CN211122369U - A variable rod diameter Hopkinson pressure rod experimental device - Google Patents
A variable rod diameter Hopkinson pressure rod experimental device Download PDFInfo
- Publication number
- CN211122369U CN211122369U CN201920992684.6U CN201920992684U CN211122369U CN 211122369 U CN211122369 U CN 211122369U CN 201920992684 U CN201920992684 U CN 201920992684U CN 211122369 U CN211122369 U CN 211122369U
- Authority
- CN
- China
- Prior art keywords
- rod
- incident
- strain gauge
- pneumatic
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 49
- 238000010521 absorption reaction Methods 0.000 claims abstract description 19
- 238000012545 processing Methods 0.000 claims abstract description 9
- 238000002474 experimental method Methods 0.000 claims description 7
- 230000033001 locomotion Effects 0.000 claims description 7
- 239000004809 Teflon Substances 0.000 claims description 4
- 229920006362 Teflon® Polymers 0.000 claims description 4
- 238000013016 damping Methods 0.000 claims description 4
- 238000012360 testing method Methods 0.000 description 30
- 239000011435 rock Substances 0.000 description 16
- 239000004567 concrete Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 229910000617 Mangalloy Inorganic materials 0.000 description 2
- 238000003339 best practice Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- PYLLWONICXJARP-UHFFFAOYSA-N manganese silicon Chemical compound [Si].[Mn] PYLLWONICXJARP-UHFFFAOYSA-N 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 229940099259 vaseline Drugs 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
本实用新型公开一种可变杆径霍普金森压杆实验装置,装置包括三爪卡盘、发射系统、实验杆系统和数据采集处理系统;发射系统由气泵、气缸和炮筒组成,实验杆系统由撞击杆、入射杆、透射杆和吸收杆构成;入射杆、透射杆和吸收杆通过三爪卡盘依次对中夹持设置;三爪卡盘由挡板、基座、气动卡盘、径向移动棘爪、滚轮、气动调节进气口和手动调节阀组成;气动卡盘通过气动调节进气口与气泵相连接;滚轮每个径向移动棘爪的夹持端,入射杆、透射杆和吸收杆可在滚轮上滑动;所述入射杆和透射杆之间设置有试样,入射杆和透射杆上分别设置有入射杆应变片和透射杆应变片,入射杆应变片和透射杆应变片均与所述数据采集处理系统连接。
The utility model discloses a variable rod diameter Hopkinson pressure rod experimental device. The device comprises a three-jaw chuck, a launching system, an experimental rod system and a data acquisition and processing system; the launching system is composed of an air pump, a cylinder and a gun barrel. The system is composed of an impact rod, an incident rod, a transmission rod and an absorption rod; the incident rod, the transmission rod and the absorption rod are centered and clamped in turn by the three-jaw chuck; the three-jaw chuck is composed of a baffle, a base, a pneumatic chuck, It is composed of radial moving pawl, roller, pneumatic adjustment air inlet and manual adjustment valve; the pneumatic chuck is connected with the air pump through the pneumatic adjustment air inlet; the clamping end of each radially moving pawl of the roller, the incident rod, the transmission The rod and the absorption rod can slide on the roller; the sample is arranged between the incident rod and the transmission rod, and the incident rod and the transmission rod are respectively provided with the incident rod strain gauge and the transmission rod strain gauge, the incident rod strain gauge and the transmission rod The strain gauges are all connected with the data acquisition and processing system.
Description
技术领域technical field
本实用新型属于岩石动力学测试领域。具涉及一种用于测试不同尺寸岩石或混凝土试样动态力学特性和破坏行为的霍普金森压杆实验装置。The utility model belongs to the field of rock dynamics testing. The utility model relates to a Hopkinson compression bar experimental device for testing the dynamic mechanical properties and failure behavior of rock or concrete samples of different sizes.
背景技术Background technique
在诸如采矿、岩土、水利、交通、人防等土木工程以及地震、滑坡等自然灾害中都涉及到岩石、混凝土或岩体结构受冲击荷载作用以及与之有关的岩石动力学问题。因此,研究并掌握岩石和混凝土等材料的动态力学特性对于岩体工程的设计、稳定性和安全性评估具有十分重要的科学和工程实践意义。In civil engineering such as mining, geotechnical, water conservancy, transportation, civil air defense, as well as natural disasters such as earthquakes and landslides, rock, concrete or rock mass structures are affected by impact loads and related rock dynamics problems. Therefore, it is of great scientific and engineering practical significance to study and master the dynamic mechanical properties of materials such as rock and concrete for the design, stability and safety assessment of rock mass engineering.
分离式霍普金森压杆(SHPB)是用来研究材料动态力学特性的国际标准测试装置之一。近年来,基于SHPB装置,国内外学者开展了大量岩石和混凝土等材料动力学性能的试验研究,并取得了一系列的研究成果。由于岩石、混凝土等脆性材料测试要求测试试样尺寸较大 (通常试样直径要求大于试样最大组成颗粒尺寸的10倍或以上),并且岩石、混凝土等脆性材料具有明显的尺寸效应,因此,为研究不同尺寸岩石、混凝土等脆性材料的动力学特性,传统的做法是同时构建几套不同杆径的霍普金森压杆测试系统。这种做法虽然能够满足测试需要,然而因SHPB装置的造价较高且占地面积较大,容易导致经济成本的成倍增加,对于实验室用地面积紧张的科研单位更是容易造成实验室用地资源的严重浪费。Split Hopkinson Pressure Bar (SHPB) is one of the international standard test devices used to study the dynamic mechanical properties of materials. In recent years, based on the SHPB device, domestic and foreign scholars have carried out a large number of experimental studies on the dynamic properties of materials such as rock and concrete, and have achieved a series of research results. Since the test of brittle materials such as rock and concrete requires a larger size of the test sample (usually the diameter of the sample is required to be 10 times or more than the maximum particle size of the sample), and brittle materials such as rock and concrete have obvious size effects, therefore, In order to study the dynamic properties of brittle materials such as rocks and concrete of different sizes, the traditional method is to construct several sets of Hopkinson compression bar test systems with different bar diameters at the same time. Although this method can meet the testing needs, however, due to the high cost and large area of the SHPB device, it is easy to double the economic cost. serious waste.
实用新型内容Utility model content
本实用新型的目的是为了克服现有技术中的不足,开展不同直径尺寸下岩石、混凝土等脆性材料的动态冲击实验,研究岩石、混凝土等脆性材料的动态力学特性和破坏行为,提供一种可变杆径霍普金森压杆实验装置,通过设计可变杆径的三爪卡盘装置,可将不同直径的霍普金森压杆系统集中在一套测试平台上,具有显著的经济效益、科学研究和工程应用意义。The purpose of this utility model is to overcome the deficiencies in the prior art, carry out dynamic impact experiments on brittle materials such as rocks and concrete under different diameters, study the dynamic mechanical properties and failure behaviors of brittle materials such as rocks and concrete, and provide an The variable rod diameter Hopkinson pressure rod experimental device, by designing a three-jaw chuck device with variable rod diameter, can concentrate the Hopkinson pressure rod system of different diameters on a test platform, which has significant economic benefits and scientific Implications for research and engineering applications.
本实用新型的目的是通过以下技术方案实现的:The purpose of this utility model is to realize through the following technical solutions:
一种可变杆径霍普金森压杆实验装置,包括三爪卡盘、发射系统、实验杆系统和数据采集处理系统;发射系统由气泵、气缸和炮筒组成,实验杆系统由撞击杆、入射杆、透射杆和吸收杆构成;所述入射杆、透射杆和吸收杆通过三爪卡盘依次对中夹持设置;所述三爪卡盘由挡板、基座、气动卡盘、径向移动棘爪、滚轮、气动调节进气口和手动调节阀组成;所述挡板固定于基座上表面,所述气动卡盘固定于挡板的一侧,所述径向移动棘爪均匀分布于气动卡盘的外侧,气动调节进气口和手动调节阀设置于气动卡盘上,气动卡盘通过气动调节进气口与气泵相连接,可通过调节气压使径向移动棘爪沿径向移动,亦可通过旋转手动调节阀控制径向移动棘爪的运动;所述滚轮每个径向移动棘爪的夹持端,入射杆、透射杆和吸收杆可在滚轮上滑动;A variable rod diameter Hopkinson pressure rod experimental device includes a three-jaw chuck, a launching system, an experimental rod system and a data acquisition and processing system; the launching system consists of an air pump, a cylinder and a gun barrel, and the experimental rod system consists of an impact rod, The incident rod, the transmission rod and the absorption rod are composed of the incident rod, the transmission rod and the absorption rod; It is composed of a moving pawl, a roller, a pneumatic adjustment air inlet and a manual adjustment valve; the baffle is fixed on the upper surface of the base, the pneumatic chuck is fixed on one side of the baffle, and the radially moving pawl is uniform Distributed on the outside of the pneumatic chuck, the pneumatic adjustment air inlet and the manual adjustment valve are arranged on the pneumatic chuck, the pneumatic chuck is connected with the air pump through the pneumatic adjustment air inlet, and the radial movement of the pawl can be made by adjusting the air pressure. The movement of the radially moving pawl can also be controlled by rotating the manual regulating valve; the clamping end of each radially moving pawl of the roller, the incident rod, the transmission rod and the absorption rod can slide on the roller;
所述撞击杆设置于所述炮筒内,并与入射杆的入射端对齐;所述入射杆和透射杆之间设置有试样,入射杆和透射杆上分别设置有入射杆应变片和透射杆应变片,入射杆应变片和透射杆应变片均与所述数据采集处理系统连接;The impact rod is arranged in the barrel and is aligned with the incident end of the incident rod; a sample is arranged between the incident rod and the transmission rod, and the incident rod and the transmission rod are respectively provided with an incident rod strain gauge and a transmission rod. The rod strain gauge, the incident rod strain gauge and the transmission rod strain gauge are all connected with the data acquisition and processing system;
所述吸收杆的末端还设置有阻尼挡板。The end of the absorption rod is also provided with a damping baffle.
进一步的,所述径向移动棘爪的径向运动调节范围为25mm至100mm。Further, the radial movement adjustment range of the radially moving pawl is 25mm to 100mm.
进一步的,所述炮筒的内径为80~120mm。Further, the inner diameter of the barrel is 80-120 mm.
进一步的,所述撞击杆的外壁设置有特氟龙套筒。Further, the outer wall of the impact rod is provided with a Teflon sleeve.
进一步的,所述数据采集处理系统由超动态应变仪和示波器组成。Further, the data acquisition and processing system is composed of an ultra-dynamic strain gauge and an oscilloscope.
与现有技术相比,本实用新型的技术方案所带来的有益效果是:Compared with the prior art, the beneficial effects brought by the technical solution of the present utility model are:
本实用新型中的实验系统通过自行设计的三爪卡盘可将20-100mm不同直径的霍普金森压杆系统集中在一套测试平台上,克服了现有霍普金森压杆装置无法同时开展不同尺寸岩石、混凝土等脆性材料动态冲击实验研究的缺点,同时可采用气动或手动的方式微调径向移动棘爪实现系统的精确对中,从而减小实验误差。该实验系统节约场地,安装方便,经济高效,满足岩石动力试验要求和规定,具有显著的科学研究和工程应用意义。The experimental system in the utility model can collect Hopkinson pressure bar systems with different diameters of 20-100 mm on a set of test platforms through a self-designed three-jaw chuck, which overcomes the fact that the existing Hopkinson pressure bar devices cannot be simultaneously developed The shortcomings of dynamic impact experimental research on brittle materials such as rocks and concrete of different sizes, at the same time, the radial moving pawl can be fine-tuned by pneumatic or manual methods to achieve accurate centering of the system, thereby reducing the experimental error. The experimental system saves space, is easy to install, is economical and efficient, meets the requirements and regulations of rock dynamic test, and has significant scientific research and engineering application significance.
附图说明Description of drawings
图1是本实用新型实验装置的结构示意图。FIG. 1 is a schematic structural diagram of the experimental device of the present invention.
图2是三爪卡盘的三维结构示意图。FIG. 2 is a schematic diagram of the three-dimensional structure of the three-jaw chuck.
图3-1至图3-3分别为三爪卡盘的正视、侧视和俯视结构示意图。Figures 3-1 to 3-3 are the front, side and top structural schematic diagrams of the three-jaw chuck, respectively.
图4-1和图4-2分别是直径100mm与38mm实验杆系统的杆件安装状态示意图。Figure 4-1 and Figure 4-2 are the schematic diagrams of the rod installation state of the experimental rod system with a diameter of 100mm and 38mm, respectively.
图5是直径38mm撞击杆的结构示意图。Figure 5 is a schematic diagram of the structure of a 38mm diameter impact rod.
附图标记:1-气泵,2-气缸,3-炮筒,4-撞击杆,5-入射杆,6-三爪卡盘,7-入射杆应变片,8-试样,9-透射杆,10-透射杆应变片,11-吸收杆,12-阻尼挡板,13-超动态应变仪,14- 示波器,15-挡板,16-气动卡盘,17-滚轮,18-径向移动棘爪,19-基座,20-手动调节阀,21- 气动调节进气口,22-38mm撞击杆,23-特氟龙套筒。Reference numerals: 1-air pump, 2-air cylinder, 3-gun barrel, 4-impact rod, 5-incidence rod, 6-three-jaw chuck, 7-incidence rod strain gauge, 8-sample, 9-transmission rod , 10-transmissive rod strain gauge, 11-absorbing rod, 12-damping baffle, 13-super dynamic strain gauge, 14-oscilloscope, 15-baffle, 16-pneumatic chuck, 17-roller, 18-radial movement Pawl, 19- Base, 20- Manual Adjustment Valve, 21- Pneumatic Adjustment Air Inlet, 22-38mm Striker Bar, 23- Teflon Sleeve.
具体实施方式Detailed ways
以下结合附图和具体实施例对本实用新型作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。The present utility model will be described in further detail below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, and are not intended to limit the present invention.
如图1至图5所示,本实用新型涉及的一种可变杆径霍普金森压杆实验装置,包括三爪卡盘6、发射系统、实验杆系统和数据采集处理系统;发射系统由气泵1、气缸2和炮筒3组成,实验杆系统由撞击杆4、入射杆5、透射杆9和吸收杆11构成;入射杆5、透射杆9和吸收杆11通过三爪卡盘6依次对中夹持设置;三爪卡盘由挡板15、基座19、气动卡盘16、径向移动棘爪18、滚轮17、气动调节进气口21和手动调节阀20组成;挡板15固定于基座 19上表面,气动卡盘16固定于挡板15的一侧,径向移动棘爪18均匀分布于气动卡盘16的外侧,气动调节进气口21和手动调节阀20设置于气动卡盘16上,气动卡盘16通过气动调节进气口21与气泵1相连接,可通过调节气压使径向移动棘爪18沿径向移动,亦可通过旋转手动调节阀20控制径向移动棘爪18的运动,其调节范围为25mm至100mm;滚轮17每个径向移动棘爪18的夹持端,入射杆5、透射杆9和吸收杆11可在滚轮17上滑动;As shown in Figures 1 to 5, a variable rod diameter Hopkinson pressure rod experimental device involved in the present invention includes a three-jaw chuck 6, a launching system, an experimental rod system and a data acquisition and processing system; the launching system consists of The air pump 1, the cylinder 2 and the barrel 3 are composed. The experimental rod system is composed of the
撞击杆4设置于所述炮筒3内,并与入射杆5的入射端对齐;入射杆5和透射杆9之间设置有试样8,入射杆5和透射杆9上分别设置有入射杆应变片7和透射杆应变片10,入射杆应变片7和透射杆应变片10均与超动态应变仪13和示波器14连接;吸收杆11的末端还设置有阻尼挡板12。The
使用直径小于100mm的实验杆,如直径38mm撞击杆22时,可在撞击杆外围添加外径为100mm的特氟龙套筒23,以确保撞击杆能在炮筒内流畅地运动,并确保与入射杆的对心撞击。通过更换25mm至100mm不同直径的实验杆系统,即可在本实用新型专利的同一套霍普金森压杆实验平台上开展不同直径尺寸下的岩石、混凝土等脆性材料的动态冲击实验研究。When using an experimental rod with a diameter of less than 100mm, such as the
实验时,发射系统内的压缩气体推动撞击杆4撞击入射杆5产生入射应力波εI(t)并朝透射杆9方向传播。入射应力波传至入射杆5与试样8的界面时将发生透反射,一部分入射应力波反射进入入射杆形成反射拉伸波εR(t),并沿远离透射杆方向传播,剩余入射应力波穿过测试试样传递至透射杆上成为透射应力波εT(t),继续向前传播并被吸收杆吸收。入射和反射应力波信号可通过入射杆应变片7测得,透射应力波信号可通过透射杆应变片10测得。入射杆应变片7和透射杆应变片10通过与超动态应变仪13和示波器14连接,从而将实验杆上监测的应力波信号进行采集和存储。撞击完成后实验杆的能量将通过吸收杆11撞击挡板12得以吸收。During the experiment, the compressed gas in the launching system pushes the
基于一维应力波理论,根据测试过程监测的数据,试样的动态强度σ(t)、动态应变ε(t)和动态加载应变率计算如下:Based on the one-dimensional stress wave theory, according to the data monitored during the testing process, the dynamic strength σ(t), dynamic strain ε(t) and dynamic loading strain rate of the specimen The calculation is as follows:
式中:εI(t)、εR(t)和εT(t)分别表示监测的入射、反射和透射应变信号;A、E和C分别表示实验杆的横截面面积、弹性模量和纵波波速;As和LS分别表示试样的横截面面积和长度;t表示应力波的持续时间。where ε I (t), ε R (t) and ε T (t) represent the monitored incident, reflected and transmitted strain signals, respectively; A, E and C represent the cross-sectional area, elastic modulus and The longitudinal wave velocity; A s and L S represent the cross-sectional area and length of the specimen, respectively; t represents the duration of the stress wave.
由于测试时,测试试样端部和实验杆端部均被被润滑剂(例如凡士林)充分润滑,故可忽略实验杆与试样界面处因摩擦导致的能力耗散,因此,测试过程中耗散能量ES可通过入射应力波能量EI、反射应力波能量ER和透射应力波能量ET来确定,其定义如下:Since the end of the test sample and the end of the test rod are fully lubricated by lubricant (such as Vaseline) during the test, the energy dissipation caused by friction at the interface between the test rod and the test sample can be ignored. The scattered energy ES can be determined by the incident stress wave energy E I , the reflected stress wave energy E R and the transmitted stress wave energy E T , which are defined as follows:
ES=EI-ER-ET (6)E S =E I -E R -E T (6)
式中:ρ表示实验杆的密度。In the formula: ρ represents the density of the experimental rod.
