列层112具有使衬底111露出的间隔区域1122,呈不连续结构。以入射光照射生物检测芯片11,当满足表面等离子体共振模式条件时,具有不连续结构的金属阵列层112上产生增强的表面局域电场。附着于膜吸附层113上的膜表面分子在增强的表面局域电场影响下,其红外吸收显著增强,产生特征峰,通过检测特征峰信息,实现对膜表面生物分子的检测。对于能够负载于生物膜上的目标生物分子,均能经生物膜附着于膜吸附层113上,通过目标生物分子的表面增强红外吸收光谱实现检测。因此,生物检测芯片11突破了传统生物传感器仅能实现对有限种类的目标生物分子进行检测的局限,极大丰富了可以检测的目标生物分子的种类。同时,目标生物分子负载于生物膜上,能够维持其所处的细胞环境,避免了膜表面分子在脱离细胞的磷脂双分子层后发生降解,有利于维持膜表面分子的结构稳定,提高检测结果的稳定性和准确性。
在一实施方式中,如图2所示,金属阵列层112包括间隔设置的金属纳米元件1121,使金属阵列层112呈不连续结构。当入射光照射于衬底111上时,入射光在衬底111与金属纳米元件1121的两相界面激发产生表面等离子体,表面等离子体与入射光电场耦合振荡。当入射光频率与表面等离子体的振荡频率接近时,产生共振,使表面局域电场极大增强。位于膜吸附层113上的目标生物分子在增强的电场作用下,其红外吸收光谱显著增强,产生特征峰,从而实现对目标生物分子的检测。作为优选的实施方式,金属纳米元件1121呈长方体,长方体的长为2μm,宽为0.2μm,高为0.2μm;相邻两个金属纳米元件1121之间的距离为2μm,由金属纳米元件1121排布形成的金属阵列层112的面积为200μm X 200μm。通过设置金属纳米元件1121的尺寸及间隔距离,以提高膜吸附层113上附着的目标生物分子的红外吸收的强度,提高红外增强效应,得到具有高灵敏度和低检测限的生物检测芯片11。
在一实施方式中,膜吸附层113以亲水性材料形成,亲水性材料可以选择二氧化硅(SiO2)。利用SiO2的亲水性和良好的生物相容性,形成适于吸附生物膜的亲水性表面。在其他实施方式中,膜吸附层113还可以是由非亲水材料形成,在非亲水材料上附着亲水性的SiO2层,利用SiO2层形成膜吸附层113的亲水性表面。
在一实施方式中,衬底111以氟化钙(CaF2)形成,以CaF2作为表面增强红外吸收光谱使用的棱镜材料,具有性能稳定、价格低的优势,此外,CaF2衬底111还能够提高红外信号的增强能力,降低信噪比。在一实施方式中,金属纳米元件1121为金(Au)纳米元件,在CaF2衬底111上排布间隔设置的Au纳米元件,能够进一步提高红外吸收的增强效应,以改善生物检测芯片11的性能,实现对单个目标分子的识别、分析。图6显示生物检测芯片11的SPR(表面等离体子共振)光谱图,生物检测芯片11以氟化钙为衬底111,在CaF2衬底111上排布间隔设置的Au纳米元件,具有较好的表面增强红外吸收效应。
本实施例还提供上述生物检测芯片11的制备方法,具体包括以下步骤:
S1,在衬底111上制备光刻胶,对光刻胶进行曝光和显影处理,使光刻胶部分被去除,得到图案化的光刻胶;
具体为:以RCA溶液清洗CaF2衬底111,RCA溶液由H2O、NH4OH和H2O2以5:1:1的体积比配制得到。在清洗后的衬底111上旋转蒸涂光刻胶材料,例如甲基丙烯酸甲酯、聚甲基丙烯酸甲酯等。采用电子束光刻工艺对光刻胶进行曝光和显影处理,使光刻胶被部分去除,将掩膜板上的特征图形转移到光刻胶上,得到图案化的光刻胶。
S2,在图案化的光刻胶上沉积金属膜层,剥离光刻胶,使沉积于光刻胶上的金属膜层被去除,产生间隔区域1122,得到金属阵列层112;
具体为:在图案化的光刻胶上蒸发5nm的Cr作为粘附层,然后在粘附层上蒸发100nm的Au膜层,将其浸没于丙酮中过夜以剥离光刻胶,沉积于光刻胶上的Au膜层被去除,产生间隔区域1122,保留于衬底111上的Au膜层对应形成Au纳米元件,得到以Au为材料形成的金属阵列层112。
S3,在金属阵列层112以及位于间隔区域1122的衬底111上包覆膜吸附层113,膜吸附层113以背对衬底111的一侧面形成亲水性表面。
具体为:在100℃的温度下,向Au纳米元件和位于间隔区域1122的衬底111交替注入三甲基铝和三(叔丁氧基)硅烷醇,然后以约1.67nm/周期的速率沉积15nm厚的二氧化硅层,得到包覆于Au纳米元件和位于间隔区域1122的衬底111的膜吸附层113,膜吸附层113以背对衬底111的一侧面作为亲水性表面。
实施例2
本实施例提供一种生物检测芯片11,与实施例1中生物检测芯片11的区别在于:
