CN211402536U - 一种具有温度补偿功能的频谱分析仪 - Google Patents

一种具有温度补偿功能的频谱分析仪 Download PDF

Info

Publication number
CN211402536U
CN211402536U CN201922171422.6U CN201922171422U CN211402536U CN 211402536 U CN211402536 U CN 211402536U CN 201922171422 U CN201922171422 U CN 201922171422U CN 211402536 U CN211402536 U CN 211402536U
Authority
CN
China
Prior art keywords
frequency
module
signal
conversion module
frequency conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201922171422.6U
Other languages
English (en)
Inventor
刘源
马兴望
郑翠翠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Siglent Technologies Co Ltd
Original Assignee
Shenzhen Siglent Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Siglent Technologies Co Ltd filed Critical Shenzhen Siglent Technologies Co Ltd
Priority to CN201922171422.6U priority Critical patent/CN211402536U/zh
Application granted granted Critical
Publication of CN211402536U publication Critical patent/CN211402536U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Circuits Of Receivers In General (AREA)

Abstract

本实用新型公开了一种具有温度补偿功能的频谱分析仪,其第一切换开关的第一端与变频模块连接,第二端在信号输入端和校准模块的输出端之间切换,用于在不需要校准时将信号输入端连接到变频模块,或在需要校准时将校准模块的输出端连接到变频模块;第二切换开关的第一端与跟踪源信号产生模块电连接,第二端在信号输出端和校准模块的输入端之间进行切换,用于在不需要校准时将跟踪源信号产生模块连接到信号输出端,或在需要校准时将跟踪源信号产生模块连接到校准模块的输入端。由于通过第一切换开关和第二切换开关的切换来控制是否需要对频谱分析仪进行温度校准,使得在需要校准时,可随时对频谱分析仪进行温度补偿。

Description

一种具有温度补偿功能的频谱分析仪
技术领域
本实用新型涉及电子测量技术领域,具体涉及一种具有温度补偿功能的频谱分析仪。
背景技术
频谱分析仪是一种在频域中显示所输入电信号的频谱特性的仪器,主要用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量。
频谱分析仪在接收到输入端所输入信号后,会通过变频模块将其转换为中频信号,从而方便模数转换器采样,频谱分析仪输入端到模数转换器之间的链路称为接收通道,接收通道的功率增益会随温度变化而变化,虽然在出厂时会对频谱分析仪进行校准,但当其使用温度与出厂校准温度相差较大时,接收通道的功率增益会偏离校准值,导致其测量准确度变差。
现有的频谱分析仪温度补偿多是提前采集频谱分析仪在不同温度下的增益特性,得到增益随温度的变化关系,在频谱分析仪使用过程中,再根据其当前温度,通过上述增益-温度的关系曲线查找当前温度所对应的增益,从而对增益进行补偿,该方法前期采集数据工作量大,并且频谱分析仪中器件随着使用时间的推移会老化,其增益随温度的变化关系也会随之改变,补偿效果较差。
发明内容
本实用新型主要解决的技术问题是提供一种可随时对频谱分析仪进行全频段温度补偿的方案。
一种实施例中提供一种具有温度补偿功能的频谱分析仪,包括:变频模块、信号处理模块、跟踪源信号产生模块、第一切换开关、第二切换开关、校准模块、存储模块、信号输入端和信号输出端;
所述信号处理模块的输入端与变频模块的输出端相连,用于获取变频模块输出信号的功率;
所述变频模块包括第一变频模块,所述第一变频模块用于将输入到第一变频模块的信号的频率转换为第一中频,并输出第一中频信号;
所述跟踪源信号产生模块与第一变频模块相连,用于产生特定频率的信号,所述特定频率与第一变频模块选择接收的频率相同;
所述第一切换开关的第一端与变频模块电连接,第二端在信号输入端和校准模块的输出端之间进行切换,用于在不需要校准时将信号输入端连接到变频模块的输入端,或在需要校准时将校准模块的输出端连接到变频模块的输入端;
所述第二切换开关的第一端与跟踪源信号产生模块电连接,第二端在信号输出端和校准模块的输入端之间进行切换,用于在不需要校准时将跟踪源信号产生模块的输出端连接到信号输出端,或在需要校准时将跟踪源信号产生模块的输出端连接到校准模块的输入端。
进一步地,所述校准模块包括耦合器和功率检测装置,所述耦合器的输入端分别与跟踪源信号产生模块的输出端和第一变频模块的输入端相连,所述功率检测装置的输入端与耦合器的输出端相连,用于检测跟踪源信号产生模块所产生的特定频率的信号的功率。
进一步地,所述耦合器为耦合电阻。
进一步地,所述功率检测装置包括射频检波模块和模数转换模块,所述射频检波模块的输入端与耦合器的第一输出端相连,用于将耦合器第一输出端所输出信号的幅值包络线转换为直流电压;模数转换模块与射频检波模块的输出端相连,用于检测射频检波模块所输出的直流电压。
进一步地,所述频谱分析仪还包括控制模块,所述控制模块分别与第一切换开关的控制端和第二切换开关的控制端相连,用于控制第一切换开关的第二端在信号输入端和校准模块的输出端之间进行切换,以及控制第二切换开关的第二端在信号输出端和校准模块的输入端之间进行切换。
进一步地,所述第一变频模块包括第一混频器、第一本振、第一耦合器和第一中频滤波器;
所述第一本振用于产生本振扫频信号;
所述第一耦合器用于提取第一本振产生的本振扫频信号,并分为两路本振扫频信号,将其中的一路通过其第一输出端输出给跟踪源信号产生模块,将另一路通过其第二输出端输出给第一混频器;
所述第一混频器用于将输入到第一混频器的信号和第一耦合器输出的本振信号进行混频,得到第一中频信号;
所述第一中频滤波器用于滤除非第一中频频率的信号。
进一步地,所述变频模块还包括第二变频模块和第三变频模块;
所述第二变频模块的输入端与第一变频模块的输出端相连,用于将第一变频模块输出的第一变频进行变频,得到第二中频信号;
所述第三变频模块的输入端与第二变频模块的输出端相连,用于将第二变频模块输出的第二中频信号进行变频,得到第三中频信号;所述第三变频模块的输出端与信号处理模块相连,用于检测第三中频信号的功率。
进一步地,所述跟踪源信号产生模块包括跟踪源混频器和跟踪源本振;
所述跟踪源本振用于产生与所述第一中频信号频率相同的正弦信号;
所述跟踪源混频器包括第一输入端、第二输入端和输出端,所述第一输入端与第一耦合器的第一输出端相连,第二输入端与跟踪源本振的输出端相连,用于将输入到跟踪源混频器的本振扫频信号与跟踪源本振输出的正弦信号进行混频。
进一步地,所述频谱分析仪还包括显示模块,用于显示频谱分析仪所测量信号的频率及幅度。
进一步地,所述频谱分析仪还包括控制面板,所述控制面板上设置有用于控制第一切换开关和第二切换开关进行切换的按钮。
依据上述实施例的具有温度补偿功能的频谱分析仪,在需要校准时,通过第一切换开关将校准模块的输入端与跟踪源信号产生模块的输出端相连,以测量跟踪源信号产生模块输出端所输出信号的功率,并通过第二切换开关将校准模块与变频模块相连,以通过与变频模块相连的信号处理模块测量频谱分析仪接收通道中信号的功率,再通过信号处理模块和校准模块中功率差值与预设的标准功率差值进行比较来对频谱分析仪的输出显示功率进行补偿,并且由于跟踪源信号产生模块可输出频谱分析仪最大测量频率范围内任意频点的信号,使得可对全频段任意频点的信号功率进行温度补偿,并且由于通过切换开关和第二切换开关的切换来控制是否需要对频谱分析仪进行温度校准,使得在需要校准时,可随时对频谱分析仪进行温度补偿。
附图说明
图1为现有技术中集成跟踪源的频谱分析仪的结构示意图;
图2为一种实施例的具有温度补偿功能的频谱分析仪的结构示意图;
图3为一种实施例的具体的具有温度补偿功能的频谱分析仪的结构示意图;
图4为一种实施例的具有温度补偿功能的频谱分析仪进行温度补偿的工作流程图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。其中不同实施方式中类似元件采用了相关联的类似的元件标号。在以下的实施方式中,很多细节描述是为了使得本申请能被更好的理解。然而,本领域技术人员可以毫不费力的认识到,其中部分特征在不同情况下是可以省略的,或者可以由其他元件、材料、方法所替代。在某些情况下,本申请相关的一些操作并没有在说明书中显示或者描述,这是为了避免本申请的核心部分被过多的描述所淹没,而对于本领域技术人员而言,详细描述这些相关操作并不是必要的,他们根据说明书中的描述以及本领域的一般技术知识即可完整了解相关操作。
另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书和附图中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。
现有的集成跟踪源的频谱分析仪结构如图1所示,频谱分析仪输入端输入的信号依次经过第一混频器、第二混频器和第三混频器的混频处理后,可得到所需的第三中频信号,将该第三中频信号输入到模数转换模块后可输出该中频信号的功率,第三中频信号的功率减去接收通道的增益等于输入端输入信号的功率;然后,再通过配置第一本振所输出本振扫频信号的频率,使得本振扫频信号和输入端输入信号在第一混频器中混频后得到的第一中频信号的频率为预设值,将本振扫频信号的频率加上或减去第一中频信号的频率,即可以得到输入端输入信号的频率,上述两个过程就完成了频谱分析仪的基本工作,使其输出了输入端输入信号的频率和功率信息;若在频谱分析仪的基础上加上跟踪源,设置跟踪源本振的输出频率为第一中频,通过跟踪源混频器对本振扫频信号和跟踪源本振输出的信号进行混频,使得跟踪源混频器的输出频率与第一变频模块选择接收的频率相同,如图1,跟踪源输出信号的频率跟踪频谱分析仪输入端选择接收信号的频率,实现了跟踪源的跟踪功能。
由于跟踪源输出信号的频率跟踪频谱分析仪输入端选择接收信号的频率,而跟踪源可以实现全频段的跟踪,因此可以在集成有跟踪源的频谱分析仪上加入校准模块,实现对频谱分析仪全频段信号的温度补偿。
在本实施例中,在不需要校准时,控制第一切换开关的第二端切换到信号输入端,使得信号输入端与第一变频模块电连接,再控制第二切换开关的第二端切换到信号输出端,使得跟踪源信号产生模块与信号输出端电连接,这时实现的是一个集成跟踪源频谱分析仪的基本功能,通过跟踪源跟踪频谱分析仪选择接收的频率,并将该特定频率的信号通过信号输出端进行输出。
在需要校准时,控制第一切换开关的第二端切换到校准模块的输出端,使得第一变频模块与校准模块电连接,再控制第二切换开关的第二端切换到校准模块的输入端,使得跟踪源信号产生模块所输出的信号输入到校准模块中,这样使得输入到校准模块中的信号的频率与输入到与变频模块相连的信号处理模块的信号的频率相同,再通过计算同一频率下,输入到信号处理模块中信号的功率和输入到校准模块中的信号的功率之差,通过标准功率差值减去校准模式下的功率差值可得到补偿值。
本实施例通过第一切换开关和第二切换开关的切换来实现频谱分析仪在校准和正常工作模式下的切换,用户根据频谱分析仪温度情况,在需要校准时,可随时通过第一切换开关和第二切换开关的切换来对频谱分析仪进行温度补偿。
实施例:
请参考图2,图2为一种实施例的一种具有温度补偿功能的频谱分析仪的结构示意图,该频谱分析仪包括变频模块2、信号处理模块3、跟踪源信号产生模块4、第一切换开关S1、第二切换开关S2、校准模块5、信号输入端1和信号输出端6。
所述信号处理模块3的输入端与变频模块2的输出端相连,用于获取变频模块2输出信号的功率;其中,信号处理模块3包括模数转换模块301,其对输入至信号处理模块的信号进行AD采样并将采样值进行输出,所输出的采样值即为输入至信号处理模块的信号的幅值。
如图3所示,所述变频模块2包括第一变频模块10,第一变频模块10用于将输入到第一变频模块10的信号的频率转换为第一中频,并输出第一中频信号,第一变频模块10同时具有选择的功能,只有频率=第一本振频率-第一中频频率的信号才会被变频为第一中频,以供后续的变频和信号处理,其余频率的信号则会被滤除,第一中频频率是固定的,通过改变第一本振频率可以实现对输入端不同频率信号的选择。
第一变频模块10包括第一混频器、第一本振、第一耦合器和第一中频滤波器。
第一本振用于在控制模块的控制下产生本振扫频信号;第一耦合器用于提取第一本振产生的本振扫频信号,并分为两路本振扫频信号,将其中的一路通过其第一输出端输出给跟踪源信号产生模块,将另一路通过其第二输出端输出给第一混频器;第一混频器用于将输入到第一混频器的信号和第一耦合器输出的本振信号进行混频,得到第一中频信号;第一中频滤波器用于滤除非第一中频频率的信号。
具体地,本振扫频信号的频率是可变的,可以通过配置本振扫频信号的频率,将输入至第一变频模块10的任意频率的信号变频至第一中频,若输入信号的频率fin满足:fLO1(第一本振扫频频率)-fin=fIF1(第一中频),则变频后的信号可以通过第一中频滤波器,否则会被第一中频滤波器滤除,这样,第一变频模块就实现了对接收频率的选择功能,同时,本振扫频信号的频率和第一中频的频率都是已知的,故可以推得选择接收的频率。
所述跟踪源信号产生模块4与第一变频模块10相连,用于产生特定频率的信号,所述特定频率与输入到第一变频模块10选择接收的频率相同,所述第一变频模块10选择接收的频率为通过改变第一本振频率来选择输入第一变频模块10信号的频率。
如图3所示,跟踪源信号产生模块4包括跟踪源混频器和跟踪源本振;跟踪源本振用于在控制模块的控制下产生与所述第一中频信号频率相同的正弦波信号;跟踪源混频器包括第一输入端、第二输入端和输出端,所述第一输入端与第一耦合器的第一输出端相连,第二输入端与跟踪源本振的输出端相连,用于将输入到跟踪源混频器的本振扫频信号与跟踪源本振输出的信号进行混频,则混频器输出的信号频率等于第一变频模块10选择接收的频率。
所述第一切换开关S1的第一端与变频模块2电连接,第二端在信号输入端1和校准模块5的输出端之间进行切换,用于在不需要校准时将信号输入端1连接到变频模块2的输入端,或在需要校准时将校准模块5的输出端连接到变频模块2的输入端。
如图3,本实施例中的变频模块2还包括第二变频模块8和第三变频模块9;第二变频模块8的输入端与第一变频模块10的输出端相连,用于将第一变频模块10输出的第一中频进行变频,得到第二中频信号;第三变频模块9的输入端与第二变频模块8的输出端相连,用于将第二变频模块8输出的第二中频信号进行变频,得到第三中频信号;所述第三变频模块的输出端与信号处理模块3相连,信号处理模块3中包含有ADC模数转换模块301,其可提取第三中频信号的功率。
所述第二切换开关S2的第一端与跟踪源信号产生模块4电连接,第二端在信号输出端6和校准模块5的输入端之间进行切换,用于在不需要校准时将跟踪源信号产生模块4的输出端连接到信号输出端6,或在需要校准时将跟踪源信号产生模块4的输出端连接到校准模块5的输入端。
本实施例对于第一切换开关S1和第二切换开关S2的切换,可以采用手动控制其进行切换,也可以采用控制模块进行自动控制,如图2、3所示,控制模块7分别与第一切换开关S1的控制端和第二切换开关S2的控制端相连,用于控制第一切换开关S1的第二端在信号输入端和校准模块5的输出端之间进行切换,以及控制第二切换开关S2的第二端在信号输出端6和校准模块5的输入端之间进行切换。在对第一切换开关S1和第二切换开关S2进行自动控制切换时,需要在频谱分析仪上设置一温度检测模块,其可以为温度传感器等具有检测温度的器件,当温度检测模块检测到当前温度超过阈值时,控制模块7向第一切换开关S1和第二切换开关S2发送指令,使校准模块5接入到频谱分析仪电路中,当校准完成后,控制模块7向第一切换开关S1和第二切换开关S2再次发送指令,使得其恢复频谱分析仪的正常工作电路。本实施例中的第一切换开关S1和第二切换开关S2均可以为单刀双掷开关。
本实施例还可以采用人工手动操作来控制第一切换开关S1和第二切换开关S2的切换,其包括控制面板,控制面板上设置有用于控制第一切换开关和第二切换开关进行切换的按钮,用户可直接通过选择按钮进行频谱分析仪工作状态的切换。
在不需要校准时,校准模块并没有被接入频谱分析仪电路中,此时信号输入端1通过第一切换开关S1与第一变频模块10相连,跟踪源信号产生模块4通过第二切换开关S2与信号输出端6相连,此时频谱分析仪中的电路连接是一个常规集成跟踪源的频谱分析仪的电路连接。
当频谱分析仪在使用过程中发现其温度T超过出厂温度一定阈值时,就需要对其进行校准。在校准时,将第一切换开关S1的第二端切换到校准模块5的输出端,第二切换开关S2的第二端切换到校准模块5的输入端。这样,用户可根据频谱分析仪的温度情况随时通过第一切换开关S1和第二切换开关S2的切换来实现频谱分析仪的温度补偿。
校准模块5中包括耦合器和功率检测装置,耦合器将跟踪源信号产生模块所产生的特定频率的信号分为两路信号,两路信号分别通过耦合器的第一输出端和第二输出端输出,功率检测装置的输入端与耦合器的第一输出端相连,用于检测跟踪源信号产生模块在预设输出功率下所产生的特定频率的信号的功率,所述耦合器的第二输出端与变频模块2的输入端相连。
本实施例将跟踪源信号产生模块输出的信号作为校准信号,校准信号通过校准模块的耦合器分为两路,一路输入到功率检测装置,通过功率检测装置检测校准信号的功率;另一路输入到第一变频模块10,信号通过第一变频模块10、第二变频模块8、第三变频模块9组成的接收通道后,再通过ADC模数转换模块301来检测信号的功率。
本实施例中的耦合器和第一耦合器可以是任何能够实现上述将一路输入信号分为多路同频信号的器件,如定向耦合器、功率分配器等,本实施例中的耦合器和/或第一耦合器为耦合电阻。
本实施例中的功率检测装置包括射频检波模块和模数转换模块,射频检波模块的输入端与耦合器的第一输出端相连,将耦合器第一输出端所输出信号的幅值包络线转换为直流电压;射频检波模块的输出端与模数转换模块相连,用于检测射频检波模块所输出的直流电压。射频检波模块是用来获取信号的功率大小,其可以采用射频检测器集成芯片,也可以通过搭建电路进行实现。
基于上述具有温度补偿功能的频谱分析仪,在一种具体实施方式下,在使用频谱分析仪过程中,当需要进行温度校准时(此时频谱分析仪的温度通过温度传感器测量为T),用户通过控制面板上的按钮使频谱分析仪进入校准模式,即将第一切换开关S1的第二端切换到校准模块的输出端,将第二切换开关S2的第二端切换到校准模块的输入端;进入校准模式后,跟踪源信号产生模块在预设频率下输出预设功率,并在预设频率下从校准模块中获取校准信号的功率以及从信号处理模块中获取接收通道信号的功率;计算在预设频率下校准信号的功率和接收通道信号的功率的差值△PT,再获取该频谱分析仪在出厂时所测量的预设频率下校准信号的功率和接收通道信号的功率的差值△P,信号处理模块计算△PT和△P的差值,将该差值作为功率补偿值,补偿到所需要显示的频点功率上。
图4示出了另一种具体实施方式下频谱分析仪进行温度补偿的工作流程,包括如下工作步骤:
步骤101,进行温度补偿的出厂校准,将第一切换开关S1的第二端切换到校准模块的输出端,将第二切换开关S2的第二端切换到校准模块的输入端;
步骤102,记录下此时频谱分析仪的温度,将该温度作为校准温度;
步骤103,根据所需的补偿精度,选择不同的频率间隔;
步骤104,设置跟踪源信号产生模块的输出功率为PTG,根据所设置的频率间隔,配置第一本振,使跟踪源信号产生模块输出频率为FC1、FC2…FCn的信号,计算频率在FC1、FC2…FCn下,接收通道信号的功率与校准信号的功率之差ΔPC1、ΔPC2…ΔPCn
上述过程为频谱分析仪在出厂时进行的校准。
步骤105,校准完成后进入正常工作模式,即将第一切换开关S1的第二端与信号输入端相连,将第二切换开关S2的第二端与信号输出端相连;
步骤106,每隔一段时间读取频谱分析仪的工作温度,若当前工作温度与校准温度的差值超过预设阈值,则执行步骤107;否则,继续执行读取温度的操作;
步骤107,频谱分析仪进入温度校准模式,即将第一切换开关S1的第二端切换到校准模块的输出端,将第二切换开关S2的第二端切换到校准模块的输入端;
步骤108,设置跟踪源信号产生模块的输出功率为PTG,根据所设置的频率间隔,配置第一本振的频率,使得跟踪源信号产生模块输出频率为FC1、FC2…FCn的信号,计算频率在FC1、FC2…FCn下,接收通道信号的功率与校准信号的功率之差ΔP1、ΔP2…ΔPT
步骤109,计算频率在FC1、FC2…FCn下的补偿值C1、C2…Cn;对于不在FC1、FC2…FCn频率上的频点信号采用补偿值与频率的关系通过曲线拟合的方式得到;
步骤110,在信号处理模块中根据补偿值对所显示信号的功率进行补偿,具体为:频谱分析仪显示功率=未补偿状态下测得的输出信号的功率增益值+补偿值。
以上应用了具体个例对本实用新型进行阐述,只是用于帮助理解本实用新型,并不用以限制本实用新型。对于本实用新型所属技术领域的技术人员,依据本实用新型的思想,还可以做出若干简单推演、变形或替换。

Claims (10)

1.一种具有温度补偿功能的频谱分析仪,其特征在于,包括:变频模块、信号处理模块、跟踪源信号产生模块、第一切换开关、第二切换开关、校准模块、存储模块、信号输入端和信号输出端;
所述信号处理模块的输入端与变频模块的输出端相连,用于获取变频模块输出信号的功率;
所述变频模块包括第一变频模块,所述第一变频模块用于将输入到第一变频模块的信号的频率转换为第一中频,并输出第一中频信号;
所述跟踪源信号产生模块与第一变频模块相连,用于产生特定频率的信号,所述特定频率与第一变频模块选择接收的频率相同;
所述第一切换开关的第一端与变频模块电连接,第二端在信号输入端和校准模块的输出端之间进行切换,用于在不需要校准时将信号输入端连接到变频模块的输入端,或在需要校准时将校准模块的输出端连接到变频模块的输入端;
所述第二切换开关的第一端与跟踪源信号产生模块电连接,第二端在信号输出端和校准模块的输入端之间进行切换,用于在不需要校准时将跟踪源信号产生模块的输出端连接到信号输出端,或在需要校准时将跟踪源信号产生模块的输出端连接到校准模块的输入端。
2.如权利要求1所述的频谱分析仪,其特征在于,所述校准模块包括耦合器和功率检测装置,所述耦合器的输入端与跟踪源信号产生模块的输出端相连,第二输出端与第一变频模块的输入端相连,所述功率检测装置的输入端与耦合器的第一输出端相连,用于检测跟踪源信号产生模块所产生的特定频率的信号的功率。
3.如权利要求2所述的频谱分析仪,其特征在于,所述耦合器为耦合电阻。
4.如权利要求2或3所述的频谱分析仪,其特征在于,所述功率检测装置包括射频检波模块和模数转换模块,所述射频检波模块的输入端与耦合器的第一输出端相连,用于将耦合器第一输出端所输出信号的幅值包络线转换为直流电压;模数转换模块与射频检波模块的输出端相连,用于检测射频检波模块所输出的直流电压。
5.如权利要求1所述的频谱分析仪,其特征在于,所述频谱分析仪还包括控制模块,所述控制模块分别与第一切换开关的控制端和第二切换开关的控制端相连,用于控制第一切换开关的第二端在信号输入端和校准模块的输出端之间进行切换,以及控制第二切换开关的第二端在信号输出端和校准模块的输入端之间进行切换。
6.如权利要求1所述的频谱分析仪,其特征在于,所述第一变频模块包括第一混频器、第一本振、第一耦合器和第一中频滤波器;
所述第一本振用于产生本振扫频信号;
所述第一耦合器用于提取第一本振产生的本振扫频信号,并分为两路本振扫频信号,将其中的一路通过其第一输出端输出给跟踪源信号产生模块,将另一路通过其第二输出端输出给第一混频器;
所述第一混频器用于将输入到第一混频器的信号和第一耦合器输出的本振信号进行混频,得到第一中频信号;
所述第一中频滤波器用于滤除非第一中频频率的信号。
7.如权利要求6所述的频谱分析仪,其特征在于,所述变频模块还包括第二变频模块和第三变频模块;
所述第二变频模块的输入端与第一变频模块的输出端相连,用于将第一变频模块输出的第一中频信号进行变频,得到第二中频信号;
所述第三变频模块的输入端与第二变频模块的输出端相连,用于将第二变频模块输出的第二中频信号进行变频,得到第三中频信号;所述第三变频模块的输出端与信号处理模块相连,用于检测第三中频信号的功率。
8.如权利要求6或7所述的频谱分析仪,其特征在于,所述跟踪源信号产生模块包括跟踪源混频器和跟踪源本振;
所述跟踪源本振用于产生与所述第一中频信号频率相同的正弦信号;
所述跟踪源混频器包括第一输入端、第二输入端和输出端,所述第一输入端与第一耦合器的第一输出端相连,第二输入端与跟踪源本振的输出端相连,用于将输入到跟踪源混频器的本振扫频信号与跟踪源本振输出的信号进行混频。
9.如权利要求1所述的频谱分析仪,其特征在于,所述频谱分析仪还包括显示模块,用于显示频谱分析仪所测量信号的频率及幅度。
10.如权利要求1所述的频谱分析仪,其特征在于,所述频谱分析仪还包括控制面板,所述控制面板上设置有用于控制第一切换开关和第二切换开关进行切换的按钮。
CN201922171422.6U 2019-12-06 2019-12-06 一种具有温度补偿功能的频谱分析仪 Active CN211402536U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201922171422.6U CN211402536U (zh) 2019-12-06 2019-12-06 一种具有温度补偿功能的频谱分析仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201922171422.6U CN211402536U (zh) 2019-12-06 2019-12-06 一种具有温度补偿功能的频谱分析仪

Publications (1)

Publication Number Publication Date
CN211402536U true CN211402536U (zh) 2020-09-01

Family

ID=72232763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201922171422.6U Active CN211402536U (zh) 2019-12-06 2019-12-06 一种具有温度补偿功能的频谱分析仪

Country Status (1)

Country Link
CN (1) CN211402536U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994807A (zh) * 2021-02-05 2021-06-18 成都中科四点零科技有限公司 一种信号源的自动校准系统及方法
CN112986679A (zh) * 2021-04-27 2021-06-18 深圳市鼎阳科技股份有限公司 一种用于频谱分析仪的校准补偿装置、方法和频谱分析仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112994807A (zh) * 2021-02-05 2021-06-18 成都中科四点零科技有限公司 一种信号源的自动校准系统及方法
CN112986679A (zh) * 2021-04-27 2021-06-18 深圳市鼎阳科技股份有限公司 一种用于频谱分析仪的校准补偿装置、方法和频谱分析仪

Similar Documents

Publication Publication Date Title
CN110672920B (zh) 一种具有温度补偿功能的频谱分析仪
CN211402536U (zh) 一种具有温度补偿功能的频谱分析仪
US5262957A (en) Inexpensive portable RF spectrum analyzer with calibration features
KR101452281B1 (ko) 주파수 변환 디바이스를 가지는 수신기의 주파수 응답 보정
US4700129A (en) Phase measurement apparatus with automatic calibration
CN103067104A (zh) 基于数字本振对射频信号高速扫频频谱测量的系统及方法
JP5995450B2 (ja) 試験測定装置及び時間領域情報表示方法
JP5386061B2 (ja) 周波数成分測定装置
US9544070B2 (en) Frequency-converting sensor and system for providing a radio frequency signal parameter
US7936162B2 (en) Measured-signal repetition frequency detection method, and sampling apparatus and waveform observation system using the method
CN214503748U (zh) 一种频标比对装置
KR101962018B1 (ko) 신호 검출기 장치 및 방법
US7629795B2 (en) Vector impedance measurement system and method of using same
CN106199184B (zh) 一种具有快速锁相功能的频谱分析仪
US4409544A (en) Instruments for measurement of carrier power and antenna impedance in AM broadcasting
CN104535838A (zh) 一种相频特性检测器及检测相频特性的方法
CN110995368A (zh) 针对频谱仪进行功率快速校准的电路结构及其方法
JP2008196875A (ja) 光パワー計測装置及び該装置を備えた光信号受信装置
US4138645A (en) Wideband signal calibration system
CN109932564B (zh) 一种集成跟踪源的频谱分析仪
US3182254A (en) Intermodulation distortion analyzer for plotting second and third order components
CN214473606U (zh) 一种双通道频谱分析仪
WO1986006174A1 (en) Heterodyne-type method and apparatus for measuring signals, having means for automatically correcting the detuning
JP2008232809A (ja) スペクトラムアナライザ
RU2310874C1 (ru) Устройство для наблюдения и измерения амплитудно-частотных и фазочастотных характеристик четырехполюсников с преобразователем частоты

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant