CN210745840U - Heat pipe radiator applied to 5G base station - Google Patents
Heat pipe radiator applied to 5G base station Download PDFInfo
- Publication number
- CN210745840U CN210745840U CN201921752062.2U CN201921752062U CN210745840U CN 210745840 U CN210745840 U CN 210745840U CN 201921752062 U CN201921752062 U CN 201921752062U CN 210745840 U CN210745840 U CN 210745840U
- Authority
- CN
- China
- Prior art keywords
- heat
- heat pipe
- pipe
- section
- base station
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000009833 condensation Methods 0.000 claims abstract description 20
- 230000005494 condensation Effects 0.000 claims abstract description 20
- 238000001704 evaporation Methods 0.000 claims abstract description 18
- 230000008020 evaporation Effects 0.000 claims abstract description 17
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- 239000010949 copper Substances 0.000 claims abstract description 10
- 230000017525 heat dissipation Effects 0.000 claims abstract description 8
- 238000005452 bending Methods 0.000 claims description 14
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 4
- 239000003292 glue Substances 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 abstract description 2
- 230000007704 transition Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
技术领域technical field
本实用新型涉及天线领域,尤其涉及一种应用于5G基站的热管散热器。The utility model relates to the field of antennas, in particular to a heat pipe radiator applied to a 5G base station.
背景技术Background technique
作为新一代移动通讯网络,5G不仅会极大的改变人们现有的生活和工作方式,提升通信效率,还可以加大很多前沿技术和产品落地的可能性;5G基站需要比传统移动网络使用更多的天线,即具有几百个天线端口,在单一天线阵列上有更多的天线,一个基站能够同时向更多的用户发送和接收信号,从而增加移动网络的容量22倍或更多,这个技术成为大规模MIMO在一个阵列上实现几十个天线。但由于MIMO天线是在每个子阵后连接小功率功放,小功放的功率远低于大功放的效率,无效的功率将转换为热能;以38GHz为例,功率放大器在1dB功率增益压缩点的功率附加效率约为18%,但是倒回10dB之后功率附加效率只剩下2-3%,这意味着直流功率只有2-3%转换成传送信号功率,其余97-98%的直流功率则转换为热能,增大了散热的难度,不利于绿色环保,不利于天线小型化,因此基站天线的散热已成为目前5G广泛应用与成本压力亟待解决的关键难题。As a new generation of mobile communication network, 5G will not only greatly change people's existing way of life and work, improve communication efficiency, but also increase the possibility of the implementation of many cutting-edge technologies and products; 5G base stations need to be more efficient than traditional mobile networks. More antennas, i.e. with hundreds of antenna ports, with more antennas on a single antenna array, a base station can simultaneously transmit and receive signals to more users, thereby increasing the capacity of the mobile network by a factor of 22 or more, this The technology becomes Massive MIMO implementing dozens of antennas on an array. However, since the MIMO antenna is connected to a small power amplifier after each sub-array, the power of the small power amplifier is much lower than the efficiency of the large power amplifier, and the invalid power will be converted into heat energy; taking 38GHz as an example, the power of the power amplifier at the compression point of 1dB power gain The added efficiency is about 18%, but after rewinding 10dB, the power added efficiency is only 2-3%, which means that only 2-3% of the DC power is converted into the transmission signal power, and the remaining 97-98% of the DC power is converted into Thermal energy increases the difficulty of heat dissipation, is not conducive to environmental protection, and is not conducive to the miniaturization of antennas. Therefore, the heat dissipation of base station antennas has become a key problem that needs to be solved urgently for the widespread application and cost pressure of 5G.
实用新型内容Utility model content
为解决现有散热器无法满足5G基站天线散热需求的问题,本实用新型提供了一种应用于5G基站的热管散热器。In order to solve the problem that the existing radiator cannot meet the heat dissipation requirements of the 5G base station antenna, the utility model provides a heat pipe radiator applied to the 5G base station.
为实现上述目的,本实用新型采用的技术方案是:一种应用于5G基站的热管散热器,包括导热平板、热管和散热片;所述导热平板一侧连接有MIMO芯片,导热平板设有多个管槽,热管中部的蒸发段位于管槽内,热管两端的冷凝段向导热平板另一侧弯折,冷凝段与散热片相连。In order to achieve the above purpose, the technical scheme adopted by the present invention is: a heat pipe radiator applied to a 5G base station, comprising a heat conduction flat plate, a heat pipe and a heat sink; one side of the heat conduction flat plate is connected with a MIMO chip, and the heat conduction flat plate is provided with multiple The evaporating section in the middle of the heat pipe is located in the tube groove, the condensing section at both ends of the heat pipe is bent to the other side of the heat conducting plate, and the condensing section is connected with the heat sink.
进一步的,所述导热平板材料为铜,其一侧设有安装槽,安装槽内锡焊有MIMO芯片,MIMO芯片呈4X8阵列排布。Further, the heat-conducting plate material is copper, and one side of the heat-conducting flat plate is provided with a mounting groove, and a MIMO chip is soldered in the mounting groove, and the MIMO chip is arranged in a 4×8 array.
进一步的,所述热管材料为铜,热管内的工作介质为甲醇,蒸发段和冷凝段的弯折角度为90-120度、折弯半径为9-18mm,蒸发段和管槽通过导热胶粘接。Further, the material of the heat pipe is copper, the working medium in the heat pipe is methanol, the bending angle of the evaporation section and the condensation section is 90-120 degrees, the bending radius is 9-18 mm, and the evaporation section and the pipe groove are bonded by thermally conductive glue. catch.
进一步的,所述散热片呈“S”形,包括三个水平段,相邻的水平段由弯折段相连,水平段设有用于冷凝段穿过的孔,弯折段设有散热孔。Further, the cooling fins are "S" shaped and include three horizontal sections, adjacent horizontal sections are connected by bending sections, the horizontal sections are provided with holes for passing through the condensation sections, and the curved sections are provided with cooling holes.
进一步的,所述导热平板长度为芯片阵列长度1.2-1.5倍,宽度为芯片阵列宽度1.2-1.5倍,高度为热管直径1.2-1.5倍,相邻管槽的距离长度介于热管半径与热管直径之间。Further, the length of the heat conducting plate is 1.2-1.5 times the length of the chip array, the width is 1.2-1.5 times the width of the chip array, and the height is 1.2-1.5 times the diameter of the heat pipe, and the distance between the adjacent pipe grooves is between the radius of the heat pipe and the diameter of the heat pipe. between.
本实用新型的有益效果是:通过热管内工质的相变把MIMO芯片发出的热量从铜制导热平板经由蒸发段和冷凝段高速传递至空气内,有效降低MIMO芯片的温度,从而改善MIMO天线散热慢的问题;同时本实用新型结构简单、工作可靠、体积小重量轻、成本低。The beneficial effect of the utility model is: through the phase change of the working medium in the heat pipe, the heat emitted by the MIMO chip is transferred from the copper heat-conducting plate to the air at a high speed through the evaporation section and the condensation section, thereby effectively reducing the temperature of the MIMO chip, thereby improving the MIMO antenna. The problem of slow heat dissipation; meanwhile, the utility model has the advantages of simple structure, reliable operation, small size, light weight and low cost.
附图说明Description of drawings
图1为本实用新型的结构示意图;Fig. 1 is the structural representation of the utility model;
图2为本实用新型的部分结构示意图;Fig. 2 is the partial structure schematic diagram of the present utility model;
图3为本实用新型热管的结构示意图;Fig. 3 is the structural representation of the heat pipe of the utility model;
图4为本实用新型导热平板的结构示意图;Fig. 4 is the structural representation of the utility model thermally conductive flat plate;
图5为本实用新型散热片的结构示意图。FIG. 5 is a schematic structural diagram of a heat sink of the present invention.
图中1.导热平板,2.热管,3.蒸发段,4.冷凝段,5.MIMO芯片,6.管槽,7.散热片,8.水平段,9.弯折段,10.散热孔。In the figure, 1. Thermal plate, 2. Heat pipe, 3. Evaporation section, 4. Condensation section, 5. MIMO chip, 6. Tube groove, 7. Heat sink, 8. Horizontal section, 9. Bending section, 10. Heat dissipation hole.
具体实施方式Detailed ways
一种应用于5G基站的热管散热器,包括导热平板1、热管2和散热片7;所述导热平板1一侧连接有MIMO芯片5,导热平板1设有多个管槽6,热管2中部的蒸发段3位于管槽6内,热管2两端的冷凝段4向导热平板1另一侧弯折,冷凝段4与散热片7通过穿片工艺相连,通过浸镀法将热管2与散热片7之间的间隙密封,浸镀法镀层金属主要是锌和锡。A heat pipe radiator applied to a 5G base station, comprising a
导热平板1材料为铜,其一侧设有安装槽,安装槽内锡焊有MIMO芯片5,MIMO芯片5呈4X8阵列排布;导热平板1的尺寸优选为50mm*26mm*5mm,其长度为芯片阵列长度1.2-1.5倍,宽度为芯片阵列宽度1.2-1.5倍,高度为所选热管2直径1.2-1.5倍;管槽6间隔介于热管半径与热管直径之间;把MIMO芯片5锡焊在铜质导热平板1上,可以迅速把散发的热量传递到热管2表面;此外,铜具有延展性好、易于加工、可回收、耐大气腐蚀、性价比高、价格低廉等优点,可在室外等复杂工况下使用。The thermal
热管2材料为铜,采用圆柱型热管,热管2内的工作介质为甲醇,热管2直径为3-9mm,蒸发段3和冷凝段4的弯折角度为90-120度、折弯半径为9-18mm,热管2的折弯对导热能力有影响,折弯角度越小,导热能力越差,最小的折弯半径为管径的3倍,最小的折弯角度为90度,蒸发段3和管槽6通过导热胶粘接;热管2由三部分组成,主体为一根封闭的金属管(管壳),内部空腔内有工作介质(工作液)和吸液芯(管芯),管内的空气及其他杂物必须排除在外;热管2是利用工作介质在蒸发段3蒸发后在冷凝段4冷凝的相变过程(即利用液体的蒸发潜热和凝结潜热)使热量快速传导,热管2内部是被抽成负压状态,充入适当的液体工作介质,工作介质需要沸点低、容易挥发,优选为甲醇,管壁有吸液芯,其由毛细多孔材料构成,通过管内壁沟加工工艺为犁削(旋压)-拉拔复合成型法加工微型热管内部毛细结构,优选为多层金属丝网或纤维、布等以衬里形式紧贴内壁以减小接触热阻,衬里也可由多孔陶瓷或烧结金属构成,当热管蒸发段3受热时,工作介质迅速汽化,蒸气在热扩散的动力下流向冷凝段4,并在冷凝段4冷凝释放出热量,工作介质再沿吸液芯靠毛细作用流回蒸发段3,依次循环,直到热管2蒸发段3和冷凝段4的温度相等,此时蒸汽热扩散停止,这种循环是快速进行的,热量可以被源源不断地传导开来,热管2充分利用了热传导原理与相变介质的快速热传递性质,透过热管2将发热物体的热量迅速传递到热源外,其导热能力超过金属的导热能力几个数量级,其导热率可达到20000W/m.℃;热管2的加工流程为:切管→缩管→焊头→填粉→烧结→注水→抽真空→定长→焊尾→成形→表面处理→破坏性测试→性能测试→包装。The material of the
散热片7呈“S”形,包括三个水平段8,相邻的水平段8由弯折段9相连,水平段8设有用于冷凝段4穿过的孔,弯折段9设有散热孔10。The
导热平板1另一侧设有镶嵌槽,热管2通过镶嵌槽置于管槽6内,然后将镶嵌槽焊接。The other side of the heat-conducting
以上所述,仅为本实用新型较佳的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型披露的技术范围内,根据本实用新型的技术方案及其实用新型构思加以等同替换或改变,都应涵盖在本实用新型的保护范围之内。The above are only the preferred specific embodiments of the present invention, but the protection scope of the present invention is not limited to this. Equivalent replacement or modification of the new technical solution and its utility model concept shall be included within the protection scope of the present utility model.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921752062.2U CN210745840U (en) | 2019-10-18 | 2019-10-18 | Heat pipe radiator applied to 5G base station |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921752062.2U CN210745840U (en) | 2019-10-18 | 2019-10-18 | Heat pipe radiator applied to 5G base station |
Publications (1)
Publication Number | Publication Date |
---|---|
CN210745840U true CN210745840U (en) | 2020-06-12 |
Family
ID=70982263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921752062.2U Expired - Fee Related CN210745840U (en) | 2019-10-18 | 2019-10-18 | Heat pipe radiator applied to 5G base station |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN210745840U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113028877A (en) * | 2021-04-30 | 2021-06-25 | 浙江理工大学 | Heat pipe radiator adopting novel phase-change material |
WO2022145205A1 (en) * | 2020-12-28 | 2022-07-07 | 京セラ株式会社 | Antenna device |
WO2025008857A1 (en) * | 2023-07-03 | 2025-01-09 | Jio Platforms Limited | A thermal efficient and weight optimized outdoor small cell |
-
2019
- 2019-10-18 CN CN201921752062.2U patent/CN210745840U/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022145205A1 (en) * | 2020-12-28 | 2022-07-07 | 京セラ株式会社 | Antenna device |
JP7615174B2 (en) | 2020-12-28 | 2025-01-16 | 京セラ株式会社 | Antenna Device |
CN113028877A (en) * | 2021-04-30 | 2021-06-25 | 浙江理工大学 | Heat pipe radiator adopting novel phase-change material |
WO2025008857A1 (en) * | 2023-07-03 | 2025-01-09 | Jio Platforms Limited | A thermal efficient and weight optimized outdoor small cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210745840U (en) | Heat pipe radiator applied to 5G base station | |
CN107167008B (en) | A kind of ultra-thin panel heat pipe and its manufacturing method | |
CN105716461B (en) | A kind of temperature-uniforming plate and manufacture method of the gradient porous capillary wick of in-plane | |
CN109612314A (en) | Phase change heat sink | |
CN201590985U (en) | Liquid cooling plate | |
CN201226636Y (en) | Liquid cooling radiating device with evaporation cavity | |
CN108601288B (en) | High-power matrix fin enhanced heat exchange phase change heat sink | |
CN103165547B (en) | Microgroove group composite phase change radiator | |
CN106604607B (en) | A kind of no liquid-sucking core ultrathin heat pipe device | |
CN100423243C (en) | Miniature high-efficiency self-circulating electronic cooler | |
CN106885485B (en) | Hot end variable cross-section multi-pulsation cold end heat pipe radiator | |
CN205482499U (en) | Porous wick's of plane direction gradient temperature -uniforming plate | |
TWM597382U (en) | Phase change heat dissipation device | |
CN105960147A (en) | Spiral fractal based integrated micro flat plate heat pipe | |
CN106784921A (en) | A kind of DMFC and battery pack | |
CN102997729A (en) | Heat pipe radiator of phase change drive loop | |
CN110726318A (en) | A miniature MIMO antenna heat pipe radiator | |
CN115092424B (en) | Liquid metal magnetic nanofluid radiator for spaceflight | |
CN207410250U (en) | A kind of thermoelectric generation film of the municipal administration based on thermoelectric material | |
CN101794830A (en) | concentration photovoltaic receiver | |
CN216115557U (en) | Closed-loop pulsating heat transfer pipe and heat dissipation heat exchanger | |
CN213462750U (en) | Pulsating heat pipe type blade server heat management system | |
CN109640581A (en) | A kind of air cold plate and its processing method of embedded heat pipes | |
CN112105231B (en) | Pulsating heat pipe type blade server thermal management system | |
CN210092066U (en) | A porous plate radiator and system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200612 Termination date: 20201018 |
|
CF01 | Termination of patent right due to non-payment of annual fee |