如图3所示,还包括生物膜构件114,生物膜构件114具体地为囊泡。囊泡作为一种具有生物膜结构的细胞器,其生物膜的磷脂双分子层上适于负载各类膜表面分子。同时,囊泡以磷脂双分子层的亲水性磷酸酯头部能够吸附于膜吸附层113,从而使膜表面分子附着于生物检测芯片11的膜吸附层113上,通过获取膜表面分子的表面增强红外光谱信息,能够实现对单个膜表面分子的检测以及实时动态分析。
囊泡作为一种广泛存在于细胞内外的有膜细胞器,易于从培养细胞、组织(例如,血液)中提取,且易于在体外合成。分离处于特殊生长时期的细胞中的囊泡(例如,处于凋亡过程的细胞),然后获取囊泡负载的膜表面分子的表面增强红外光谱,能够得到不同生理过程发生、发展的动态分子信息。分离特殊类型的细胞中的囊泡(例如,癌症细胞),然后获取囊泡负载的膜表面分子的表面增强红外光谱,能够得到不同病理过程发生、发展的动态分子信息。在体外制备囊泡,并在囊泡的磷脂双分子层上标记药物靶标蛋白,囊泡在吸附于生物检测芯片11的膜吸附层113上后,使药物分子溶液流经膜吸附层113,能够快速、准备筛选出与药物靶标蛋白相结合的药物分子。
实施例3
本实施例提供一种生物传感器,如图4所示,生物传感器包括实施例1中的生物检测芯片11与壳体12。其中,壳体12具有内腔123,以及将内腔123与外界连通的流入口121和流出口122,流入口121和流出口122分别开设于壳体12的两侧侧壁面上。具体地,如图4所示,流入口121和流出口122分别开设于壳体12相对的两个竖向侧壁面上。含有目标生物分子的待测溶液由流入口121进入壳体12的内腔123中,在内腔123中流通,然后由流出口122从壳体12内流出。
在壳体12避开流入口121和流出口122的侧壁面上开设有安装孔,具体地,安装孔位于壳体12的顶部壁面上,是一贯穿壳体12顶部壁面的通孔,生物检测芯片11适于嵌入上述的安装孔内,并使壳体12顶部壁面形成密封性结构。生物检测芯片11的膜吸附层113朝向壳体12的内腔123,在壳体12内腔123中流通的待测溶液流经膜吸附层113表面,待测溶液中的目标生物分子负载于细胞或有膜细胞器上,通过细胞或有膜细胞器的磷脂双分子层附着于膜吸附层113的亲水性表面。由生物传感器的上方投射光线,入射光射向衬底111,然后在衬底111与金属阵列层112的两相接触界面上发生全反射,进而在金属阵列层112的表面激发出表面等离子体,表面等离子体与入射光电场耦合振荡,当表面等离子体的振荡频率与入射光频率接近时,产生共振,使金属阵列层112的表面居于电场获得极大的增强。在增强的表面局域电场作用下,附着于膜吸附层113上的目标生物分子其红外吸收的强度显著增强,产生表面增强红外吸收光谱,通过获取光谱中特征峰的信号,实现对目标生物分子的检测。上述的生物传感器能够实现对各类膜表面分子的检测以及实时、动态分子,为生理、病理过程的研究提供条件。同时,在膜表面分子检测分析的过程中,能够维持膜表面生物分子所处的磷脂双分子层环境,不会造成膜表面分子结构的破坏,为药物筛选以及临床诊断分析等提供可靠信息。
本实施例还提供上述生物检测芯片11的制备方法,具体包括以下步骤:
1、以实施例1提供的步骤S1-S3制备生物检测芯片11。
2、通过光刻技术制作微流控模具,将聚二甲基硅氧烷(PDMS)浇注在模具上并进行固化,形成壳体11。壳体12具有内腔123,以及将内腔123与外界连通的流入口121和流出口122,流入口121和流出口122分别开设于壳体12的两侧侧壁面上。在壳体12避开流入口121和流出口122的侧壁面上开设有安装孔,将生物检测芯片11安装在安装孔内,使生物检测芯片11的膜吸附层113朝向壳体12的内腔123,完成生物传感器的制备。
实施例4
本实施例提供一种生物传感器,如图5所示,与实施例3中生物传感器的区别在于:生物检测芯片11为实施例2中提供的芯片,还包括生物膜构件114,生物膜构件114具体的为囊泡。将含有囊泡的待测溶液由生物传感器的流入出注入,待测溶液在壳体12的内腔123中流通时,会流经生物检测芯片11的膜吸附层113表面,囊泡附着于膜吸附层113上,然后剩余的待测溶液由流出口122从壳体12的内腔123中内流出。吸附于膜吸附层113上的囊泡表面担载有目标生物分析,从而实现对目标生物分子的检测以及实时、动态分析。作为生物膜构件114的囊泡可以是从培养细胞、组织中提取的担载有膜表面分子的囊泡,或者是由体外制备的在生物膜上标记有药物靶标蛋白的囊泡等等。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本实用新型创造的保护范围之中。

Claims (10)

1.一种生物检测芯片,其特征在于,包括层叠设置的衬底、金属阵列层和膜吸附层;所述金属阵列层位于所述衬底上,具有使所述衬底露出的间隔区域;所述膜吸附层包覆所述金属阵列层和位于所述间隔区域的衬底表面,所述膜吸附层具有亲水性表面。
2.根据权利要求1所述的生物检测芯片,其特征在于,所述生物检测芯片还包括生物膜构件,所述生物膜构件吸附于所述膜吸附层上,用于负载待测分子。
3.根据权利要求2所述的生物检测芯片,其特征在于,所述生物膜构件为囊泡。
4.根据权利要求1所述的生物检测芯片,其特征在于,所述金属阵列层包括间隔设置的金属纳米元件。
5.根据权利要求4所述的生物检测芯片,其特征在于,所述金属纳米元件呈为长方体,所述长方体的长为2μm,宽为0.2μm,高为0.2μm;相邻所述金属纳米元件的距离为2μm,所述金属阵列层的面积为200μm×200μm。
6.根据权利要求4所述的生物检测芯片,其特征在于,所述衬底为氟化钙衬底,所述金属纳米元件为金纳米元件。
7.根据权利要求1所述的生物检测芯片,其特征在于,所述膜吸附层由亲水材料形成,或者所述膜吸附层的表面覆盖亲水材料层。
8.根据权利要求7所述的生物检测芯片,其特征在于,所述亲水材料为二氧化硅。
9.一种生物传感器,其特征在于,包括权利要求1-8任一项所述的生物检测芯片。
10.根据权利要求9所述的生物传感器,其特征在于,所述生物传感器还包括:
壳体,具有内腔以及将所述内腔与外界连通的流入口和流出口,所述流入口和所述流出口开设于所述壳体的两个侧壁面上;
所述壳体避开所述流入口和所述流出口的侧壁面上开设有安装孔,所述生物检测芯片适于嵌入所述安装孔内,且使所述生物检测芯片的膜吸附层朝向所述内腔。
CN201922500713.5U 2019-12-31 2019-12-31 一种生物检测芯片及生物传感器 Active CN211505200U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201922500713.5U CN211505200U (zh) 2019-12-31 2019-12-31 一种生物检测芯片及生物传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201922500713.5U CN211505200U (zh) 2019-12-31 2019-12-31 一种生物检测芯片及生物传感器

Publications (1)

Publication Number Publication Date
CN211505200U true CN211505200U (zh) 2020-09-15

Family

ID=72398107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201922500713.5U Active CN211505200U (zh) 2019-12-31 2019-12-31 一种生物检测芯片及生物传感器

Country Status (1)

Country Link
CN (1) CN211505200U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111060469A (zh) * 2019-12-31 2020-04-24 深圳大学 一种生物检测芯片、生物传感器及其制备方法、用途

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111060469A (zh) * 2019-12-31 2020-04-24 深圳大学 一种生物检测芯片、生物传感器及其制备方法、用途

Similar Documents

Publication Publication Date Title
US8355136B2 (en) Sub-micron surface plasmon resonance sensor systems
US7429492B2 (en) Multiwell plates with integrated biosensors and membranes
US7852482B2 (en) Sub-micron surface plasmon resonance sensor systems
JP5231567B2 (ja) マイクロ流体デバイス、マイクロ流体デバイスを製造する方法及びマイクロ流体デバイスを含むセンサ
JP2001516879A (ja) 診断装置及び方法
RU2565351C2 (ru) Миниатюризированная интегральная схема матрицы оптических датчиков, выполненная по принципам микроэлектромеханических систем (mems)
KR20120013316A (ko) 분석물의 생물검정을 위한 일회용 마이크로유체 시험 카트리지
US9222907B2 (en) Nano-porous membrane based sensors
US20060075803A1 (en) Polymer-based cantilever array with optical readout
US11237159B2 (en) Surface enhanced Raman spectroscopy (SERS) microfluidics biosensor for detecting single and/or multiple analytes
JP2003531361A (ja) センサーエレメントおよびその製造方法並びに検体検出方法
CN111060469A (zh) 一种生物检测芯片、生物传感器及其制备方法、用途
JP2001504219A (ja) 植物の病気を診断するためのバイオセンサーの使用
EP3350117B1 (en) End-cap suitable for optical fiber devices and nanoplasmonic sensors
KR20120014122A (ko) 분석물, 특히 미코톡신의 검증 및 정량적 분석을 위한 장치 및 방법
CN211505200U (zh) 一种生物检测芯片及生物传感器
US20210318300A1 (en) Optical biosensor comprising disposable diagnostic membrane and permanent photonic sensing device
US20210114023A1 (en) Detection system and method for producing same
JP6309950B2 (ja) 標的成分を持つ試料流体の処理
US20080186495A1 (en) Cylindrical waveguide biosensors
CN111351848B (zh) 一种传感器的制备方法、传感器以及传感器的检测方法
US20080160623A1 (en) Method and device for bioanalyte quantification by on/off kinetics of binding complexes
Mao et al. Detection of autoantibodies for type 1 diabetes using label-free optical sensors
JP2014160021A (ja) 標的物質捕捉装置およびそれを備えた標的物質検出装置
Dias et al. One-step trapping of droplets and surface functionalization of sensors using gold-patterned structures for multiplexing in biochips

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant