CN211274240U - 一种非接触式中空纤维膜渗透量的测量装置 - Google Patents
一种非接触式中空纤维膜渗透量的测量装置 Download PDFInfo
- Publication number
- CN211274240U CN211274240U CN201921808583.5U CN201921808583U CN211274240U CN 211274240 U CN211274240 U CN 211274240U CN 201921808583 U CN201921808583 U CN 201921808583U CN 211274240 U CN211274240 U CN 211274240U
- Authority
- CN
- China
- Prior art keywords
- hollow fiber
- fiber membrane
- container
- membrane
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 185
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 158
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 44
- 238000005303 weighing Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 abstract description 13
- 238000004821 distillation Methods 0.000 abstract description 10
- 238000005259 measurement Methods 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 7
- 238000002360 preparation method Methods 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 7
- 238000001764 infiltration Methods 0.000 abstract description 6
- 230000008595 infiltration Effects 0.000 abstract description 6
- 238000010408 sweeping Methods 0.000 abstract description 6
- 239000000523 sample Substances 0.000 abstract description 3
- 238000012546 transfer Methods 0.000 description 8
- 230000003321 amplification Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 238000003860 storage Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本实用新型涉及一种非接触式中空纤维膜渗透量的测量装置,包括第一容器、中空纤维膜、第二容器、距离调节装置、风扇、红外测温仪和称重装置,第一容器连通中空纤维膜一端,中空纤维膜另一端连通第二容器,第一容器和第二容器之间距离通过距离调节装置调节,中空纤维膜水平设置;风扇位于中空纤维膜一侧且朝向中空纤维膜中部,红外测温仪与中空纤维膜对应设置,称重装置用于称量从第一容器渗透到第二容器中的热水质量。本实用新型无需制作复杂的膜组件,不需测量掠过中空纤维膜组件两侧空气的温湿度差值,准备过程和测量过程简单,能够测量单根或少量中空纤维膜的渗透量,能够更好地探究中空纤维膜接触器在气扫式膜蒸馏过程中的放大效应。
Description
技术领域
本实用新型涉及测量技术领域,特别是涉及一种非接触式中空纤维膜渗透量的测量装置。
背景技术
膜蒸馏由于其潜在的商业价值,受到了越来越多的关注。渗透量是单位时间单位膜面积的产水量。在研究膜蒸馏的过程中,渗透量是必须测量的一个关键参数,往往需要在不同的标准和条件下测量不同膜的渗透量。
现有技术中中空纤维膜渗透量的测量装置包括由数百上千根的中空纤维膜组成的膜组件,膜组件一端连通第一容器,另一端连通第二容器,膜组件水平设置。第二容器首先清空,然后在第一容器装上热水,第一容器中的热水经过膜组件渗透后,进入到第二容器中。