最佳实施例1:Best practice 1:
步骤1:将由高强度硅锰钢制成的直径100mm,长分别为4000mm、4000mm和1000mm的入射杆5、透射杆9和吸收杆11安置在三爪卡盘6中,三爪卡盘6之间保持合适的间隔,如800mm,以减小实验杆自重对实验的影响;Step 1: Place the
步骤2:通过气动装置(或手动调节阀20)径向调节三爪卡盘6,使入射杆5、透射杆9和吸收杆11处于同一轴线上,且能流畅滑动;Step 2: radially adjust the three-jaw chuck 6 through the pneumatic device (or the manual adjustment valve 20), so that the
步骤3:在入射杆5和透射杆9的中央位置粘贴入射杆应变片7和透射杆应变片10,并将其与超动态应变仪13和示波器14连接,且确保电路通畅;Step 3: Paste the incident rod strain gauge 7 and the transmission
步骤4:待所述步骤3完毕后,进行不安装测试试样的空冲试验,以检查实验系统的可行性和可靠性(亦即校准系统);Step 4: After the above-mentioned step 3 is completed, carry out an air shock test without installing the test sample to check the feasibility and reliability of the experimental system (that is, the calibration system);
步骤5:待所述步骤4操作完毕后,将打磨且测量好尺寸的试样8两端用润滑油充分润滑后夹在入射杆5和透射杆9之间,并使试样8轴心与入射杆5和透射杆9的轴心重合;Step 5: After the operation of
步骤6:待所述步骤5完毕后,根据测试试验设计,选择合适的冲击气压开展冲击实验,试验中需要完整的记录实验测得的数据(入射杆应变片7监测的入射应变信号和反射应变信号,透射杆应变片10监测的透射应变信号);Step 6: After the
步骤7:基于一维应力波理论,结合试验实测数据,利用所述计算公式(1)至(6)对测试试样的动态力学特性和破坏行为进行计算和分析。Step 7: Calculate and analyze the dynamic mechanical properties and failure behavior of the test sample by using the calculation formulas (1) to (6) based on the one-dimensional stress wave theory and in combination with the test data.
最佳实施例2:Best practice 2:
步骤1:将由高强度硅锰钢制成的直径38mm,长2000mm、2000mm和500mm的入射杆5、透射杆9和吸收杆11安置在三爪卡盘6中,三爪卡盘6之间保持合适的间隔,如1000 mm,以减小实验杆自重对实验的影响;Step 1: Place the
步骤2:通过气动装置(或手动调节阀20)径向调节三爪卡盘6,使入射杆5、透射杆9和吸收杆11处于同一轴线上,且能流畅滑动;Step 2: radially adjust the three-jaw chuck 6 through the pneumatic device (or the manual adjustment valve 20), so that the
步骤3:在入射杆5和透射杆9的中央位置粘贴入射杆应变片7和透射杆应变片10,并将其与超动态应变仪13和示波器14连接,且确保电路通畅;Step 3: Paste the incident rod strain gauge 7 and the transmission
步骤4:待所述步骤3完毕后,进行不安装测试试样的空冲试验,以检查实验系统的可行性和可靠性(亦即校准系统);Step 4: After the above-mentioned step 3 is completed, carry out an air shock test without installing the test sample to check the feasibility and reliability of the experimental system (that is, the calibration system);
步骤5:待所述步骤4完毕后,将打磨且测量好尺寸的试样8两端用润滑油充分润滑后夹在入射杆5和透射杆9之间,并使试样8轴心与入射杆5和透射杆9的轴心重合;Step 5: After the
步骤6:待所述步骤5完毕后,根据测试试验设计,选择合适的冲击气压开展冲击实验,试验中需要完整的记录实验测得的数据(入射杆应变片7监测的入射应变信号和反射应变信号,透射杆应变片10监测的透射应变信号);Step 6: After the
步骤7:基于一维应力波理论,结合试验实测数据,利用所述计算公式(1)至(6)对测试试样的动态力学特性和破坏行为进行计算和分析。Step 7: Calculate and analyze the dynamic mechanical properties and failure behavior of the test sample by using the calculation formulas (1) to (6) based on the one-dimensional stress wave theory and in combination with the test data.
本实用新型并不限于上文描述的实施方式。以上对具体实施方式的描述旨在描述和说明本实用新型的技术方案,上述的具体实施方式仅仅是示意性的,并不是限制性的。在不脱离本实用新型宗旨和权利要求所保护的范围情况下,本领域的普通技术人员在本实用新型的启示下还可做出很多形式的具体变换,这些均属于本实用新型的保护范围之内。The present invention is not limited to the embodiments described above. The above description of the specific embodiments is intended to describe and illustrate the technical solutions of the present invention, and the above-mentioned specific embodiments are only illustrative and not restrictive. Without departing from the scope of protection of the purpose of the present invention and the claims, those of ordinary skill in the art can also make many specific transformations under the inspiration of the present invention, which all belong to the protection scope of the present invention. Inside.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920992684.6U CN211122369U (en) | 2019-06-28 | 2019-06-28 | A variable rod diameter Hopkinson pressure rod experimental device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201920992684.6U CN211122369U (en) | 2019-06-28 | 2019-06-28 | A variable rod diameter Hopkinson pressure rod experimental device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN211122369U true CN211122369U (en) | 2020-07-28 |
Family
ID=71704123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201920992684.6U Active CN211122369U (en) | 2019-06-28 | 2019-06-28 | A variable rod diameter Hopkinson pressure rod experimental device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN211122369U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110579413A (en) * | 2019-06-28 | 2019-12-17 | 天津大学 | Experimental device and method for a variable-diameter Hopkinson compression rod |
-
2019
- 2019-06-28 CN CN201920992684.6U patent/CN211122369U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110579413A (en) * | 2019-06-28 | 2019-12-17 | 天津大学 | Experimental device and method for a variable-diameter Hopkinson compression rod |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107687973B (en) | Method of Testing Rock Material Dynamic Point Load Strength Using Hopkinson Compression Bar | |
CN202145186U (en) | Incident wave reshaping mechanism for active ambient pressure SHPB (split hopkinson pressure bar) test | |
CN103604706B (en) | A kind of complicated energetic disturbance rock burst laboratory experiment method and device for carrying out said thereof | |
CN103234844B (en) | A kind of pendulum loads mid strain rate Hopkinon depression bar test unit and method | |
CN100397063C (en) | Dynamic and Static Combined Loading Rock Mechanics Experimental Device | |
CN101769837A (en) | Dynamic compression experimental method of Hopkinson pressure bar | |
CN101482472A (en) | One-dimensional lamination crack tension test method based on Hopkinson principle | |
CN104048883A (en) | Method for testing brittle material dynamic-shear fracture toughness and implementation device thereof | |
CN110579413A (en) | Experimental device and method for a variable-diameter Hopkinson compression rod | |
CN103983512B (en) | The pulling and pressing integrated experimental provision of Hopkinson | |
CN207197937U (en) | A kind of Hopkinson bar experimental provision | |
CN105716957A (en) | Universal type true-triaxial static load pre-loading system for split Hopkinson pressure bar | |
CN110320115A (en) | The Hopkinson rock lever apparatus and method of test are propagated for rock mass stress wave | |
CN206248439U (en) | One kind is used for rock impact-static(al)-Seepage-stress coupling Brazilian tension breaking test device | |
CN114383949B (en) | Method for testing bearing capacity and energy dissipation rule of rock mass containing cavity | |
CN106404519A (en) | Test device for splitting tensile fracture under impact-static-hydraulic coupling effect of rock and test method | |
CN111929150A (en) | Surrounding rock dynamics test system and method for railway tunnel under rainy mountain area | |
Yu et al. | A review of the torsional split Hopkinson bar | |
CN211122369U (en) | A variable rod diameter Hopkinson pressure rod experimental device | |
CN105547871B (en) | A kind of static pressure rock impact funnel breaking test device and method | |
CN105043903B (en) | A kind of bump/rock burst analog simulation energy storage time tank arrangement | |
CN106908312B (en) | A kind of anti-incident bar recoiling device of Hopkinson bar test | |
CN204064826U (en) | A kind of level of aggregation and vertical impact test apparatus | |
Wang et al. | Research on High‐Power and High‐Speed Hydraulic Impact Testing Machine for Mine Anti‐Impact Support Equipment | |
CN112014199A (en) | A rock variable angle shearing device and its test method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |