CN211429829U - 散热器组件 - Google Patents

散热器组件 Download PDF

Info

Publication number
CN211429829U
CN211429829U CN201921053316.1U CN201921053316U CN211429829U CN 211429829 U CN211429829 U CN 211429829U CN 201921053316 U CN201921053316 U CN 201921053316U CN 211429829 U CN211429829 U CN 211429829U
Authority
CN
China
Prior art keywords
heat sink
channel
sink assembly
fins
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921053316.1U
Other languages
English (en)
Inventor
李宝胜
曾师
刘利良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Singapore
Original Assignee
National University of Singapore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Singapore filed Critical National University of Singapore
Application granted granted Critical
Publication of CN211429829U publication Critical patent/CN211429829U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种散热器组件,包括:设置成接收传热流体的入口和设置成释放传热流体的出口;一系列间隔开的翅片;所述翅片之间的主要空间限定了与从所述入口到所述出口的路径平行的主通道;所述翅片之间的倾斜空间限定了与所述主通道成一角度设置的倾斜通道;所述翅片在所述主通道和所述倾斜通道的连接处具有锐角圆角和钝角圆角。

Description

散热器组件
技术领域
本实用新型涉及使用散热器组件从电子设备散热。特别地,本实用新型涉及这种组件的表面轮廓。
背景技术
热交换装置通常布置成通过使传热流体传递通过导热翅片来促进对流传热。
所述导热翅片的布置可以通过促进增强的流体混合而产生通过翅片的有益的二次流动。传统的辅助通道通常不是单向的并且可以是随机的,尽管高度湍流的产生破坏相邻流动路径,但是导致相对高的压降损失。
因此,这种热交换装置中的液压损失会对性能产生不利影响。因此,推导最佳边界条件以提高有效流动特性是非常重要的。
实用新型内容
根据第一方面,一种传热装置,包括:设置成接收传热流体的入口和设置成释放传热流体的出口;一系列间隔开的翅片;所述翅片之间的主要空间限定了与从所述入口到所述出口的路径平行的主通道;所述翅片之间的倾斜空间限定了与所述主通道成一角度设置的倾斜通道;并且所述翅片在所述主通道和所述倾斜通道的连接处具有锐角圆角和钝角圆角。
在一个实施方式中,所述锐角圆角和钝角圆角具有不同的半径。所述圆角提供有效的流动特性,更容易制造。
在一个实施方式中,所述翅片的对角相对的拐角具有相同的半径。
在一个实施方式中,所述翅片的横截面具有至少2度的旋转对称性。所述翅片的形状可以是四边形,例如平行四边形。
在一个实施方式中,锐角半径与翅片宽度的比率在0.1至0.5的范围内。在另一个实施方案中,该比率在0.2和0.3的范围内。
在一个实施方式中,钝角半径与翅片宽度的比率在1至2的范围内。在另一个实施方式中,该比率为1.7。
在一个实施方式中,主通道宽度与倾斜通道宽度的比率在1.0至2.5的范围内。在另一个实施方式中,该比率在1.4至2.2的范围内。
附图简要说明
图1A是根据本实用新型的一个实施方式的散热器的透视图;
图1B是根据本实用新型另一实施方式的两个具有圆角的翅片的详细俯视图;
图1C-1E是根据本实用新型的各种实施方式的倾斜翅片微通道布置的俯视图;
图2是根据本实用新型的一个实施方式的散热器的一部分的透视图;
图3是在各种入口流量下不同通道结构的平均传热系数图;
图4是在各种入口流量下不同通道结构的平均底部表面温度图;
图5是在各种入口流量下不同通道结构的压降图;
图6是各种泵送功率下的平均底部表面温度图;
图7是示出RCO通道内的速度分布的图表;
图8是示出辅助通道中的速度矢量的详细图表;
图9A-9B分别是表示RCO1和直通道的温度分布的图表。
具体实施方式
本实用新型解决了传热中的以下问题:
1单相液体冷却,适用于高散热应用,如LED、CPU和GPU、3DIC封装、电池组和其他电子/计算机设备。
2通过较大的孔产生更多的二次流动,促进混合,从而增强散热。
3提供与传热增强配合的可控压降,从而降低泵送功率并降低运营成本。
4用圆角替换尖角,使制造的产品质量更加可控。
通过在翅片的尖角上引入周期性倾斜切口和圆角,本实用新型对传统的直翅片微通道进行了改进。通过倾斜切口周期性地破坏热边界层,产生更高的传热性能。圆角设计有助于引导和转移从主通道到辅助通道的更多流量。由于更强的二次流动而增强的混合进一步改善了本实用新型的热传递。通过引入圆角消除尖角也降低了制造难度并保证了更好的产品质量。
本实用新型可用于涉及高热通量耗散的热管理应用,例如计算机处理器、服务器机架和任何其他电子元件。通过提高散热速率,其需要更低的泵送功率,从而减小了泵的尺寸和整体运行成本。
图1A是包括微通道和翅片阵列101的散热器1的透视图。几个通道条在翼展方向上周期性地重复,并且在底侧添加坚实基部以形成完整的散热器模型。它可以通过热界面材料连接到芯片和LED等器件上。也可以通过深反应离子蚀刻直接加工芯片背面的沟道。冷却剂被泵送通过通道以带走热量并冷却设备。
图1B示出了传热装置中的两个翅片的详细图。每个翅片11具有基本上四边形的形状,并且包括两个锐角和两个钝角。传热流体从左向右流动10。翅片11具有倾斜的前缘102、直的前缘103、直的离去边缘(leading edge)105和倾斜的离去边缘106。直的前缘103与主通道(Main channel)12相邻,并且倾斜的前缘102与倾斜通道103相邻。倾斜的前缘102和直的离去边缘105形成上游锐角107。直的前缘103和倾斜的离去边缘106形成下游锐角104。倾斜的前缘102和直的前缘103形成倾斜的钝角108。直的离去边缘105和倾斜的离去边缘106形成主钝角109。上游锐角107具有上游锐角半径;主钝角具有主钝角半径;倾斜的钝角108具有倾斜的钝角半径;并且主钝角109具有主钝角半径。倾斜通道中的流体流过上游锐角107到达倾斜的钝角108。主通道中的流体流过主钝角109而到达下游锐角104。可以使用锐角半径、倾斜角半径、翅片宽度17、主通道宽度18或倾斜通道宽度19计算比率。
图1C至1E分别示出了圆角倾斜翅片微通道(RCO)1、2和3的几何形状和尺寸。这些示例显示了各种翅片宽度、翅片长度、主通道宽度、倾斜通道宽度、钝角半径、锐角半径、角度测量。在每个条带中,圆角倾斜翅片微通道(RCO)是通过将斜切口引入传统的直翅片并使尖角变圆而形成的。可以针对不同的操作条件调整和优化图1A-1E中标记的所有几何参数。
在图1C中,锐角半径111(0.1mm)与翅片宽度113(0.6mm)的比率约为0.167。钝角半径116(1mm)与翅片宽度113(0.6mm)的比率约为1.67。主通道宽度114(0.6mm)与倾斜通道宽度115(0.42mm)的比率是1.43。倾斜前缘102的斜面117是27°。翅片间距118是2.69mm。
在图1D中,锐角半径121(0.1mm)与翅片宽度123(0.6mm)的比率约为0.167。钝角半径122(1mm)与翅片宽度123(0.6mm)的比率约为1.67。主通道宽度124(0.6mm)与倾斜通道宽度125(0.33mm)的比率是1.82。
在图1E中,锐角半径131(0.2mm)与翅片宽度133(0.6mm)的比率约为0.333。钝角半径132(1mm)与翅片宽度133(0.6mm)的比率约为1.67。主通道宽度134(0.6mm)与倾斜通道宽度135(0.27mm)的比率是2.22。
图2显示了具有RCO的散热器的截面(图1A中用虚线标记)中的流动。冷却液从左侧泵送到右侧。除了主通道中的流动之外,倾斜切口创建了二次流动的路径。
图3是在各种入口流量下不同通道结构的平均传热系数图。通过ANSYS Fluent19.0的CFD分析收集性能数据。在散热器的底部施加20W/cm2的均匀热通量。散热器的材料为铜。将水设定为冷却剂,入口温度为25℃。单通道的体积流量为1.4至11.2mL/min。通道高0.3毫米,底部的额外基座厚0.5毫米。传统的直通道散热器也被模拟为基准情况。它具有与所提出的微通道结构相似的尺寸:翅片宽度Wfin=0.6mm,通道宽度Wcha=0.6mm,通道高度Hcha=0.3mm。
研究的通道结构的平均传热系数计算如下:
Figure BDA0002120765550000051
其中Q是总热量输入,Awet是散热器的总湿润面积。Twet,ave是平均湿润表面温度,Tfl,ave是冷却剂入口和出口温度的算术平均值。如图3所示,所提出的具有不同尺寸的微通道结构具有相似的传热系数,并且都比直通道好得多。在最高的研究流量下,与传统的直通道相比,RCO1可以达到92.1%更高的传热系数。
图4是在各种入口流量下不同通道结构的平均底部表面温度图。还比较了各种流量下散热器的平均底部表面温度。如果将本实用新型应用于芯片冷却,则该温度是结温(junction temperature)的指数。因此,较低的值表示更好的冷却性能。如图4所示,RCO通道都比直通道好。最大提升可达到10.27℃。
图5是在各种入口流量下不同通道结构的压降图。压降特性决定了驱动冷却剂通过通道所消耗的泵送功率。为了获得节能冷却解决方案,需要具有较低压降的结构。如图5所示,不同的通道在低流量下具有相似的压降。随着流量增加,RCO通道显示出更高的压降。在研究的最高流量下,RCO1的压降比直通道的压降高15.4%。这可以被视为对传热性能提高92.1%的轻微损失。
图6是各种泵送功率下的平均底部表面温度图。具有更好传热性能的通道结构具有压降损失是普遍现象。为了比较不同通道的整体性能,平均底部表面温度与泵送功率的关系曲线如图6所示。
RCO通道的数据点全部位于直通道的左下侧,这意味着在给定的泵送功率下,RCO通道可以将应用(例如芯片)冷却到较低的温度。换句话说,与直通道相比,RCO通道需要较少的泵送功率来将特定应用冷却到相同的温度。从定量上讲,为了获得321.44K的Tbt,ave,RCO1需要3.1e-4 W的泵送功率,而直通道需要大约1.4e-3 W,这要大3.5倍。如果考虑在3.1e-4W的相同泵送功率下工作的不同通道,则RCO1的Tbt,ave为321.44K,而直通道的Tbt,ave为332.46K,这高出了11K。
图7显示了流量为11.2mL/min的RCO通道内流动的速度分布图。主通道中的流量高于辅助通道(secondary channel)中的流量。但少量的二次流动有助于流动混合,从而增强了热传递。
图8示出了显示辅助通道中的速度矢量的详细图。圆角在辅助通道的入口和出口部分处形成大孔,这有利于将更多流体从主通道转移和引导到辅助通道。
图9A-9B示出了RCO1(9A)和直通道(9B)的温度分布。直通道中的热边界层沿流动方向逐渐增长,这降低了下游部分的传热性能。相反,热边界层被倾斜切口周期性地破坏。每个翅片的薄边界层有助于增强传热。
实施方式表明,与具有可控制的压降损失的传统直通道相比,所提出的圆角倾斜翅片微通道显示出巨大的传热性能增强,在操作中提供了大的泵送功率节省潜力。圆角设计不仅可以通过促进二次流动来增强传热,还可以通过去除尖角来降低制造难度。因此,适合商业应用于冷却高热通量装置,例如芯片、LED、电池组等。
根据第一方面,一种传热装置,包括:设置成接收传热流体的入口和设置成释放传热流体的出口;一系列间隔开的翅片;所述翅片之间的主要空间限定了与从所述入口到所述出口的路径平行的主通道;所述翅片之间的倾斜空间限定了与所述主通道成角度设置的倾斜通道;并且所述翅片在所述主通道和所述倾斜通道的连接处具有圆角。在实施方式中,冷却流体用作传热流体。应当理解,本实用新型也可用于提高加热应用中的温度。
通过在接合处提供的倾斜切口周期性地破坏热和流体动力学边界层。倾斜切口引入用于流动混合的二次流动(倾斜通道),因此导致更高的传热性能。主通道中的流量可能高于辅助通道中的流量。
圆角设置在辅助通道的入口和出口部分处提供大孔,并且有助于引导和转移从主要通道到倾斜通道的更多流动(二次流动)。更强的二次流动产生湍流并增强主通道中的混合,从而进一步改善热传递。
圆角还可降低制造难度并确保更好的产品质量。
图1C至1E示出了具有圆角的翅片。圆角锐角的半径在0.1mm和0.2mm之间。圆角钝角的半径为1毫米。
在一个实施方式中,锐角圆角和钝角圆角具有不同的半径。
改变曲率将影响通道的尺寸并控制流体流动。
主通道和辅助通道的连接可以提供具有锐角或钝角的拐角。每个拐角可以是圆形的且具有不同半径的曲率。对角相对的拐角(即上游锐角和下游锐角;斜钝角和主钝角)可具有相同的曲率或不同的曲率。
例如,钝角可以具有1mm的半径或任何其他合适的曲率,并且锐角可以具有0.1mm、0.2mm的半径或任何其他合适的曲率。
翅片的示例在图1A-1E、2、7和9A中示出。翅片可以是倾斜的翅片。对称旋转的顺序(The order of rotation of symmetry)是2(即旋转角度是180°),旋转中心是对角线的交点。对称形状有利于制造。

Claims (10)

1.一种散热器组件,其特征在于,所述散热器组件包括:
设置成接收传热流体的入口和设置成释放传热流体的出口;
一系列间隔开的翅片;
所述翅片之间的主要空间限定了与从所述入口到所述出口的路径平行的主通道;
所述翅片之间的倾斜空间限定了与所述主通道成角度设置的倾斜通道;
并且所述翅片在所述主通道和所述倾斜通道的连接处具有锐角圆角和钝角圆角。
2.根据权利要求1所述的散热器组件,其特征在于,所述锐角圆角和钝角圆角具有不同的半径。
3.根据权利要求1或2所述的散热器组件,其特征在于,所述翅片的对角相对的拐角具有相同的半径。
4.根据权利要求1或2所述的散热器组件,其特征在于,所述翅片的横截面具有至少2度的旋转对称性。
5.根据权利要求1或2所述的散热器组件,其特征在于,锐角半径与翅片宽度的比率在0.1至0.5的范围内。
6.根据权利要求1或2所述的散热器组件,其特征在于,锐角半径与翅片宽度的比率在0.2至0.3的范围内。
7.根据权利要求1或2所述的散热器组件,其特征在于,钝角半径与翅片宽度的比率在1至2的范围内。
8.根据权利要求1或2所述的散热器组件,其特征在于,钝角半径与翅片宽度的比率是1.7。
9.根据权利要求1或2所述的散热器组件,其特征在于,主通道宽度与倾斜通道宽度的比率在1.0至2.5的范围内。
10.根据权利要求1或2所述的散热器组件,其特征在于,主通道宽度与倾斜通道宽度的比率在1.4至2.2的范围内。
CN201921053316.1U 2018-07-06 2019-07-05 散热器组件 Active CN211429829U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SG10201805856Y 2018-07-06
SG10201805856Y 2018-07-06

Publications (1)

Publication Number Publication Date
CN211429829U true CN211429829U (zh) 2020-09-04

Family

ID=72245309

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921053316.1U Active CN211429829U (zh) 2018-07-06 2019-07-05 散热器组件

Country Status (1)

Country Link
CN (1) CN211429829U (zh)

Similar Documents

Publication Publication Date Title
US11003227B2 (en) Liquid-type cooling apparatus and manufacturing method for heat radiation fin in liquid-type cooling apparatus
US7277284B2 (en) Microchannel heat sink
US10598441B2 (en) Heat sink
JP2013175526A (ja) 冷却器及び冷却装置
JP6406348B2 (ja) 冷却器およびそれを用いた半導体モジュール
US10038203B2 (en) Cooling plates for fuel cells
CN105423789B (zh) 一种三角形内翅片热管
TW201305522A (zh) 流體熱交換系統
JP2008171987A (ja) フィンタイプ液冷ヒートシンク
CN211429829U (zh) 散热器组件
CN105333758B (zh) 一种直角内翅片热管
CN205542746U (zh) 散热器
JP5715352B2 (ja) ヒートシンク
US7461690B2 (en) Optimally shaped spreader plate for electronics cooling assembly
CN114649284B (zh) 一种肋排仿生结构微通道散热器
US20160231069A1 (en) Heat-radiating system
JP5251916B2 (ja) 電子機器の冷却器
CN117613020A (zh) 一种错列三角肋和人字形扰流流道结合的微通道热沉
US20240074099A1 (en) Cooling block for cooling a heat-generating electronic component
CN217546568U (zh) 一种具有人字形扰流流道的微通道液冷冷板
CN216205587U (zh) 一种可均匀分配流量的微通道热沉
CN214070446U (zh) 一种铝合金散热片结构
EP4333048A1 (en) Cooling block for cooling a heat-generating electronic component and method for manufacturing thereof
CN218920809U (zh) 一种外带翅片的均热板
TWI785938B (zh) 液冷式散熱結構

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant