CN210693470U - 一种变流站及输电系统 - Google Patents

一种变流站及输电系统 Download PDF

Info

Publication number
CN210693470U
CN210693470U CN201921489067.0U CN201921489067U CN210693470U CN 210693470 U CN210693470 U CN 210693470U CN 201921489067 U CN201921489067 U CN 201921489067U CN 210693470 U CN210693470 U CN 210693470U
Authority
CN
China
Prior art keywords
converter
alternating current
converter station
platform
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201921489067.0U
Other languages
English (en)
Inventor
彭国平
王红占
周治国
史奔
刘会民
徐元龙
白代兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Anpu Electric Power Technology Co ltd
Original Assignee
Guangdong Anpu Electric Power Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Anpu Electric Power Technology Co ltd filed Critical Guangdong Anpu Electric Power Technology Co ltd
Priority to CN201921489067.0U priority Critical patent/CN210693470U/zh
Application granted granted Critical
Publication of CN210693470U publication Critical patent/CN210693470U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Rectifiers (AREA)

Abstract

一种变流站,包括整流变压器、变流器;变流器采用二极管整流结构;变流器和整流变压器集中设置于一个支撑平台上。一种输电系统,包括陆上换流平台和上述变流站;变流站的输入端与外部供电设备连接,输出端与陆上换流平台的输入端连接;陆上换流平台的输出端与外部交流电网连接,陆上换流平台用于直流电转交流电。本实用新型将变流器和整流变压器集中设置于一个单独支撑平台上,不再依附在风力发电机安装平台安装,使变流站的施工难度降低、体积减小、成本降低、施工周期减短,进一步减小海上输电的难度;采用二极管整流结构,使变流器体积进一步减小,同时提高了输电效率;设置有交流辅助电源系统,可以进一步保证系统的可持续运行。

Description

一种变流站及输电系统
技术领域
本实用新型属于远程输电领域,具体涉及一种变流站及输电系统。
背景技术
随着海上风电产业的发展,探索新型的低成本、高可靠的海上风电直流并网方案已经成为产业发展的当务之急。虽然柔性直流输电相比传统直流输电具有占地面积小、体积小等优势,但是仍然不能完全适用于用于大规模、远距离海上风电并网。
目前,国内外已经开始对二极管无控整流器代替可控整流器的换流方法进行研究,二极管整流方式比柔性直流采用的全控整流方式能够进一步降低设备的体积和成本,因此非常适合于海上风电场整流端。此外,有关方面研究过在风机的支撑平台上安装整流变压器和二极管整流器,并把每个风机的交流电转化成直流电后通过海底电缆输送到岸上,但是,这种方式会增加风机支撑平台的重量和体积,并不适合于海上远距离、大容量风机群的并网接入,并且海上交流风电场的集电系统拓扑结构复杂、线路阻抗不均衡,串联平台均压困难,导致控制更加复杂。
实用新型内容
为了解决上述问题,本实用新型提供一种结构简单的、可集中安装的一种变流站及输电系统。
本实用新型解决其技术问题所采用的技术方案是:
一种变流站,包括整流变压器、变流器;所述整流变压器的原边用于接入外部发电场,副边与所述变流器的输入端连接;
所述变流器采用二极管整流结构;所述变流器和整流变压器集中设置于一个支撑平台上。
优选的,所述整流变压器包括多组副边;所述变流器包括与所述整流变压器副边数量一致的多个子变流器;所述整流变压器的副边与所述子变流器的输入端一一对应连接;相邻的子变流器输出端依次连接成子变流器串联结构,所述子变流器串联结构的两输出端分别作为所述变流器的正电压输出端和负电压输出端。
优选的,所述变流器的正电压输出端和负电压输出端皆连接有平波电抗器、功能选择开关或平波电抗器与功能选择开关的串联结构,所述功能选择开关用于选择电路的接通、断开或接地。
优选的,所述多个子变流器皆采用三相桥式六脉冲整流结构。
优选的,所述多个子变流器的输出端皆连接有子平波电抗器。
优选的,所述子变流器的输出端并联有子旁路开关。
优选的,所述整流变压器的输入端设置有交流滤波器;所述交流滤波器与所述变流器设置于同一支撑平台上。
优选的,所述变流器的输出端并联有旁路开关;所述旁路开关与所述整流变压器设置于同一支撑平台上。
优选的,所述外部发电场包括风力发电场或光伏电场。
一种输电系统,包括陆上换流平台和上述的变流站;
所述变流站的输入端与所述外部发电场连接,输出端与所述陆上换流平台的输入端连接;
所述陆上换流平台的输出端用于连接外部交流电网,所述陆上换流平台用于直流电转交流电。
优选的,所述变流站数量有多个;所述多个变流站的输出端依次串联后再与所述陆上换流平台连接。
进一步,所述陆上换流平台包括换流站、陆上变压器;所述换流站的输入端与所述变流站的输出端连接,输出端与所述陆上变压器的输入端连接;所述陆上变压器的输出端用于连接外部交流电网。
更进一步,所述换流站包括6个桥臂,所述6个桥臂皆包括依次串联的多个功率模块,多个所述功率模块皆采用半桥结构和/或全桥结构以用于直流电转交流电。
优选的,所述换流站的6个桥臂皆连接有CT互感器、桥臂平波电抗器或CT互感器与桥臂平波电抗器的串联结构。
优选的,上述输电系统还包括交流辅助电源系统,所述交流辅助电源系统输入端与所述陆上换流平台的输出端或外部电源相连接,输出端通过配电装置与变流站的输入端连接;所述交流辅助电源系统用于给所述外部发电场进行辅助供电。
优选的,所述交流辅助电源系统与所述变流站的输入端通过配电装置连接。
进一步,所述交流辅助电源系统包括辅助供电装置和海上交流电缆组成;所述辅助供电装置用于给所述外部发电场辅助供电。
进一步,所述辅助供电装置由第一交流断路器、变压装置、第二交流断路器依次串联组成,所述变压装置用于电压调节。
进一步,所述变压装置采用调压变压器、电力电子变流器或调压变压器与电力电子变流器的串联结构。
优选的,所述陆上换流平台和变流站通过高压海缆连接。
优选的,所述陆上变压器数量有多个,所述多个陆上变压器并行连接后的输入端与所述换流站的输出端连接,输出端与所述外部交流电网连接。
本实用新型实施例的有益效果:
将变流器和整流变压器集中设置于一个单独支撑平台上,不再依附在风力发电机安装平台安装,使变流站的施工难度降低、体积减小、成本降低、施工周期减短,进一步减小海上输电的难度;
采用二极管整流结构,并优选了三相桥式六脉冲整流结构,使变流器体积进一步减小,同时提高了输电效率;
可实现一个变流站输电或多个变流站联合输电,在建设好一个变流站之后即可实现供电,无需等待整个供电系统搭建结束,实现了分期建设、分阶段建设的效果;
设置有交流辅助电源系统,可以进一步保证系统的可持续运行。
附图说明
下面结合附图对本实用新型的具体实施方式做进一步的说明。
图1是本实用新型实施例的变流站结构示意图;
图2是本实用新型实施例的子变流器结构示意图;
图3是本实用新型实施例的输电系统结构示意图;
图4是本实用新型实施例的换流站结构示意图;
图5是本实用新型实施例的功率模块半桥结构示意图;
图6是本实用新型实施例的功率模块全桥结构示意图。
具体实施方式
以下将结合说明书附图对本实用新型进一步详细说明。
如图1所示,一种变流站,包括整流变压器110、变流器120;整流变压器110的原边用于外部发电场,副边与变流器120的输入端连接;
变流器120采用二极管整流结构;变流器120和整流变压器110集中设置于一个支撑平台上。
外部发电场包括风力发电场或光伏电场,本实施例中优选风力发电场。
整流变压器110包括多组副边;变流器120包括与整流变压器110副边数量一致的多个子变流器121;整流变压器110的副边与子变流器121的输入端一一对应连接;相邻的子变流器121输出端依次连接成子变流器串联结构,子变流器串联结构的两输出端分别作为变流器120的正电压输出端和负电压输出端。
本实施例中,整流变压器110采用三绕组Y/Y/D方式,并连接有两个串联的子变流器121;整流变压器110也可以采用多绕组移相结构,设置有N(N=2或者3、4等等)个副边,相应的变流器121的数量也为N个,并与整流变压器110的N个副边一一对应连接。
在变流器120的正电压和负电压输出端皆连接有平波电抗器122、功能选择开关123或平波电抗器122与功能选择开关123的串联结构,功能选择开关123用于选择电路的接通、断开或接地;参见图1,本实施例中,优选的平波电抗器122与功能选择开关123的串联结构。
如图2所示,多个子变流器121皆采用三相桥式六脉冲整流结构,每子变流器121包括并行连接的A相模块、B相模块、C相模块,每个相模块皆包括串行连接的第一二极管阀串和第二二极管阀串,第一二极管阀串和第二二极管阀串的公共连接端用于连接外部交流电源;第一二极管阀串和第二二极管阀串皆由多个二极管阀并联和/或串联组成,二极管阀具体的数目和连接关系由电压和电流来确定(串联数目取决于存在的电压,并联数目取决于存在的电流);
本实施例中,每个相模块中的二极管阀的具体数量和连接关系可以根据存在的电压和电流由多个二极管串联和/或并联组成,二极管串联数目取决于存在的电压,二极管并联数目取决于存在的电流;
本实施例中,每个相模块中的二极管阀皆采用同样的结构,具体包括第一电容、第一电阻、第二电阻、第一二极管;第一电容和第一电阻串联以后与第一二极管并联,且第一电容与第一二极管的阴极连接,第二电阻与第一二极管并联。
本实施例中优选的,多个子变流器121的输出端连接有子平波电抗器(图中未示出)和子旁路开关(图中未示出),子旁路开关可以旁路出现故障的子变流器121,也可以单独采用子平波电抗器或子旁路开关。
本实施例中,整流变压器110的输入端设置有交流滤波器130在图3中示出,交流滤波器130与变流器120设置于同一支撑平台上。
本实施例中,变流器120的输出端并联有旁路开关140,当发生故障时,旁路开关140闭合,可以把故障回路旁路连通,配合功能选择开关123可以起到更好的保护和故障排查作用,旁路开关140与整流变压器110设置于同一支撑平台上。
本实施例中,变流器120的输入端可以设置滤波器单元(图中未示出),起到更好的滤波效果。
本实施例中,采用的二极管整流机构,使整个变流站100的体积得到了进一步的减小。
本实施例中,变流站100集中在一个支撑平台上实现安装,并且能够实现海上支撑平台安装,进一步降低了在海上实现远程输电的难度。
如图3所示,一种输电系统,包括陆上换流平台200和上述的变流站100;变流站100的输入端与外部供电设备连接,输出端与陆上换流平台200的输入端连接;陆上换流平台200的输出端与外部交流电网连接,陆上换流平台200用于直流电转交流电。
本实施例中,变流站100数量有多个;多个变流站100的输出端依次串联后再与陆上换流平台200连接;
如图3所示,本实施例中,采用了3个变流站100,并分别布置在海上平台A、B、C上。
陆上换流平台200包括换流站210、陆上变压器220;换流站210输入端与变流站100的输出端连接,输出端与陆上变压器220的输入端连接;陆上变压器220的输出端与外部交流电网连接。
如图4所示,本实施例中,换流站210采用MMC结构,换流站210包括6个桥臂,6个桥臂皆包括依次串联的多个功率模块,多个功率模块皆用于直流电转交流电;多个功率模块皆采用半桥结构和/或全桥结构如图5刚和图6所示。
换流站210的6个桥臂皆连接有CT互感器、桥臂平波电抗器211或CT互感器与桥臂平波电抗器211的串联结构;本实施例中优选CT互感器与桥臂平波电抗器211的串联结构。
在实际工作过程中,因为采用二极管整流器只能用于一个方向,即从整流变压器100向换流站210方向进行电力传输,所以在风电场无风时必须以其它方式被供以它所需的能量,因此,在上述输电系统中,还设置了交流辅助电源系统300,交流辅助电源系统300输入端与陆上换流平台200的输出端或外部电源相连接,输出端通过配电装置与变流站100的输入端连接;交流辅助电源系统300用于给外部发电场进行辅助供电;
本实施例中,交流辅助电源系统300与变流站100的输入端通过配电装置连接,具体可采用配电柜。
本实施例中,交流辅助电源系统300由海上交流电缆和陆地侧的辅助供电装置组成;辅助供电装置由第一交流断路器、变压装置、第二交流断路器依次串联组成,变压装置用于电压调节;
变压装置可以采用调压变压器、电力电子变流器或调压变压器与电力电子变流器的串联结构,本实施例中,具体采用调压变压器与电力电子变流器的串联结构来实现调压功能。
本实施例中,陆上换流平台200和变流站100通过高压海缆连接,可以具备更好的稳定性和安全性。
陆上变压器220数量有多个,多个陆上变压器220并行连接后的输入端与换流站210的输出端连接,输出端与外部交流电网连接;
本实施例中,采用了两个陆上变压器220并联,可以很好的增加整个系统的稳定性。
以上所述仅为本实用新型的优先实施方式,本实用新型并不限定于上述实施方式,只要以基本相同手段实现本实用新型目的的技术方案都属于本实用新型的保护范围之内。

Claims (21)

1.一种变流站,其特征在于:包括整流变压器(110)、变流器(120);所述整流变压器(110)的原边用于接入外部发电场,副边与所述变流器(120)的输入端连接;
所述变流器(120)采用二极管整流结构;所述变流器(120)和整流变压器(110)集中设置于一个支撑平台上。
2.根据权利要求1所述的一种变流站,其特征在于:所述整流变压器(110)包括多组副边;所述变流器(120)包括与所述整流变压器(110)副边数量一致的多个子变流器(121);所述整流变压器(110)的副边与所述子变流器(121)的输入端一一对应连接;相邻的子变流器(121)输出端依次连接成子变流器串联结构,所述子变流器串联结构的两输出端分别作为所述变流器(120)的正电压输出端和负电压输出端。
3.根据权利要求2所述的一种变流站,其特征在于:所述变流器(120)的正电压输出端和负电压输出端皆连接有平波电抗器(122)、功能选择开关(123)或平波电抗器(122)与功能选择开关(123)的串联结构,所述功能选择开关(123)用于选择电路的接通、断开或接地。
4.根据权利要求2所述的一种变流站,其特征在于:所述多个子变流器(121)皆采用三相桥式六脉冲整流结构。
5.根据权利要求2所述的一种变流站,其特征在于:所述多个子变流器(121)的输出端皆连接有子平波电抗器。
6.根据权利要求2所述的一种变流站,其特征在于:所述子变流器(121)的输出端并联有子旁路开关。
7.根据权利要求1所述的一种变流站,其特征在于:所述整流变压器(110)的输入端设置有交流滤波器(130);所述交流滤波器(130)与所述变流器(120)设置于同一支撑平台上。
8.根据权利要求1所述的一种变流站,其特征在于:所述变流器(120)的输出端并联有旁路开关(140);所述旁路开关(140)与所述整流变压器(110)设置于同一支撑平台上。
9.根据权利要求1所述的一种变流站,其特征在于:所述外部发电场包括风力发电场或光伏电场。
10.一种输电系统,其特征在于:包括陆上换流平台(200)和权利要求1-9任一所述的变流站(100);
所述变流站(100)的输入端与所述外部发电场连接,输出端与所述陆上换流平台(200)的输入端连接;
所述陆上换流平台(200)的输出端用于连接外部交流电网,所述陆上换流平台(200)用于直流电转交流电。
11.根据权利要求10所述的一种输电系统,其特征在于:所述变流站(100)数量有多个;所述多个变流站(100)的输出端依次串联后再与所述陆上换流平台(200)连接。
12.根据权利要求10所述的一种输电系统,其特征在于:所述陆上换流平台(200)包括换流站(210)、陆上变压器(220);所述换流站(210)的输入端与所述变流站(100)的输出端连接,输出端与所述陆上变压器(220)的输入端连接;所述陆上变压器(220)的输出端用于连接外部交流电网。
13.根据权利要求12所述的一种输电系统,其特征在于:所述换流站(210)包括6个桥臂,所述6个桥臂皆包括依次串联的多个功率模块,多个所述功率模块皆采用半桥结构和/或全桥结构以用于直流电转交流电。
14.根据权利要求13所述的一种输电系统,其特征在于:所述换流站(210)的6个桥臂皆连接有CT互感器、桥臂平波电抗器(211)或CT互感器与桥臂平波电抗器(211)的串联结构。
15.根据权利要求10所述的一种输电系统,其特征在于:还包括交流辅助电源系统(300),所述交流辅助电源系统(300)输入端与所述陆上换流平台(200)的输出端或外部电源相连接,输出端通过配电装置与变流站(100)的输入端连接;所述交流辅助电源系统(300)用于给所述外部发电场进行辅助供电。
16.根据权利要求15所述的一种输电系统,其特征在于:所述交流辅助电源系统(300)与所述变流站(100)的输入端通过配电装置连接。
17.根据权利要求15所述的一种输电系统,其特征在于:所述交流辅助电源系统(300)包括辅助供电装置和海上交流电缆组成;所述辅助供电装置用于给所述外部发电场辅助供电。
18.根据权利要求17所述的一种输电系统,其特征在于:所述辅助供电装置由第一交流断路器、变压装置、第二交流断路器依次串联组成,所述变压装置用于电压调节。
19.根据权利要求18所述的一种输电系统,其特征在于:所述变压装置采用调压变压器、电力电子变流器或调压变压器与电力电子变流器的串联结构。
20.根据权利要求10所述的一种输电系统,其特征在于:所述陆上换流平台(200)和变流站(100)通过高压海缆连接。
21.根据权利要求12所述的一种输电系统,其特征在于:所述陆上变压器(220)数量有多个,所述多个陆上变压器(220)并行连接后的输入端与所述换流站(210)的输出端连接,输出端与所述外部交流电网连接。
CN201921489067.0U 2019-09-09 2019-09-09 一种变流站及输电系统 Active CN210693470U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921489067.0U CN210693470U (zh) 2019-09-09 2019-09-09 一种变流站及输电系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921489067.0U CN210693470U (zh) 2019-09-09 2019-09-09 一种变流站及输电系统

Publications (1)

Publication Number Publication Date
CN210693470U true CN210693470U (zh) 2020-06-05

Family

ID=70883717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921489067.0U Active CN210693470U (zh) 2019-09-09 2019-09-09 一种变流站及输电系统

Country Status (1)

Country Link
CN (1) CN210693470U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556864A (zh) * 2019-09-09 2019-12-10 广东安朴电力技术有限公司 一种远程输电变流站及输电系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556864A (zh) * 2019-09-09 2019-12-10 广东安朴电力技术有限公司 一种远程输电变流站及输电系统

Similar Documents

Publication Publication Date Title
CN110556864A (zh) 一种远程输电变流站及输电系统
EP3886288A1 (en) Offshore wind farm high-frequency uncontrolled rectification direct-current electric power transmission system
CN103607032B (zh) 可再生能源发电、输变电和电网接入一体化系统
CN101741094B (zh) 一种基于可关断器件的移动式输电装置
CN107895963A (zh) 一种海上风电场柔直换流站拓扑结构及其并网系统
CN214674375U (zh) 多端海上风电柔性直流与储能协同并网系统
CN105790305B (zh) 基于全桥mmc直流侧串联的海上风电并网系统及其控制方法
CN110130295B (zh) 海上风电柔性直流输电换流站桥臂阀塔布局及海上平台
CN102142688B (zh) 电能并网系统以及电能传输系统和方法
CN110112731B (zh) 一种输电系统
CN113794226A (zh) 一种海上风电场低频交流输电系统
CN106712084A (zh) 一种用于串联直流海上风电场的风力发电系统
CN203589824U (zh) 可再生能源发电、输变电和电网接入一体化系统
CN105391079A (zh) 一种基于新能源互连的功率融通型平衡供电系统及方法
CN113258598B (zh) 一种海上风电直流送出的拓扑电路及控制方法
CN210693470U (zh) 一种变流站及输电系统
CN212392678U (zh) 海上输电系统
CN113241808A (zh) 一种海上风电交直流组网系统及其工作方法
CN205123278U (zh) 一种海上风电直流汇聚输电系统
CN102946102B (zh) 潮流发电机组变流输电系统的工作方法
CN114362183A (zh) 一种基于主动换相型电流源换流器的海上风电低频交流输电系统拓扑
CN211981512U (zh) 一种海上风力与波浪联合发电机组
CN114629156A (zh) 一种分散式不控整流混合直流单向输电系统及其控制方法
CN113595067A (zh) 基于中-低-工频汇集的新型深远海风电输电系统
CN210137187U (zh) 一种基于储能的多换流链交交变频器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant