CN210605073U - 光纤阵列耦合装置 - Google Patents

光纤阵列耦合装置 Download PDF

Info

Publication number
CN210605073U
CN210605073U CN201920822672.9U CN201920822672U CN210605073U CN 210605073 U CN210605073 U CN 210605073U CN 201920822672 U CN201920822672 U CN 201920822672U CN 210605073 U CN210605073 U CN 210605073U
Authority
CN
China
Prior art keywords
fiber
array
optical fiber
lens
coupling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920822672.9U
Other languages
English (en)
Inventor
吴鹏飞
雷思琛
杨玉峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201920822672.9U priority Critical patent/CN210605073U/zh
Application granted granted Critical
Publication of CN210605073U publication Critical patent/CN210605073U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

本实用新型公开了光纤阵列耦合装置,信号光束经远距离湍流大气传输后,形成的畸变波前。畸变波前被图2所示的空间光‑光纤阵列耦合装置耦合,使得空间传输光束转化为光纤传输。在阵列光纤尾端,可进行光纤阵列熔融拉锥或者光电转化,进行信号探测还原的过程,结合智能优化驱动微动压电陶瓷阵列,实现阵列单元中每个光纤耦合端面中心位于对应透镜焦点中心,且保持光纤与透镜光轴重合,进一步提升升空间光‑光纤阵列耦合效率。

Description

光纤阵列耦合装置
技术领域
本实用新型涉及电子信息领域,特别是涉及光纤阵列耦合装置。
背景技术
无线激光通信(Free Space Optic,FSO)通信是以光波为载波,在自由空间(大气或真空环境)中进行高速数据传输的一种无线通信方式。它是光纤通信的拓展,但又与光纤通信有很大的区别:它不需要通过光纤进行传输,拓展了光通信的使用范围。与传统无线射频通信相比,FSO通信具有无需频谱许可、安装方便、安全保密、通信速率高等优势。作为一种新兴的通信方式,在频谱资源日益匮乏的今天,它的发展前景不容忽视。但由于地-地FSO系统常使用开放性的大气信道作为传播信道,大气环境会对信号造成较大的影响。大气湍流会使得光斑形状伴有不同程度的破损、并且闪烁、抖动(到达角起伏)、漂移等。这给信号的接收、探测带来了很大的困难。信号光抖动的随机性不仅会带来探测噪声,而且在抖动幅度较大时,还会造成信号的中断。
FSO系统实际中主要采取的探测方式有两种:直接探测和光纤耦合探测。相较于空间探测使用的大面型PIN光电二极管探测,光纤探测器光敏面小、结电容小、响应频率高。一般近距和较低频率的通信系统常采用直接探测;当通信距离提高至千米级别或者通信速率吉赫兹(GHz)到时,多采用光纤耦合探测。光纤耦合探测多采用接收天线和单根单模光纤配合的方式。其优势在于可将成熟光纤通信组件,如光纤放大器件、波分复用/解复用器和探测器件等直接应用于FSO 系统中,降低FSO系统开发成本及开发时间。
光纤耦合方案带来便利的同时也带来由于纤芯面积小而引起的对准困难问题。理论上,当入射光焦点与光纤中心径向对准误差超过 2μm,耦合效率衰落-5dB,在机械加工中很难保证这么高的加工、对准精度。除此之外,湍流大气引起的到达角起伏主要表现是光斑焦点会在光纤端面不定的跳动(如图1所示),当光束抖引起的对准失配超过2μm,同样会引起耦合效率的降低。实验上,2012年Hideki Takenaka等人在Optics Express上公开了一组OICETS系统星-地下行链路空间光经单透镜耦合进单模光纤的耦合效率衰落情况的实验数据和理论分析方法,实验测得耦合效率衰落到-10~-19dB之间,与理论计算出的-17dB几乎吻合(Hideki Takenaka,Morio Toyoshima, Yoshihisa Takayama.Experimentalverification of fiber-coupling efficiency for satellite-to-ground atmosphericlaser downlinks[J].Optics Express 2012,20(14):15301-15308.)。那么针对地-地FSO系统,当信号光经过地面湍流富集区域传输更远距离后,如何提高耦合效率,并能够克服光斑抖动(到达角起伏)、光斑漂移造成的耦合效率迅速下降是亟待解决的技术难题,也是限制FSO系统产业化的瓶颈技术。
实用新型内容
本实用新型的目的是提供光纤阵列耦合装置,能够克服光斑抖动、漂移时造成的耦合效率下降的问题。
本实用新型所采用的技术方案是:一种光纤阵列耦合装置,包括透镜阵列安装层,所述透镜阵列安装层上设置有成半圆形外凸的透镜阵列,透镜阵列中的每个透镜焦点正下方均设置有单模光纤,单模光纤通过光纤安装板进行固定,所有所述单模光纤形成与所述透镜阵列一致对应的光纤阵列,所述的光纤安装板上设置有与单模光纤平行的微动压电陶瓷,微动压电陶瓷的两端分别设置有上微动压电陶瓷安装层和下微动压电陶瓷安装层。
本实用新型的特点还在于,
每个透镜均采用相对孔径为0.2的单透镜。
所述单模光纤的四周均匀设置有4个微动压电陶瓷。
微动压电陶瓷外部设置有空间光-光纤阵列耦合装置外壳,所述单模光纤竖直穿出空间光-光纤阵列耦合装置外壳。
透镜阵列安装层为圆形,透镜阵列安装层上分布有若干圆形通孔。
单模光纤的耦合端面通过法兰固定于光纤安装板上,单模光纤耦合端面位于光纤安装板的中心通孔位置。
单模光纤耦合端面中心位于对应透镜焦点中心。
单模光纤耦合端面位于圆形光纤安装板的中心通孔位置
本实用新型的有益效果是:
第一,通过透镜阵列-光纤阵列接收形式,增大接收面积以抑制大气湍流引起的光束漂移造成的耦合效率下降;
第二,通过透镜阵列-光纤阵列接收形式,降低单一单元的透镜尺寸和透镜焦距,从而降低单一结构单元散斑数量和由于光学系统长焦距引起的抖动剧烈的现象(如图1中3所示,光束焦点在透镜端面径向抖动量s正比于透镜焦距f),从光学结构上抑制大气湍流引起的光束抖动(到达角起伏)造成的耦合效率下降;
第三,结合智能优化驱动微动压电陶瓷阵列,实现阵列单元中每个光纤耦合端面中心位于对应透镜焦点中心,且保持光纤与透镜光轴重合,进一步提升升空间光-光纤阵列耦合效率。
附图说明
图1是本实用新型的光纤阵列耦合装置的结构主视图;
图2是本实用新型的光纤阵列耦合装置的结构俯视图。
图中,1.受湍流大气影响的畸变波前,2.透镜阵列安装层,3.上微动压电陶瓷安装层,4.微动压电陶瓷,5下微动压电陶瓷安装层, 6.单模光纤,7.光纤安装板,8.空间光-光纤阵列耦合装置外壳,9.透镜阵列。
具体实施方式
下面结合附图和具体实施方式对本实用新型进行详细说明。
光纤阵列耦合装置,如图1所示,包括透镜阵列安装层2,所述透镜阵列安装层2上设置有成半圆形外凸的透镜阵列9,透镜阵列9 中的每个透镜焦点正下方均设置有单模光纤6,单模光纤6通过光纤安装板7进行固定,所有所述单模光纤6形成与所述透镜阵列1一致对应的光纤阵列,所述的光纤安装板7上设置有与单模光纤6平行的微动压电陶瓷4,微动压电陶瓷4的两端分别设置有上微动压电陶瓷安装层3和下微动压电陶瓷安装层5。
每个透镜均采用相对孔径为0.2的单透镜。
每个单模光纤6的四周均匀设置有4个微动压电陶瓷4。
微动压电陶瓷4外部设置有空间光-光纤阵列耦合装置外壳8,所述单模光纤6竖直穿出空间光-光纤阵列耦合装置外壳8。
如图2所示,透镜阵列安装层2为圆形,透镜阵列安装层2上分布有若干圆形通孔。
单模光纤6的耦合端面通过法兰固定于光纤安装板7上,单模光纤6耦合端面位于光纤安装板7的中心通孔位置。
单模光纤6耦合端面中心位于对应透镜焦点中心。
单模光纤6耦合端面位于圆形光纤安装板的中心通孔位置
本实用新型的工作过程为:
空间入射的信号光束经远距离湍流大气传输后,形成畸变波前。该畸变波前被大口径平行光管汇聚、缩束后入射至或直接入射至图1 所示的透镜阵列端面上,其中透镜阵列中的每个透镜的相对孔径为 0.2;透镜阵列将光束汇聚并入射至单模光纤6阵列耦合端面上,将空间传输光束转化为光纤传输。其中单模光纤6的耦合端面通过法兰固定于图2中7所示的具有中心通孔的圆形光纤安装板上,单模光纤耦合端面位于圆形光纤安装板的中心通孔位置;如图1中所示,给每个光纤安装板的四周均匀布置四个可一维运动的微动压电陶瓷。由于大气湍流的影响,当透镜聚焦光束未能汇聚至光纤端面的中心时,结合智能优化算法驱动压电陶瓷。实现阵列单元中每个光纤耦合端面中心位于对应透镜焦点中心,且保持光纤与透镜光轴重合,单模光纤尾端,可进行光纤阵列熔融拉锥或者光电转化,进行信号探测。
在自由空间光通信中或者激光雷达中,该装置可进行信号的接收。对于自由空间光通信系统而言,信号光束(如图2中)由通信对方终端提供;对于激光雷达而言,信号光束是探测目标的回波信号。信号光束经远距离湍流大气传输后,形成的畸变波前。畸变波前被图2所示的空间光-光纤阵列耦合装置耦合,使得空间传输光束转化为光纤传输。在阵列光纤尾端,可进行光纤阵列熔融拉锥或者光电转化,进行信号探测还原的过程。

Claims (7)

1.光纤阵列耦合装置,其特征在于,包括透镜阵列安装层(2),所述透镜阵列安装层(2)上设置有成半圆形外凸的透镜阵列(9),透镜阵列(9)中的每个透镜焦点正下方均设置有单模光纤(6),单模光纤(6)通过光纤安装板(7)进行固定,所有所述单模光纤(6)形成与所述透镜阵列(9)一致对应的光纤阵列,所述的光纤安装板(7)上设置有与单模光纤(6)平行的微动压电陶瓷(4),微动压电陶瓷(4)的两端分别设置有上微动压电陶瓷安装层(3)和下微动压电陶瓷安装层(5)。
2.如权利要求1所述的光纤阵列耦合装置,其特征在于,所述每个透镜均采用相对孔径为0.2的单透镜。
3.如权利要求1或2所述的光纤阵列耦合装置,其特征在于,每个所述单模光纤(6)的四周均匀设置有4个微动压电陶瓷(4)。
4.如权利要求1所述的光纤阵列耦合装置,其特征在于,所述微动压电陶瓷(4)外部设置有空间光-光纤阵列耦合装置外壳(8),所述单模光纤(6)竖直穿出空间光-光纤阵列耦合装置外壳(8)。
5.如权利要求4所述的光纤阵列耦合装置,其特征在于,所述透镜阵列安装层(2)为圆形,透镜阵列安装层(2)上分布有若干圆形通孔。
6.如权利要求1所述的光纤阵列耦合装置,其特征在于,所述单模光纤(6)的耦合端面通过法兰固定于光纤安装板(7)上,单模光纤(6)耦合端面位于光纤安装板(7)的中心通孔位置。
7.如权利要求1所述的光纤阵列耦合装置,其特征在于,在所述单模光纤(6)耦合端面中心位于对应透镜焦点中心;单模光纤(6)耦合端面位于圆形光纤安装板的中心通孔位置。
CN201920822672.9U 2019-05-31 2019-05-31 光纤阵列耦合装置 Active CN210605073U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920822672.9U CN210605073U (zh) 2019-05-31 2019-05-31 光纤阵列耦合装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920822672.9U CN210605073U (zh) 2019-05-31 2019-05-31 光纤阵列耦合装置

Publications (1)

Publication Number Publication Date
CN210605073U true CN210605073U (zh) 2020-05-22

Family

ID=70721148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920822672.9U Active CN210605073U (zh) 2019-05-31 2019-05-31 光纤阵列耦合装置

Country Status (1)

Country Link
CN (1) CN210605073U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110261967A (zh) * 2019-05-31 2019-09-20 西安理工大学 一种提升空间光-光纤阵列耦合效率的装置及方法
CN111914467A (zh) * 2020-06-05 2020-11-10 西安理工大学 一种基于ga算法建立星光大气折射模型的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110261967A (zh) * 2019-05-31 2019-09-20 西安理工大学 一种提升空间光-光纤阵列耦合效率的装置及方法
CN111914467A (zh) * 2020-06-05 2020-11-10 西安理工大学 一种基于ga算法建立星光大气折射模型的方法

Similar Documents

Publication Publication Date Title
CN110261967B (zh) 一种提升空间光-光纤阵列耦合效率的装置及方法
US10903901B2 (en) Free space optical node with fiber bundle
CN210605073U (zh) 光纤阵列耦合装置
US4050782A (en) Mode separator and delay equalizer for multimode optical fiber transmission systems
CN104155639A (zh) 收发一体激光雷达装置
CN109889252B (zh) 星间激光通信系统
CN109506764B (zh) 一种光纤mems麦克风阵列声波探测板及系统
CN111257896B (zh) 选通阵列激光雷达接收光学系统和激光雷达
CN101446668A (zh) 自由空间光通信光接收天线
CN111600654A (zh) 一种基于功率反馈的高效空间光-光纤耦合装置及方法
CN103209022A (zh) 基于光纤阵列的空间光耦合探测装置
Ooi et al. Wide-field-of-view optical detectors based on fused fiber-optic tapers for high-speed optical wireless communication
CN216485489U (zh) 一种用于光电转换的耦合装置及激光雷达
CN107634795B (zh) 一种自由空间光通信系统的光学天线及其自动对准方法
CN2810046Y (zh) 一种自由空间光通信装置
CN212012659U (zh) 带有电压反馈的自动光纤耦合装置
CN112769480B (zh) 一种超大视场角的空间激光至光纤耦合装置及应用方法
CN116466445A (zh) 光接收模块、设备和方法
CN116338632A (zh) 激光雷达收发光学系统和应用其的激光雷达及操作其方法
EP1418689B1 (en) Optical receiver for a free-space transmission system
JP2002084232A (ja) 空中光通信のための方法および送受信機
CN100428654C (zh) 一种自由空间光通信系统
CN101562481A (zh) 基于级联全通滤波器的毫米波副载波光脉冲信号发生器
CN103630985B (zh) 用于传输光信号的光模组
Umezawa et al. Large active area, high-speed photoreceiver for optical wireless communications

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant