CN106441472A - 一种恒功率型热式气体流量计温度漂移抑制方法 - Google Patents

一种恒功率型热式气体流量计温度漂移抑制方法 Download PDF

Info

Publication number
CN106441472A
CN106441472A CN201610860750.5A CN201610860750A CN106441472A CN 106441472 A CN106441472 A CN 106441472A CN 201610860750 A CN201610860750 A CN 201610860750A CN 106441472 A CN106441472 A CN 106441472A
Authority
CN
China
Prior art keywords
temperature
gas flowmeter
coefficient
value
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610860750.5A
Other languages
English (en)
Inventor
顾宇
叶寒生
韩忠俊
周长林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HEFEI COMATE INTELLIGENT SENSOR TECHNOLOGY Co Ltd
Original Assignee
HEFEI COMATE INTELLIGENT SENSOR TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HEFEI COMATE INTELLIGENT SENSOR TECHNOLOGY Co Ltd filed Critical HEFEI COMATE INTELLIGENT SENSOR TECHNOLOGY Co Ltd
Priority to CN201610860750.5A priority Critical patent/CN106441472A/zh
Publication of CN106441472A publication Critical patent/CN106441472A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/04Compensating or correcting for variations in pressure, density or temperature of gases to be measured

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Flowmeters (AREA)

Abstract

本发明公开了一种恒功率型热式气体流量计温度漂移抑制方法,所述方法包括以下步骤:记录下热式气体流量计校验时实验室的环境温度值;记录下热式气体流量计使用现场的环境温度值并与实验室的环境温度值进行比较得出温度差;针对相应介质分析得出介质比热容系数,通过计算得出温度补偿系数,通过测量得出初始化偏差;通过对得出的介质比热容系数、温度补偿系数、初始化偏差计算得出补偿值;将计算得出的补偿值与实际的测量值进行相加得到实际修正之后的测量值。本发明通过上述补偿方式进行补偿,可以很好的抑制因校验温度与实际的环境温度不同而导致的零点漂移,有效的对流量计进行温度补偿,抑制零点漂移,提高了产品的测量精度和稳定性。

Description

一种恒功率型热式气体流量计温度漂移抑制方法
技术领域
本发明属于流量检测领域,尤其涉及一种恒功率型热式气体流量计温度漂移抑制方法。
背景技术
常见的热式流量计探头均有两个铂电阻,一个作为有源元件(速度探头)被加热,另一个作为参考元件(温度探头)不被加热。根据热力学原理,提供给加热探头的功率等于流动的气体对流换热带走的能量。即:
Iw 2Rw=hAs(Tw-Tf)
其中Iw为通过加热探头的电流,Rw为加热探头的电阻,h是表面传热系数,As是探头的表面积,Tw是加热探头的温度,Tf是温度探头所测的气体温度。
hAs可表示如下:
hAs=A+B*qm 1/2
其中A,B为经验常数,qm为气体的质量流量。由上述得出:
可以看出,在Tf一定的条件下,流体的流量qm是电流Iw和温度Tw的函数,保持Tw不变即为恒温差测量,保持Iw不变即为恒功率测量。由于恒功率型具有工作电流小、使用寿命长等优点逐渐开始应用于各个领域。但在工程应用中,恒功率型热式流量计经常会遇到由于测量介质温度的变化而带来测量误差增大的问题。出现此类误差的原因是恒功率测量热式流量计在实际的校验过程都是根据实验室的温度进行校验,可是实际现场使用的环境温度跟校验时的环境温度肯定会有所差别,从而导致零点漂移,测量误差的增大。
发明内容
本发明的目的在于克服现有技术存在的以上问题,提供一种恒功率型热式气体流量计温度漂移抑制方法,有效的对流量计进行温度补偿,抑制零点漂移,提高了产品的测量精度和稳定性。
为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
一种恒功率型热式气体流量计温度漂移抑制方法,所述方法包括以下步骤:
S1:记录下热式气体流量计校验时实验室的环境温度值;
S2:记录下热式气体流量计使用现场的环境温度值并与实验室的环境温度值进行比较得出温度差;
S3:针对相应介质分析得出介质比热容系数,通过计算得出温度补偿系数,通过测量得出初始化偏差;
S4:通过对得出的介质比热容系数、温度补偿系数、初始化偏差计算得出补偿值;
S5:将计算得出的补偿值与实际的测量值进行相加得到实际修正之后的测量值。
进一步地,所述实际修正之后的测量值即为通过零点漂移抑制之后的测量值。
进一步地,所述S3中温度补偿系数的计算公式为:
b=R0(α'Is-αIf)ΔT=R0I(α'-α)ΔT
其中,ΔT=Tc-Tf,b为温度补偿系数,R0为铂电阻在0℃时的电阻值;If为温度探头的工作电流;α为温度探头铂电阻的温度系数;Is为速度探头的工作电流;α'为速度探头铂电阻的温度系数;Tf为校验时温度,Tc为实际使用过程中的环境温度;
所述S3中初始化偏差为关闭加热器的情况下,参考温度传感器和加热传感器之间所引入的偏差;
当系统通过激励电流校准后,所述初始化偏差值为0。
进一步地,所述S4中补偿值的计算公式为:
V'=a*(Tc-Tf)2+b*(Tc-Tf)+c
其中,V'为补偿值,Tf为校验时温度,Tc为实际使用过程中的环境温度,a为介质比热容系数,b为温度补偿系数,c为初始化偏差。
本发明的有益效果是:
本发明通过上述补偿方式进行补偿,就可以很好的抑制因校验温度与实际的环境温度不同而导致的零点漂移,有效的对流量计进行温度补偿,抑制零点漂移,提高了产品的测量精度和稳定性。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明的方法流程图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
对于恒功率热式气体流量计来说,一个作为有源元件(速度探头)被加热,另一个作为参考元件(温度探头)不被加热,一般均同时采集参考温度值、加热温度值,则温度探头和速度探头采集的电压值可表示为:
Vf=R0If[1+α(Tf+ΔT)]
Vs=R0Is[1+α'(Tf+Ts+ΔT)]
ΔT=Tc-Tf
其中Vf为温度探头采集的电压值;Vs为速度探头采集的电压值;R0为铂电阻在0℃时的电阻值;If为温度探头的工作电流;α为温度探头铂电阻的温度系数;Is为速度探头的工作电流;α'为速度探头铂电阻的温度系数;Tf为校验时温度;Ts为速度探头的温度;Tc为实际使用过程中的环境温度。在校验的过程中,可先关闭加热器,然后通过调节Is If,使得R0If[1+αTf]=R0Is[1+α'Tf];仪表工作时实际计算的是两个探头的温度差,则有:
ΔV=Vs-Vf=R0Isα'Ts+R0(α'Is-αIf)ΔT
若Is=If,则有R0(α'Is-αIf)ΔT=R0I(α'-α)ΔT
其中R0Isα'Ts表示速度探头加热温度,R0I(α'-α)ΔT表示由环境温度相比校验温度的改变所引起的温度差所引入的测量偏差,根据以上的现场环境温度导致测试误差的根本原因以及测量误差。
针对以上误差问题,如图1所示,提出了一种恒功率型热式气体流量计温度漂移抑制方法,所述方法包括以下步骤:
S1:记录下热式气体流量计校验时实验室的环境温度值;
S2:记录下热式气体流量计使用现场的环境温度值并与实验室的环境温度值进行比较得出温度差;
S3:针对相应介质分析得出介质比热容系数,通过计算得出温度补偿系数,通过测量得出初始化偏差;
S4:通过对得出的介质比热容系数、温度补偿系数、初始化偏差计算得出补偿值;
S5:将计算得出的补偿值与实际的测量值进行相加得到实际修正之后的测量值,实际修正之后的测量值即为通过零点漂移抑制之后的测量值。
其中,S3中温度补偿系数的计算公式为:
b=R0(α'Is-αIf)ΔT=R0I(α'-α)ΔT
其中,ΔT=Tc-Tf,b为温度补偿系数,R0为铂电阻在0℃时的电阻值;If为温度探头的工作电流;α为温度探头铂电阻的温度系数;Is为速度探头的工作电流;α'为速度探头铂电阻的温度系数;Tf为校验时温度,Tc为实际使用过程中的环境温度;
所述S3中初始化偏差为关闭加热器的情况下,参考温度传感器和加热传感器之间所引入的偏差;
当系统通过激励电流校准后,所述初始化偏差值为0。
其中,S4中补偿值的计算公式为:
V'=a*(Tc-Tf)2+b*(Tc-Tf)+c
其中,V'为补偿值,Tf为校验时温度,Tc为实际使用过程中的环境温度,a为介质比热容系数,b为温度补偿系数,c为初始化偏差。
本发明通过上述补偿方式进行补偿,就可以很好的抑制因校验温度与实际的环境温度不同而导致的零点漂移,有效的对流量计进行温度补偿,抑制零点漂移,提高了产品的测量精度和稳定性。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (4)

1.一种恒功率型热式气体流量计温度漂移抑制方法,其特征在于,所述方法包括以下步骤:
S1:记录下热式气体流量计校验时实验室的环境温度值;
S2:记录下热式气体流量计使用现场的环境温度值并与实验室的环境温度值进行比较得出温度差;
S3:针对相应介质分析得出介质比热容系数,通过计算得出温度补偿系数,通过测量得出初始化偏差;
S4:通过对得出的介质比热容系数、温度补偿系数、初始化偏差计算得出补偿值;
S5:将计算得出的补偿值与实际的测量值进行相加得到实际修正之后的测量值。
2.根据权利要求1所述的一种恒功率型热式气体流量计温度漂移抑制方法,其特征在于:所述实际修正之后的测量值即为通过零点漂移抑制之后的测量值。
3.根据权利要求1所述的一种恒功率型热式气体流量计温度漂移抑制方法,其特征在于:所述S3中温度补偿系数的计算公式为:
b=R0(α'Is-αIf)ΔT=R0I(α'-α)ΔT
其中,ΔT=Tc-Tf,b为温度补偿系数,R0为铂电阻在0℃时的电阻值;If为温度探头的工作电流;α为温度探头铂电阻的温度系数;Is为速度探头的工作电流;α'为速度探头铂电阻的温度系数;Tf为校验时温度,Tc为实际使用过程中的环境温度;
所述S3中初始化偏差为关闭加热器的情况下,参考温度传感器和加热传感器之间所引入的偏差;
当系统通过激励电流校准后,所述初始化偏差值为0。
4.根据权利要求1所述的一种恒功率型热式气体流量计温度漂移抑制方法,其特征在于:所述S4中补偿值的计算公式为:
V'=a*(Tc-Tf)2+b*(Tc-Tf)+c
其中,V'为补偿值,Tf为校验时温度,Tc为实际使用过程中的环境温度,a为介质比热容系数,b为温度补偿系数,c为初始化偏差。
CN201610860750.5A 2016-09-28 2016-09-28 一种恒功率型热式气体流量计温度漂移抑制方法 Pending CN106441472A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610860750.5A CN106441472A (zh) 2016-09-28 2016-09-28 一种恒功率型热式气体流量计温度漂移抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610860750.5A CN106441472A (zh) 2016-09-28 2016-09-28 一种恒功率型热式气体流量计温度漂移抑制方法

Publications (1)

Publication Number Publication Date
CN106441472A true CN106441472A (zh) 2017-02-22

Family

ID=58171066

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610860750.5A Pending CN106441472A (zh) 2016-09-28 2016-09-28 一种恒功率型热式气体流量计温度漂移抑制方法

Country Status (1)

Country Link
CN (1) CN106441472A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190049278A1 (en) * 2017-08-14 2019-02-14 Azbil Corporation Thermal type flowmeter
CN110081943A (zh) * 2019-04-17 2019-08-02 中国石油化工股份有限公司 一种科氏力质量流量计温度补偿的方法
CN111504428A (zh) * 2020-06-12 2020-08-07 合肥科迈捷智能传感技术有限公司 一种热式气体流量计快速标定方法
CN112432675A (zh) * 2020-11-04 2021-03-02 合肥科迈捷智能传感技术有限公司 一种基于位置传感器的差压流量计零点偏置自动修正方法
CN113155218A (zh) * 2021-04-17 2021-07-23 锦州精微仪表有限公司 变功率热式质量流量计及其标定方法
CN114184724A (zh) * 2022-02-15 2022-03-15 华谱科仪(北京)科技有限公司 一种色谱仪载气流量补偿方法、装置及其存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519527A (zh) * 2011-12-16 2012-06-27 哈尔滨四远测控技术有限责任公司 热式恒功率气体流量计
CN104215280A (zh) * 2014-10-08 2014-12-17 王可崇 可抑制温度漂移的应变靶式流量计
CN104990954A (zh) * 2015-07-23 2015-10-21 中国石油大学(华东) 一种液体比热容实验测量系统
CN105527038A (zh) * 2015-12-02 2016-04-27 湖南威铭能源科技有限公司 铂热电阻传感器误差修正方法和用该方法测温的热量表

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519527A (zh) * 2011-12-16 2012-06-27 哈尔滨四远测控技术有限责任公司 热式恒功率气体流量计
CN104215280A (zh) * 2014-10-08 2014-12-17 王可崇 可抑制温度漂移的应变靶式流量计
CN104990954A (zh) * 2015-07-23 2015-10-21 中国石油大学(华东) 一种液体比热容实验测量系统
CN105527038A (zh) * 2015-12-02 2016-04-27 湖南威铭能源科技有限公司 铂热电阻传感器误差修正方法和用该方法测温的热量表

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
顾宇 等: "一种恒功率热式气体流量计温度补偿实现", 《仪表技术与传感器》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190049278A1 (en) * 2017-08-14 2019-02-14 Azbil Corporation Thermal type flowmeter
CN109387255A (zh) * 2017-08-14 2019-02-26 阿自倍尔株式会社 热式流量计
CN110081943A (zh) * 2019-04-17 2019-08-02 中国石油化工股份有限公司 一种科氏力质量流量计温度补偿的方法
CN110081943B (zh) * 2019-04-17 2020-08-07 中国石油化工股份有限公司 一种科氏力质量流量计温度补偿的方法
CN111504428A (zh) * 2020-06-12 2020-08-07 合肥科迈捷智能传感技术有限公司 一种热式气体流量计快速标定方法
CN111504428B (zh) * 2020-06-12 2022-05-10 合肥科迈捷智能传感技术有限公司 一种热式气体流量计快速标定方法
CN112432675A (zh) * 2020-11-04 2021-03-02 合肥科迈捷智能传感技术有限公司 一种基于位置传感器的差压流量计零点偏置自动修正方法
CN112432675B (zh) * 2020-11-04 2023-10-24 合肥科迈捷智能传感技术有限公司 一种基于位置传感器的差压流量计零点偏置自动修正方法
CN113155218A (zh) * 2021-04-17 2021-07-23 锦州精微仪表有限公司 变功率热式质量流量计及其标定方法
CN114184724A (zh) * 2022-02-15 2022-03-15 华谱科仪(北京)科技有限公司 一种色谱仪载气流量补偿方法、装置及其存储介质
CN114184724B (zh) * 2022-02-15 2022-05-17 华谱科仪(北京)科技有限公司 一种色谱仪载气流量补偿方法、装置及其存储介质

Similar Documents

Publication Publication Date Title
CN106441472A (zh) 一种恒功率型热式气体流量计温度漂移抑制方法
CN102213708B (zh) 空气预热器漏风率的测试方法
CN112067304B (zh) 发动机整机试验中压气机进口流量的测量方法
GB2416394B (en) Method and apparatus for measuring fluid properties
US9671266B2 (en) Method for thermally determining mass flow of a gaseous medium and thermal mass flow meter
KR101940360B1 (ko) 유체의 질량 유량을 결정하기 위한 장치 및 방법
US20080289412A1 (en) Thermal mass flow meter and method for its operation
CN105044147A (zh) 一种近相变区冻土导热系数测定装置与方法
CN105890804B (zh) 一种提高温度受感器测量气流总温精度的方法
CN109580033A (zh) 一种混凝土坝分布式光纤测温数据误差补偿方法
CN108844589A (zh) 一种锅炉空预器漏风率计算方法
CN103134834A (zh) 一种湿蒸汽干度测量装置及方法
CN109186815A (zh) 一种低温高马赫数测试用探针温度标定装置
CN114791325A (zh) 一种用于空天飞机地面热强度舱体试验的热流标定方法
CN105021313B (zh) 聚乙烯压力管道热熔焊机温度检测装置及方法
CN109100051B (zh) 温度传感器的动态响应的温度修正方法及装置
US20140000359A1 (en) Operating a thermal anemometer flow meter
CN114880885B (zh) 一种风洞试验数据的温度效应评估与修正方法
CN108445042A (zh) 一种测量建筑外表面对流换热系数的方法
CN107101747A (zh) 一种标准温度计及其使用方法
CN106289365A (zh) 相对湿度测量传感器和水活性测量传感器的校准方法
CN105043573B (zh) 一种壁贴测温方法
CN110081943B (zh) 一种科氏力质量流量计温度补偿的方法
CN206725125U (zh) 一种标准温度计
Zhao et al. The influence of axial temperature distribution on calibration accuracy based on dry block furnace

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170222

RJ01 Rejection of invention patent application after publication