CN210719020U - 基于光场栅的位移测量装置 - Google Patents
基于光场栅的位移测量装置 Download PDFInfo
- Publication number
- CN210719020U CN210719020U CN201921300999.6U CN201921300999U CN210719020U CN 210719020 U CN210719020 U CN 210719020U CN 201921300999 U CN201921300999 U CN 201921300999U CN 210719020 U CN210719020 U CN 210719020U
- Authority
- CN
- China
- Prior art keywords
- light
- semi
- laser beam
- working platform
- beam expanding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn - After Issue
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 94
- 230000003287 optical effect Effects 0.000 title claims abstract description 24
- 230000001427 coherent effect Effects 0.000 claims abstract description 20
- 239000011521 glass Substances 0.000 claims description 15
- 238000005259 measurement Methods 0.000 claims description 15
- 239000004065 semiconductor Substances 0.000 claims description 14
- 230000003321 amplification Effects 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- 238000009434 installation Methods 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 3
- 230000003595 spectral effect Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 description 4
- 238000000691 measurement method Methods 0.000 description 4
- 238000013519 translation Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Landscapes
- Optical Transform (AREA)
Abstract
本实用新型公开了基于光场栅的位移测量装置,包括测量系统、线性位移工作平台和光电探测器模块;测量系统包括系统光源、半透半反分光平面镜、两激光扩束准直器和两平面反射镜;第一平面反射镜能相对该整体摆动以能调节偏转角度,线性位移工作平台能相对该整体平移和旋转;系统光源发出的一束光入射到半透半反分光平面镜后被分为传播方向互相垂直且能量相等的两束相干光;两束相干光分别经第一激光扩束准直器与第二激光扩束准直器放大直径;通过第一平面反射镜和第二平面反射镜控制光路,使两束相干光都打在线性位移工作平台上表面以能产生两个椭圆光斑。该方法在保证高精度的同时,简化了测量系统的结构,减小了安装误差。
Description
技术领域
本实用新型涉及光学测量技术领域,特别是涉及一种基于光场栅的位移测量装置。
背景技术
大量程位移传感技术是精密加工及测量领域的关键技术之一,在高精度领域,大体可分为波长计数式(如激光干涉仪)和栅线计数式(可称之为X栅,如磁栅、容栅、光栅等)。考虑到成本及环境适应性,后者在工业生产领域应用更广。
栅线计数式传感器依赖于物理实体,即X栅。该X栅固定于物理平台作为动子,其读数头固定于基座作为定子,以此记录平台的相对运动。这对定子和动子的安装提出了较高要求,而且不利于为已有运动系统加装位移传感器。物理实体的栅线载体另一缺陷是,作为坐标轴的栅线载体随平台一同运动,很难形成固定坐标系。
此外,受限于栅线线距制备工艺(传统光栅、磁栅、容栅的栅线线距多在几十微米量级),传统栅线计数式传感器的精度大多在微米量级。
当前,光栅刻线已达到微米甚至亚微米量级,但其栅线工作面缺少稳定性和鲁棒性,极易发生氧化、污损或物理划伤。其敏感元件的维护和更换又将带来显著的经济成本和时间成本。
实用新型内容
本实用新型提供了基于光场栅的位移测量装置,其克服了背景技术中光学测量装置所存在的不足。
本实用新型解决其技术问题的所采用的技术方案之一是:
基于光场栅的位移测量装置,包括测量系统、线性位移工作平台和光电探测器模块;所述线性位移工作平台和光电探测器模块能固定在一起;所述测量系统包括系统光源、半透半反分光平面镜、第一激光扩束准直器、第二激光扩束准直器、第一平面反射镜和第二平面反射镜,所述系统光源、半透半反分光平面镜、第一激光扩束准直器、第二激光扩束准直器和第二平面反射镜相对固定以构成一个整体;所述第一平面反射镜能相对该整体摆动以能调节偏转角度,所述线性位移工作平台能相对该整体平移和旋转;所述半透半反分光平面镜设置在系统光源之前,以使系统光源发出的一束光入射到半透半反分光平面镜后被分为传播方向互相垂直且能量相等的两束相干光;所述第一激光扩束准直器和第二激光扩束准直器垂直布置且都适配半透半反分光平面镜,以使两束相干光分别经第一激光扩束准直器与第二激光扩束准直器放大直径;所述第一平面反射镜设于第一激光扩束准直器和线性位移工作平台间,所述第二平面反射镜设于第二激光扩束准直器和线性位移工作平台间,以通过第一平面反射镜和第二平面反射镜控制光路,使两束相干光都打在线性位移工作平台上表面以能产生两个椭圆光斑。
本实用新型解决其技术问题的所采用的技术方案之二是:
基于光场栅的位移测量装置,包括测量系统、线性位移工作平台和光电探测器模块;所述线性位移工作平台和光电探测器模块能固定在一起;所述测量系统包括系统光源、激光扩束准直器、第一平面反射镜、第二平面反射镜和半透半反分光棱镜;所述系统光源、激光扩束准直器、第二平面反射镜和半透半反分光棱镜相对固定构成一个整体;所述第一平面反射镜能相对该整体摆动以能调节偏转角度,所述线性位移工作平台能相对该整体平移和旋转;所述激光扩束准直器位于系统光源之前,以通过激光扩束准直器放大系统光源发出的一束光的光束直径;所述半透半反分光棱镜位于激光扩束准直器之前以将光束分为两路能量相等且垂直的相干光;所述第一平面反射镜与第二平面反射镜配合半透半反分光棱镜和线性位移工作平台,以通过第一平面反射镜与第二平面反射镜令光路返回,再次经过半透半反分光棱镜后两束光重新汇合形成干涉场,最终在线性位移工作平台的上表面形成一个圆形光斑,其内部为明暗相间的干涉条纹。
本实用新型解决其技术问题的所采用的技术方案之三是:
基于光场栅的位移测量装置,包括测量系统、线性位移工作平台和光电探测器模块;所述线性位移工作平台和光电探测器模块能固定在一起;所述线性位移工作平台包括两块表面光滑的玻璃板,两块玻璃板叠在一起,其中两玻璃板具有背向的第一侧和第二侧,所述两玻璃板第一侧接触,所述两玻璃板第二侧之间垫设垫块,第二侧的垫高使两玻璃板之间形成一个微小夹角进而形成空气劈尖;所述测量系统包括系统光源和激光扩束准直器;所述激光扩束准直器位于系统光源之前,以通过激光扩束准直器放大系统光源发出的一束光的光束直径,在线性位移工作平台上表面便形成一个椭圆光斑,其内部为明暗相间的等厚干涉条纹。
本技术方案与背景技术相比,它具有如下优点:
本实用新型的系基于光场的位移传感器,该传感器不包含物理实体的栅线载体,而是通过干涉技术形成光场作为绝对坐标系,记录平台在光场中的运动。该方法在保证高精度的同时,简化了测量系统的结构,减小了安装误差。它能产生如下技术效果:1)无物理实体的X栅位移传感器。通过在测量空间形成光场栅,当探测器做垂直栅线方向运动时,其位移可被测得;2)可重构的测量范围和精度。通过形成不同间距和空间体积的干涉光场,测量范围和精度可实现定制化;3)基于数字运算的信号误差修正和计数细分算法;4)基于光电探测器阵列的超静定运算结构。通过在干涉光场中分布多个光电探测器以实现随机误差的减小和精度的提升。
附图说明
下面结合附图和具体实施方式对本实用新型作进一步说明。
图1为本实用新型实施例一的精密位移测量装置的示意图;
图2为本实用新型实施例二的精密位移测量装置的示意图;
图3为本实用新型实施例三的精密位移测量装置的示意图。
具体实施方式
下面实施例所用的系统光源,如采用波长为635nm,功率10mW,出光孔直径为2.5mm的半导体激光器,激光具有高方向性、高单色性、高相干性与高亮度的特性。
实施例一
基于光场栅的精密位移测量装置,请查阅图1,包括测量系统、线性位移工作平台7和光电探测器阵列8。所述线性位移工作平台7能相对测量系统活动,所述活动包括平移和旋转,所述线性位移工作平台7和光电探测器阵列8能固定在一起。所述测量系统构成定子,所述光电探测器阵列8构成动子。
所述测量系统包括半导体激光器1、半透半反分光平面镜2、第一激光扩束准直器3、第二激光扩束准直器4、第一平面反射镜5和第二平面反射镜6,所述半导体激光器1、半透半反分光平面镜2、第一激光扩束准直器3、第二激光扩束准直器4和第二平面反射镜6相对固定以构成一个整体,所述第一平面反射镜5能相对该整体活动,即,二者构成能摆动的连接,所述活动包括摆动以能调节第一平面反射镜5偏转角度;所述线性位移工作平台7的活动为相对整体的活动,即,二者构成能平移和旋转的连接,如设能相对整体旋转的活动座,所述平台能平移活动连接在该活动座。
所述半透半反分光平面镜2设置在半导体激光器1之前,以使半导体激光器1发出的一束光入射到半透半反分光平面镜2后被分为传播方向互相垂直且能量相等的两束相干光;所述第一激光扩束准直器3和第二激光扩束准直器4垂直布置且都适配半透半反分光平面镜2,以使两束相干光分别经第一激光扩束准直器4 与第二激光扩束准直器5放大直径,如将它们的直径放大至40mm;所述第一平面反射镜5设于第一激光扩束准直器3和线性位移工作平台7间,所述第二平面反射镜6设于第二激光扩束准直器4和线性位移工作平台7间,以通过第一平面反射镜5和第二平面反射镜6控制光路,使两束相干光都打在线性位移工作平台7 上表面以能产生两个椭圆光斑。
基于光场栅的精密位移测量方法,包括:
步骤1,调整第一平面反射镜5偏转角度,以定制干涉光场的空间体积和条纹间距;
步骤2,对线性位移工作平台7进行平移与旋转,调整两个光斑形状与位置,使二个光斑完全重合,从而形成明暗相间的干涉条纹。重合后光斑的长轴决定系统的量程,干涉条纹的宽度决定系统的分辨率;
步骤3,光电探测器阵列8位于干涉光场之中并与线性位移工作平台7相对固定,用于采集至少两路相位差为90°的信号(两路正交的弦波信号);
步骤4,由四细分辨向计数得到位移量,并获知方向。
本具体实施方式之中:所述步骤4中,对两路正交的弦波信号倒向,再由过零触发共能获得四路相位依次相差90°的方波信号,再经过微分、限幅、半波整流后变为四路窄脉冲,再相或之后能获得到计数脉冲,每次计数对应一定的位移,并通过两路弦波信号的相位超前和滞后关系获知位移的方向。例如,当第一路信号超前第二路信号90°,则认为平台向前运动,反之则为向后运动。
本具体实施方式之中精密位移测量方法的原理是:令两束经过扩束和准直的相干光重新汇集,并于交汇区域形成一个干涉光场。线性位移工作台7与干涉光场相交,且上表面有明暗相间(强度在空间上表现为正弦式分布)的干涉条纹。光电探测器位于干涉光场之中并与平台7相对固定,当跟随平台做垂直栅线(即干涉条纹)方向运动时,所采集到的干涉信号发生相移。以干涉图样的中心为原点,与干涉条纹垂直的方向为x轴,建立二维直角坐标系。在理想情况下,不考虑噪声与直流漂移,在干涉区域内任意一点处的光强为:
位移的辨向需要通过两路相位差为90°的干涉信号,即其中一路随平台7位移呈正弦变化,另一路随平台7位移呈余弦变化。因此,光电探测器的数量至少需要两个,假设它们的相位分别为α和β,则相位差应满足如下关系:
也就是说,两个光电探测器之间的距离l应该满足:
其中,d为干涉条纹的宽度。但是在实际操作过程中,很难保证两个光电探测器的相位一定相差90°而没有丝毫误差。本具体实施方式采用如下方法解决该问题,首先假设两个光电探测器的相位α与β满足如下关系:
令m=sinα,n=sinβ,设:
由于α-β是一个定值,则与也为定值,那么M与N的相位就一定相差90°。硬件计数器本身存在干扰,因此本设计所采用的是一种基于数字运算的信号误差修正和计数细分算法,在计数辨向的同时减小噪声所带来的干扰。通过四细分辨向计数可得到分辨率为1/4原信号周期的位移信息,其基本原理为:对两路正交的弦波信号倒向,再由过零触发共可获得四路相位依次相差90°的方波信号,经过微分、限幅、半波整流后变为四路窄脉冲,相或之后便可得到计数脉冲。每次计数对应一定的位移,并可通过两路弦波信号的相位超前和滞后关系获知位移的方向。
改变两束相干光交汇区域(即干涉场)的空间体积以及干涉条纹的宽度,可实现量程与分辨率的定制。但与此同时,两个光电探测器的相对位置也必须相应做出调整,这将带来显著的时间成本。在干涉光场中,沿x轴方向放置一排由光电探测器所构成的阵列可解决这一问题。光电探测器阵列与平台相对固定,且组成阵列的个体应满足两个原则,即增益(gain)一致与间距(pitch)一致。同一时刻,不同位置的光电探测器所采集的干涉信号相位不同,只要阵列长度与个体间距设置合理,无论量程与分辨率如何变化,当平台发生位移时,总能找到至少两个光电探测器的输出信号相位相差90°。
实施例二
基于光场栅的精密位移测量装置,请查阅图2,它与实施例一不同之处在于:所述测量系统包括半导体激光器1、激光扩束准直器3、第一平面反射镜5、第二平面反射镜6和半透半反分光棱镜9。所述半导体激光器1、激光扩束准直器3、第二平面反射镜6和半透半反分光棱镜9相对固定构成一个整体,所述第一平面反射镜5能相对该整体活动,所述活动包括摆动以能调节第一平面反射镜5偏转角度。
所述激光扩束准直器3位于半导体激光器1之前,以通过激光扩束准直器3 放大半导体激光器1发出的一束光的光束直径至40mm;所述半透半反分光棱镜9 位于激光扩束准直器3之前以将光束分为两路能量相等且垂直的相干光,其中一路传播方向水平向左,另一路垂直向上。所述第一平面反射镜5与第二平面反射镜6配合半透半反分光棱镜9和线性位移工作平台7,以通过第一平面反射镜5 与第二平面反射镜6令光路返回,再次经过半透半反分光棱镜9后两束光重新汇合形成干涉场,最终在线性位移工作平台7的上表面形成一个圆形光斑,其内部为明暗相间的干涉条纹。
基于光场栅的精密位移测量方法,包括:
步骤1,调整第一平面反射镜5的偏转角度,实现干涉条纹宽度,即测量系统分辨率的定制,但圆形光斑的直径,即量程无法改变;
步骤2,光电探测器阵列8位于干涉光场之中并与线性位移工作平台7相对固定,以采集至少两路相位差为90°的干涉信号;
步骤3,由四细分辨向计数得到位移量,并获知方向。
实施例三
基于光场栅的精密位移测量装置,请查阅图3,它与实施例一不同之处在于:它基于等厚干涉原理而设计的,所述线性位移工作平台7系空气劈尖式,它包括两块表面光滑的玻璃板,两块玻璃板叠在一起,其中两玻璃板具有背向的第一侧和第二侧,所述两板第一侧接触,所述两板第二侧之间垫设垫块,第二侧的垫高使两板之间形成一个微小夹角进而形成空气劈尖。
所述激光扩束准直器3位于半导体激光器1之前,以通过激光扩束准直器3 放大半导体激光器1发出的一束光的光束直径至40mm,且自上而下照射,在线性位移工作平台7的上表面便形成一个椭圆光斑,其内部为明暗相间的等厚干涉条纹。椭圆光斑的长轴决定了量程,干涉条纹的宽度决定了分辨率。
基于光场栅的精密位移测量方法,包括:
步骤1,通过微调两板之间的夹角控制测量系统的量程与分辨率;
步骤2,光电探测器阵列8位于干涉光场之中并与线性位移工作平台7相对固定,以采集至少两路相位相差90°的干涉信号;
步骤3,由四细分辨向计数得到位移量,并获知方向。
以上所述,仅为本实用新型较佳实施例而已,故不能依此限定本实用新型实施的范围,即依本实用新型专利范围及说明书内容所作的等效变化与修饰,皆应仍属本实用新型涵盖的范围内。
Claims (9)
1.基于光场栅的位移测量装置,其特征在于:包括测量系统、线性位移工作平台和光电探测器模块;所述线性位移工作平台和光电探测器模块能固定在一起;所述测量系统包括系统光源、半透半反分光平面镜、第一激光扩束准直器、第二激光扩束准直器、第一平面反射镜和第二平面反射镜,所述系统光源、半透半反分光平面镜、第一激光扩束准直器、第二激光扩束准直器和第二平面反射镜相对固定以构成一个整体;所述第一平面反射镜能相对该整体摆动以能调节偏转角度,所述线性位移工作平台能相对该整体平移和旋转;所述半透半反分光平面镜设置在系统光源之前,以使系统光源发出的一束光入射到半透半反分光平面镜后被分为传播方向互相垂直且能量相等的两束相干光;所述第一激光扩束准直器和第二激光扩束准直器垂直布置且都适配半透半反分光平面镜,以使两束相干光分别经第一激光扩束准直器与第二激光扩束准直器放大直径;所述第一平面反射镜设于第一激光扩束准直器和线性位移工作平台间,所述第二平面反射镜设于第二激光扩束准直器和线性位移工作平台间,以通过第一平面反射镜和第二平面反射镜控制光路,使两束相干光都打在线性位移工作平台上表面以能产生两个椭圆光斑。
2.根据权利要求1所述的基于光场栅的位移测量装置,其特征在于:所述系统光源为半导体激光器。
3.根据权利要求1所述的基于光场栅的位移测量装置,其特征在于:所述光电探测器模块为光电探测器阵列。
4.基于光场栅的位移测量装置,其特征在于:包括测量系统、线性位移工作平台和光电探测器模块;所述线性位移工作平台和光电探测器模块能固定在一起;所述测量系统包括系统光源、激光扩束准直器、第一平面反射镜、第二平面反射镜和半透半反分光棱镜;所述系统光源、激光扩束准直器、第二平面反射镜和半透半反分光棱镜相对固定构成一个整体;所述第一平面反射镜能相对该整体摆动以能调节偏转角度,所述线性位移工作平台能相对该整体平移和旋转;所述激光扩束准直器位于系统光源之前,以通过激光扩束准直器放大系统光源发出的一束光的光束直径;所述半透半反分光棱镜位于激光扩束准直器之前以将光束分为两路能量相等且垂直的相干光;所述第一平面反射镜与第二平面反射镜配合半透半反分光棱镜和线性位移工作平台,以通过第一平面反射镜与第二平面反射镜令光路返回,再次经过半透半反分光棱镜后两束光重新汇合形成干涉场,最终在线性位移工作平台的上表面形成一个圆形光斑,其内部为明暗相间的干涉条纹。
5.根据权利要求4所述的基于光场栅的位移测量装置,其特征在于:所述系统光源为半导体激光器。
6.根据权利要求4所述的基于光场栅的位移测量装置,其特征在于:所述光电探测器模块为光电探测器阵列。
7.基于光场栅的位移测量装置,其特征在于:包括测量系统、线性位移工作平台和光电探测器模块;所述线性位移工作平台和光电探测器模块能固定在一起;所述线性位移工作平台包括两块表面光滑的玻璃板,两块玻璃板叠在一起,其中两玻璃板具有背向的第一侧和第二侧,所述两玻璃板第一侧接触,所述两玻璃板第二侧之间垫设垫块,第二侧的垫高使两玻璃板之间形成一个微小夹角进而形成空气劈尖;所述测量系统包括系统光源和激光扩束准直器;所述激光扩束准直器位于系统光源之前,以通过激光扩束准直器放大系统光源发出的一束光的光束直径,在线性位移工作平台上表面便形成一个椭圆光斑,其内部为明暗相间的等厚干涉条纹。
8.根据权利要求7所述的基于光场栅的位移测量装置,其特征在于:所述系统光源为半导体激光器。
9.根据权利要求7所述的基于光场栅的位移测量装置,其特征在于:所述光电探测器模块为光电探测器阵列。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921300999.6U CN210719020U (zh) | 2019-08-13 | 2019-08-13 | 基于光场栅的位移测量装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921300999.6U CN210719020U (zh) | 2019-08-13 | 2019-08-13 | 基于光场栅的位移测量装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN210719020U true CN210719020U (zh) | 2020-06-09 |
Family
ID=70933531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201921300999.6U Withdrawn - After Issue CN210719020U (zh) | 2019-08-13 | 2019-08-13 | 基于光场栅的位移测量装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN210719020U (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110398202A (zh) * | 2019-08-13 | 2019-11-01 | 华侨大学 | 基于光场栅的位移测量装置及其位移测量方法 |
CN111623726A (zh) * | 2020-07-16 | 2020-09-04 | 华侨大学 | 一种基于空域填充的干涉条纹空间载频估计方法 |
-
2019
- 2019-08-13 CN CN201921300999.6U patent/CN210719020U/zh not_active Withdrawn - After Issue
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110398202A (zh) * | 2019-08-13 | 2019-11-01 | 华侨大学 | 基于光场栅的位移测量装置及其位移测量方法 |
CN110398202B (zh) * | 2019-08-13 | 2024-02-02 | 华侨大学 | 基于光场栅的位移测量装置及其位移测量方法 |
CN111623726A (zh) * | 2020-07-16 | 2020-09-04 | 华侨大学 | 一种基于空域填充的干涉条纹空间载频估计方法 |
CN111623726B (zh) * | 2020-07-16 | 2021-07-06 | 华侨大学 | 一种基于空域填充的干涉条纹空间载频估计方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5710105B2 (ja) | 光学式位置測定装置 | |
US7502127B2 (en) | Sensor device and stage device | |
CN210719020U (zh) | 基于光场栅的位移测量装置 | |
CN109883362B (zh) | 一种基于光栅干涉原理的直线度测量系统 | |
CN102679882A (zh) | 一种相位调制光栅传感器及实现测量的方法 | |
CN103309177A (zh) | 一种光刻机工件台系统 | |
CN110631483B (zh) | 正交光栅三自由度磁浮测量传感器、检测仪及其检测方法 | |
CN110398202B (zh) | 基于光场栅的位移测量装置及其位移测量方法 | |
JPS6023282B2 (ja) | 相対変位測定装置 | |
CN110702037A (zh) | 基于激光自混合干涉的角度测量方法及所用测量装置 | |
CN107421464B (zh) | 用于表面形貌测量的高精度干涉型双位相光栅位移传感器 | |
JPH08178613A (ja) | 干渉計用光検出器 | |
CN204807051U (zh) | 基于二维psd的卫星转角测量仪 | |
US5184014A (en) | Opto-electronic scale reading apparatus | |
CN103994722B (zh) | 基于自聚焦原理的光栅精密测量结构及测量方法 | |
US20090027687A1 (en) | Fixed-point detector and displacement-measuring apparatus | |
CN105180814B (zh) | 一种新型光臂放大式二维线性测头 | |
JPH01291194A (ja) | X−yテーブル | |
CN113819847B (zh) | 基于位错二维光栅阵列的双光栅结构三维微位移传感器 | |
CN203811135U (zh) | 基于自聚焦原理的传感系统光学结构 | |
CN211452215U (zh) | 平行激光光束准直装置 | |
JP2006010645A (ja) | 検出装置及びステージ装置 | |
CN216348361U (zh) | 一种激光干涉仪 | |
CN115235344B (zh) | 基于涡旋光束的测量系统及高度测量方法 | |
CN2648401Y (zh) | 磁悬浮微运动平台高度测量与校正装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
AV01 | Patent right actively abandoned |
Granted publication date: 20200609 Effective date of abandoning: 20240202 |
|
AV01 | Patent right actively abandoned |
Granted publication date: 20200609 Effective date of abandoning: 20240202 |
|
AV01 | Patent right actively abandoned | ||
AV01 | Patent right actively abandoned |