该装置包括温度传感器,需要安装在第一容器和第二容器上进行温度测量,还需要使用流量计和湿度计分别测量掠过膜组件周围的空气流量和相对湿度等参数,最后对测得的各个参数通过传质公式计算得到膜组件渗透量。
现有技术存在以下技术问题:
1.需要制作由数百上千根中空纤维膜组成的膜组件,准备过程繁琐;
2.只能测量多根测量中空纤维膜组成的中空纤维膜束,无法比较准确测量单根中空纤维膜的渗透量,无法很好地探究中空纤维膜接触器在气扫式膜蒸馏过程中的放大效应,无法直接比较不同的实验结果。
实用新型内容
针对现有技术中存在的技术问题,本实用新型的目的是:提供一种非接触式中空纤维膜渗透量的测量装置,通过该装置可以测量单根中空纤维膜的渗透量,无需制作复杂的膜组件,准备过程简单,能够更好地探究中空纤维膜接触器在气扫式膜蒸馏过程中的放大效应,可以直接比较不同的实验结果。
为了达到上述目的,本实用新型采用如下技术方案:
一种非接触式中空纤维膜渗透量的测量装置,包括第一容器、中空纤维膜、第二容器、距离调节装置、风扇、红外测温仪和称重装置,第一容器连通中空纤维膜一端,中空纤维膜另一端连通第二容器,第一容器和第二容器之间距离通过距离调节装置调节,中空纤维膜水平设置;风扇位于中空纤维膜一侧且朝向中空纤维膜中部,红外测温仪与中空纤维膜对应设置,称重装置用于称量从第一容器渗透到第二容器中的热水质量。
进一步,距离调节装置调节包括拉力机,拉力机设有移动端和固定端,移动端可拆卸地连接于第一容器,固定端可拆卸地连接于第二容器。
进一步,拉力机设有底座、第一支撑器和第二支撑器,移动端为第一支撑器,固定端为第二支撑器,第一支撑器滑动连接于底座,第二支撑器固接于底座。
进一步,第一支撑器固接有第一虎钳,第二支撑器上固接有第二虎钳,第一虎钳可拆卸地连接于第一容器,第二虎钳可拆卸地连接于第二容器。
进一步,拉力机移动端停止移动时,拉力机读数为0.2-0.4N。
进一步,风扇吹向中空纤维膜的风路与中空纤维膜延伸方向垂直。
总的说来,本实用新型具有如下优点:
现有技术的中空纤维膜渗透量测量装置包括制作复杂的膜组件,准备过程复杂,测量过程中需要使用温度计和湿度计测量掠过中空纤维膜组件两侧空气的温湿度差值,需要准备测量器件较多,步骤繁杂。如果组件只包括单根中空纤维膜的话,掠过中空纤维膜两侧空气的温湿度差值不够明显,导致最终的测量精度不高,因此现有技术的测量方法无法比较准确测量单根中空纤维膜的渗透量,无法很好地探究中空纤维膜接触器在气扫式膜蒸馏过程中的放大效应,无法直接比较不同的实验结果。本实用新型无需制作复杂的膜组件,不需测量掠过中空纤维膜组件两侧空气的温湿度差值,也不需要使用湿度计,准备过程和测量过程简单,能够测量单根或少量中空纤维膜的渗透量,能够更好地探究中空纤维膜接触器在气扫式膜蒸馏过程中的放大效应。
附图说明
图1为本实用新型实施例的立体结构示意图。
图2为中空纤维膜侧部进气侧和出气侧的示意图。
图3为中空纤维膜横截面的能量传递示意图。
图4为本实用新型实施例中测试方法的温度定义示意图。
附图标记说明:
1——拉力机、11——第一支撑器、12——第一虎钳、13——第二支撑器、14——第二虎钳;2——第一容器;3——第二容器;4——中空纤维膜;5——储水杯;6——风扇;7——红外测温仪。
具体实施方式
下面来对本实用新型做进一步详细的说明。
如图1所示,一种非接触式中空纤维膜渗透量的测量装置,包括第一容器2、中空纤维膜4、第二容器3、距离调节装置、风扇6、红外测温仪7和称重装置,第一容器2连通中空纤维膜4一端,中空纤维膜4另一端连通第二容器3,第一容器2和第二容器3之间距离通过距离调节装置调节,中空纤维膜4水平设置;风扇6位于中空纤维膜4一侧且朝向中空纤维膜4中部,红外测温仪7与中空纤维膜4对应设置,称重装置用于称量从第一容器2渗透到第二容器3中的热水质量。
具体地,关闭风扇6,在第一容器2中加入热水,中空纤维膜4膜壁温度逐渐升高。当中空纤维膜4外壁温度达到设定值时,清空第二容器3,开始计时,经过时间段Δt后,称量第二容器3中的热水获得第二容器3中的热水质量m1。本实施例中,称重装置为天平。
启动风扇6,中空纤维膜4外壁温度逐渐降低,待中空纤维膜4外壁温度稳定后,测量中空纤维膜4外壁与第一容器2接触处获得进口水温Tfin2,测量中空纤维膜4外壁与第二容器3接触处获得出口水温Tfout2,测量中空纤维膜4外壁前端部获得中空纤维膜4进口壁温Tmin2,测量中空纤维膜4外壁尾部获得出口壁温Tmout2。
如图2所示,箭头指向中空纤维膜4的一侧为风扇6位置,即中空纤维膜4侧部进气侧,箭头远离中空纤维膜4的一侧为出气侧。其中Wfin、Tfin表示热水进口的流量和温度;Wfout、Tfout表示热水出口的流量和温度。中空纤维膜4外壁前端部指的是中空纤维膜4外壁靠近第一容器2的部位;中空纤维膜4外壁尾部指的是中空纤维膜4外壁靠近第二容器3的部位。如图4所示,进口水温Tfin由中空纤维膜4外壁与第一容器2接触处表面温度代表,出口水温Tfout由中空纤维膜4外壁与第二容器3接触处表面温度代表。进口壁温测量点位于距离第一容器2后10mm的中空纤维膜4外壁,出口壁温测量点位于距离第二容器3前10mm的中空纤维膜4外壁。
现有技术的渗透量测量装置包括制作复杂的膜组件,准备过程复杂,测量过程中需要使用温度计和湿度计测量掠过中空纤维膜4组件两侧空气的温湿度差值,需要准备测量器件较多,步骤繁杂。如果组件只包括单根中空纤维膜4的话,掠过中空纤维膜4两侧空气的温湿度差值不够明显,导致最终的测量精度不高,因此现有技术的测量装置无法比较准确测量单根中空纤维膜4的渗透量,无法很好地探究中空纤维膜4接触器在气扫式膜蒸馏过程中的放大效应,无法直接比较不同的实验结果。
本实用新型装置无需制作复杂的膜组件,不需测量掠过中空纤维膜4组件两侧空气的温湿度差值,也不需要使用湿度计,准备过程和测量过程简单,只需在关闭风扇6和启动风扇6的情况下测得少量几个参数,就能够基于热量守恒的原理,通过公式计算获得中空纤维膜4渗透量,能够测量单根或少量中空纤维膜4的渗透量,能够更好地探究中空纤维膜4接触器在气扫式膜蒸馏过程中的放大效应。
中空纤维膜4的渗透量会受到中空纤维膜4张紧程度的影响。当中空纤维膜4没有被拉直时,中空纤维膜4的摆动会增加液体在中空纤维膜4内以及空气在中空纤维膜4侧部的流动阻力,导致测得的渗透量值偏小,无法得到比较准确的渗透量。若应用于实际生产中,会使得中空纤维膜4组件的渗透量降低,影响蒸馏的效率。本实用新型利用距离调节装置将中空纤维膜4拉直且不拉伸,能够精确控制中空纤维膜4张力,能够保持中空纤维膜4的长度是一个定值,有利得到精确的测量结果,并且保证不同试验下中空纤维膜4的张紧状态相当,可以直接比较不同的实验结果。
本实用新型测量的主要数据是进出中空纤维膜4的水温并计算差值,这个差值是热水的热量损失引起的。热水的热量损失包括中空纤维膜4内对流换热、中空纤维膜4的热传导、热水的蒸发和中空纤维膜4的辐射以及中空纤维膜4侧部的对流换热。由于中空纤维膜4的温度较低,辐射传热可以忽略。如图3所示,中空纤维膜4进出口的热量损失主要是由于水蒸气蒸发ΔQCOV和中空纤维膜4外表面空气对流带走热量ΔQLat导致,通过热量守恒计算可以获得蒸发潜热导致的热量损失,从而计算出渗透量。
距离调节装置调节包括拉力机1,拉力机1设有移动端和固定端,移动端可拆卸地连接于第一容器2,固定端可拆卸地连接于第二容器3。
具体地,拉力机1设有底座,拉力机1的移动端为第一支撑器11,第一支撑器11滑动连接于底座,第一支撑器11上固接有第一虎钳12;拉力机1的固定端为第二支撑器13,第二支撑器13上固接有第二虎钳14,第二支撑器13固定在底座上。利用拉力机1可以精确地调节第一容器2和第二容器3之间距离,能够保证中空纤维膜4处于拉直且不拉伸状态,测量得到的渗透量结果比较准确。
本实施例中,第一容器2为入口盒子,由第一虎钳12夹持;第二容器3为出口盒子,由第二虎钳14夹持。当第一支撑器11在底座上朝远离第二支撑器13方向滑动时,中空纤维膜4被入口盒子和出口盒子拉直并不拉伸。
出口盒子连接有储水杯5,出口盒子内的热水能够流到储水杯5内。储水杯5能够取下以倒出里面的热水进行称量。出口盒子起到支撑中空纤维膜4的作用。
拉力机1移动端停止移动时,拉力机1读数为0.2-0.4N。即中空纤维膜4张力处于0.2-0.4N。在这个数值范围内,中空纤维膜4处于拉直且不拉伸状态,测量得到的渗透量结果比较准确。
风扇6吹向中空纤维膜4的风路与中空纤维膜4延伸方向垂直。风以这个方向吹向中空纤维膜4中部,既能提供中空纤维膜4侧部的来风,能够及时带走中空纤维膜4中部的蒸发量,又不会对中空纤维膜4两端的温度造成太大影响,有利于得到准确的测量结果。
本实用新型的工作过程如下:调节第一容器2和第二容器3之间距离,使中空纤维膜4处于水平拉直状态,且中空纤维膜4中部正对风扇6;
关闭风扇6,在第一容器2中加入热水,中空纤维膜4外壁温度逐渐升高。当中空纤维膜4外壁温度稳定后,清空第二容器3,开始计时;经过时间段Δt后,用天平对第二容器3中的热水进行称量,获得渗透热水质量参数m1;
启动风扇6,中空纤维膜4外壁温度逐渐降低,待中空纤维膜4外壁温度稳定后,用红外测温仪7测量中空纤维膜4外壁与第一容器2接触处获得进口水温Tfin2,测量中空纤维膜4外壁与第二容器3接触处获得出口水温Tfout2,测量中空纤维膜4外壁前端部获得中空纤维膜4进口壁温Tmin2,测量中空纤维膜4外壁尾部获得出口壁温Tmout2。
利用m1’=m1/Δt求得无风质量流率m1’;
利用Q=Cm1’(Tfin2-Tfout2)求得总热量损失Q。
利用Rep=DUpρp/μp求得中空纤维膜4周围空气的雷诺数Rep,其中D为中空纤维膜4的外径,Up为风扇6的风速;
利用Q对=hAΔT求得对流传热量Q对。
利用Q潜=Q-Q对求得潜热Q潜;
本实用新型的工作过程可通过质量守恒法验证其准确性。质量守恒法即分别测量关闭风扇6时第二容器3的无风质量流率m1’和开启风扇6时第二容器3的有风质量流率m2’,m1’减去m2’得到的差值即为中空纤维膜4的渗透量。
其中,有风质量流率m2’获得步骤如下,
启动风扇6,中空纤维膜4外壁温度逐渐降低,待中空纤维膜4外壁温度稳定后,清空第二容器3并开始计时,经过时间段Δt后测量第二容器3中的热水,得到有风渗透热水质量参数m2。本实施例中,将第二容器3中的热水倒出用天平称量。
利用m2’=m2/Δt求得有风质量流率m2’。
实验表明,利用本发明测量方法得到中空纤维膜4的渗透量与基于质量守恒下测得的渗透量之间的差值在误差允许的范围内。
上述实施例为本实用新型较佳的实施方式,但本实用新型的实施方式并不受上述实施例的限制,其他的任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本实用新型的保护范围之内。
Claims (6)
1.一种非接触式中空纤维膜渗透量的测量装置,其特征在于:包括第一容器、中空纤维膜、第二容器、距离调节装置、风扇、红外测温仪和称重装置,第一容器连通中空纤维膜一端,中空纤维膜另一端连通第二容器,第一容器和第二容器之间距离通过距离调节装置调节,中空纤维膜水平设置;风扇位于中空纤维膜一侧且朝向中空纤维膜中部,红外测温仪与中空纤维膜对应设置,称重装置用于称量从第一容器渗透到第二容器中的热水质量。
2.按照权利要求1所述的一种非接触式中空纤维膜渗透量的测量装置,其特征在于:距离调节装置调节包括拉力机,拉力机设有移动端和固定端,移动端可拆卸地连接于第一容器,固定端可拆卸地连接于第二容器。
3.按照权利要求2所述的一种非接触式中空纤维膜渗透量的测量装置,其特征在于:拉力机设有底座、第一支撑器和第二支撑器,移动端为第一支撑器,固定端为第二支撑器,第一支撑器滑动连接于底座,第二支撑器固接于底座。
4.按照权利要求3所述的一种非接触式中空纤维膜渗透量的测量装置,其特征在于:第一支撑器固接有第一虎钳,第二支撑器上固接有第二虎钳,第一虎钳可拆卸地连接于第一容器,第二虎钳可拆卸地连接于第二容器。
5.按照权利要求2所述的一种非接触式中空纤维膜渗透量的测量装置,其特征在于:拉力机移动端停止移动时,拉力机读数为0.2-0.4N。
6.按照权利要求1所述的一种非接触式中空纤维膜渗透量的测量装置,其特征在于:风扇吹向中空纤维膜的风路与中空纤维膜延伸方向垂直。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921808583.5U CN211274240U (zh) | 2019-10-25 | 2019-10-25 | 一种非接触式中空纤维膜渗透量的测量装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921808583.5U CN211274240U (zh) | 2019-10-25 | 2019-10-25 | 一种非接触式中空纤维膜渗透量的测量装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211274240U true CN211274240U (zh) | 2020-08-18 |
Family
ID=72027703
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921808583.5U Expired - Fee Related CN211274240U (zh) | 2019-10-25 | 2019-10-25 | 一种非接触式中空纤维膜渗透量的测量装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211274240U (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110639367A (zh) * | 2019-10-25 | 2020-01-03 | 华南理工大学 | 一种非接触式中空纤维膜渗透量的测量方法和装置 |
-
2019
- 2019-10-25 CN CN201921808583.5U patent/CN211274240U/zh not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110639367A (zh) * | 2019-10-25 | 2020-01-03 | 华南理工大学 | 一种非接触式中空纤维膜渗透量的测量方法和装置 |
CN110639367B (zh) * | 2019-10-25 | 2023-10-13 | 华南理工大学 | 一种非接触式中空纤维膜渗透量的测量方法和装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105928592A (zh) | 快速检定pVTt法气体流量标准装置与检定方法 | |
CN202939322U (zh) | 双流法标定探空仪湿度动态响应特性的装置 | |
CN211274240U (zh) | 一种非接触式中空纤维膜渗透量的测量装置 | |
CN107843315A (zh) | 一种流量计检定装置及其检定方法 | |
US20130060491A1 (en) | Thermal Mass Flow Meter | |
CN102998720A (zh) | 一种双流法标定探空仪湿度动态响应特性的方法及装置 | |
JP4799566B2 (ja) | 気体流量計較正スタンド | |
CN104215660B (zh) | 一种可同时测固体材料导热系数及热扩散率的方法及系统 | |
CN106441472A (zh) | 一种恒功率型热式气体流量计温度漂移抑制方法 | |
CN106840952A (zh) | 车载lng气瓶绝热性能的检测方法 | |
CN105784926B (zh) | 高湿气流含湿量测量用装置和方法 | |
WO2005080926A1 (en) | Method for measuring mass flow of a multi-component gas | |
CN215640707U (zh) | 一种硅基负极浆料产气速率的测量装置 | |
Wright et al. | Gas flowmeter calibrations with the 34 L and 677 L PVTt standards | |
CN111933974B (zh) | 一种燃料电池增湿反应气体的露点温度的测试方法 | |
CN211179761U (zh) | 标准湿度发生装置 | |
CN110639367B (zh) | 一种非接触式中空纤维膜渗透量的测量方法和装置 | |
CN205808740U (zh) | 一种加油机检定装置的计量容器结构 | |
CN112557240A (zh) | 一种烟气湿度测试仪校准装置和方法 | |
Bignell | Using small sonic nozzles as secondary flow standards | |
CN209198250U (zh) | 一体式自动含水率测定仪 | |
CN218035289U (zh) | 一种scr脱硝催化剂磨损测试台风量自动标定系统 | |
Zvizdic et al. | New primary dew-point generators at HMI/FSB-LPM in the Range from− 70° C to+ 60° C | |
CN110850040A (zh) | 湿度仪检验方法及标准湿度发生装置和方法 | |
RU2364842C1 (ru) | Способ поверки расходомера газа и устройство для его реализации |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200818 |
|
CF01 | Termination of patent right due to non-payment of annual fee |