CN110261967A - 一种提升空间光-光纤阵列耦合效率的装置及方法 - Google Patents

一种提升空间光-光纤阵列耦合效率的装置及方法 Download PDF

Info

Publication number
CN110261967A
CN110261967A CN201910469563.8A CN201910469563A CN110261967A CN 110261967 A CN110261967 A CN 110261967A CN 201910469563 A CN201910469563 A CN 201910469563A CN 110261967 A CN110261967 A CN 110261967A
Authority
CN
China
Prior art keywords
optical fiber
fiber
array
single mode
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910469563.8A
Other languages
English (en)
Other versions
CN110261967B (zh
Inventor
雷思琛
柯熙政
吴鹏飞
南友新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201910469563.8A priority Critical patent/CN110261967B/zh
Publication of CN110261967A publication Critical patent/CN110261967A/zh
Application granted granted Critical
Publication of CN110261967B publication Critical patent/CN110261967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • G02B6/322Optical coupling means having lens focusing means positioned between opposed fibre ends and having centering means being part of the lens for the self-positioning of the lightguide at the focal point, e.g. holes, wells, indents, nibs

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

本发明公开了一种提升空间光‑光纤阵列耦合效率的装置及方法,信号光束经远距离湍流大气传输后,形成的畸变波前。畸变波前被图2所示的空间光‑光纤阵列耦合装置耦合,使得空间传输光束转化为光纤传输。在阵列光纤尾端,可进行光纤阵列熔融拉锥或者光电转化,进行信号探测还原的过程,结合智能优化驱动微动压电陶瓷阵列,实现阵列单元中每个光纤耦合端面中心位于对应透镜焦点中心,且保持光纤与透镜光轴重合,进一步提升升空间光‑光纤阵列耦合效率。

Description

一种提升空间光-光纤阵列耦合效率的装置及方法
技术领域
本发明涉及电子信息领域,特别是涉及一种提升空间光-光纤阵列耦合效率的装置及方法。
背景技术
无线激光通信(Free Space Optic,FSO)通信是以光波为载波,在自由空间(大气或真空环境)中进行高速数据传输的一种无线通信方式。它是光纤通信的拓展,但又与光纤通信有很大的区别:它不需要通过光纤进行传输,拓展了光通信的使用范围。与传统无线射频通信相比,FSO通信具有无需频谱许可、安装方便、安全保密、通信速率高等优势。作为一种新兴的通信方式,在频谱资源日益匮乏的今天,它的发展前景不容忽视。但由于地-地FSO系统常使用开放性的大气信道作为传播信道,大气环境会对信号造成较大的影响。大气湍流会使得光斑形状伴有不同程度的破损、并且闪烁、抖动(到达角起伏)、漂移等。这给信号的接收、探测带来了很大的困难。信号光抖动的随机性不仅会带来探测噪声,而且在抖动幅度较大时,还会造成信号的中断。
FSO系统实际中主要采取的探测方式有两种:直接探测和光纤耦合探测。相较于空间探测使用的大面型PIN光电二极管探测,光纤探测器光敏面小、结电容小、响应频率高。一般近距和较低频率的通信系统常采用直接探测;当通信距离提高至千米级别或者通信速率吉赫兹(GHz)到时,多采用光纤耦合探测。光纤耦合探测多采用接收天线和单根单模光纤配合的方式。其优势在于可将成熟光纤通信组件,如光纤放大器件、波分复用/解复用器和探测器件等直接应用于FSO系统中,降低FSO系统开发成本及开发时间。
光纤耦合方案带来便利的同时也带来由于纤芯面积小而引起的对准困难问题。理论上,当入射光焦点与光纤中心径向对准误差超过2μm,耦合效率衰落-5dB,在机械加工中很难保证这么高的加工、对准精度。除此之外,湍流大气引起的到达角起伏主要表现是光斑焦点会在光纤端面不定的跳动(如图1所示),当光束抖引起的对准失配超过2μm,同样会引起耦合效率的降低。实验上,2012年Hideki Takenaka等人在Optics Express上公开了一组OICETS系统星-地下行链路空间光经单透镜耦合进单模光纤的耦合效率衰落情况的实验数据和理论分析方法,实验测得耦合效率衰落到-10~-19dB之间,与理论计算出的-17dB几乎吻合(Hideki Takenaka,Morio Toyoshima,Yoshihisa Takayama.Experimentalverification of fiber-coupling efficiency for satellite-to-ground atmosphericlaser downlinks[J].Optics Express 2012,20(14):15301-15308.)。那么针对地-地FSO系统,当信号光经过地面湍流富集区域传输更远距离后,如何提高耦合效率,并能够克服光斑抖动(到达角起伏)、光斑漂移造成的耦合效率迅速下降是亟待解决的技术难题,也是限制FSO系统产业化的瓶颈技术。
发明内容
本发明的目的是提供一种提升空间光-光纤阵列耦合效率的装置及方法,能够克服光斑抖动、漂移时造成的耦合效率下降的问题。
本发明所采用的技术方案是:一种提升空间光-光纤阵列耦合效率的装置及方法,包括透镜阵列安装层,所述透镜阵列安装层上设置有成半圆形外凸的透镜阵列,透镜阵列中的每个透镜焦点正下方均设置有单模光纤,单模光纤通过光纤安装板进行固定,所有所述导光光纤形成与所述透镜阵列一致对应的光纤阵列,所述的光纤安装板上设置有与单模光纤平行的微动压电陶瓷,微动压电陶瓷的两端分别设置有上微动压电陶瓷安装层和下微动压电陶瓷安装层。
本发明的特点还在于,
每个透镜均采用相对孔径为0.2的单透镜。
所述单模光纤的四周均匀设置有4个微动压电陶瓷。
微动压电陶瓷外部设置有空间光-光纤阵列耦合装置外壳,所述单模光纤竖直穿出空间光-光纤阵列耦合装置外壳。
透镜阵列安装层为圆形,透镜阵列安装层上分布有若干圆形通孔。
单模光纤的耦合端面通过法兰固定于光纤安装板上,单模光纤耦合端面位于光纤安装板的中心通孔位置。
单模光纤耦合端面中心位于对应透镜焦点中心。
单模光纤耦合端面位于圆形光纤安装板的中心通孔位置
一种提升空间光-光纤阵列耦合效率的方法,该方法依赖于一种提升空间光-光纤阵列耦合效率的装置,其结构为:包括透镜阵列安装层,所述透镜阵列安装层上设置有成半圆形外凸的透镜阵列,透镜阵列中的每个透镜焦点正下方均设置有单模光纤,单模光纤通过光纤安装板进行固定,所有所述导光光纤形成与所述透镜阵列一致对应的光纤阵列,所述的光纤安装板上设置有与单模光纤平行的微动压电陶瓷,微动压电陶瓷的两端分别设置有上微动压电陶瓷安装层和下微动压电陶瓷安装层。
所述每个透镜均采用相对孔径为0.2的单透镜;
每个所述单模光纤的四周均匀设置有4个微动压电陶瓷;
所述微动压电陶瓷外部设置有空间光-光纤阵列耦合装置外壳,所述单模光纤竖直穿出空间光-光纤阵列耦合装置外壳;
所述透镜阵列安装层为圆形,透镜阵列安装层上分布有若干圆形通孔;
所述单模光纤的耦合端面通过法兰固定于光纤安装板上,单模光纤耦合端面位于圆形光纤安装板的中心通孔位置;
所述单模光纤耦合端面中心位于对应透镜焦点中心。
具体按照以下方法实施:
步骤1:首先调整装置中单模光纤和透镜阵列的角度,实现阵列单元中每个光纤耦合端面中心位于对应透镜焦点中心,且保持光纤与透镜光轴重合;
步骤2:将空间入射的信号光束经远距离湍流大气传输后,形成畸变波前,用大口径平行光管将畸变波前汇聚、缩束后入射至或直接入射至透镜阵列的端面上。
步骤3:透镜阵列将光束汇聚并入射至单模光纤阵列耦合端面上,将空间传输光束转化为光纤传输;
步骤4:由于大气湍流的影响,当透镜聚焦光束未能汇聚至光纤端面的中心时,驱动压电陶瓷,实现阵列单元中每个光纤耦合端面中心位于对应透镜焦点中心,且保持光纤与透镜光轴重合。
步骤5;光纤阵列耦合完成,单模光纤尾端,可进行光纤阵列熔融拉锥或者光电转化,进行信号探测。
本发明的有益效果是:
第一,通过透镜阵列-光纤阵列接收形式,增大接收面积以抑制大气湍流引起的光束漂移造成的耦合效率下降;
第二,通过透镜阵列-光纤阵列接收形式,降低单一单元的透镜尺寸和透镜焦距,从而降低单一结构单元散斑数量和由于光学系统长焦距引起的抖动剧烈的现象(如图1中3所示,光束焦点在透镜端面径向抖动量s正比于透镜焦距f),从光学结构上抑制大气湍流引起的光束抖动(到达角起伏)造成的耦合效率下降;
第三,结合智能优化驱动微动压电陶瓷阵列,实现阵列单元中每个光纤耦合端面中心位于对应透镜焦点中心,且保持光纤与透镜光轴重合,进一步提升升空间光-光纤阵列耦合效率。
附图说明
图1是本发明的一种提升空间光-光纤阵列耦合效率的装置的结构主视图;
图2是本发明的一种提升空间光-光纤阵列耦合效率的装置的结构俯视图。
图中,1.受湍流大气影响的畸变波前,2.透镜阵列安装层,3.上微动压电陶瓷安装层,4.微动压电陶瓷,5下微动压电陶瓷安装层,6.单模光纤,7.光纤安装板,8.空间光-光纤阵列耦合装置外壳,9.透镜。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
一种提升空间光-光纤阵列耦合效率的装置,如图1所示,包括透镜阵列安装层2,所述透镜阵列安装层2上设置有成半圆形外凸的透镜阵列9,透镜阵列9中的每个透镜焦点正下方均设置有单模光纤6,单模光纤6通过光纤安装板7进行固定,所有所述导光光纤形成与所述透镜阵列1一致对应的光纤阵列2,所述的光纤安装板7上设置有与单模光纤6平行的微动压电陶瓷4,微动压电陶瓷4的两端分别设置有上微动压电陶瓷安装层3和下微动压电陶瓷安装层5。
每个透镜均采用相对孔径为0.2的单透镜。
每个单模光纤6的四周均匀设置有4个微动压电陶瓷4。
微动压电陶瓷4外部设置有空间光-光纤阵列耦合装置外壳8,所述单模光纤6竖直穿出空间光-光纤阵列耦合装置外壳8。
如图2所示,透镜阵列安装层2为圆形,透镜阵列安装层2上分布有若干圆形通孔。
单模光纤6的耦合端面通过法兰固定于光纤安装板7上,单模光纤6耦合端面位于光纤安装板7的中心通孔位置。
单模光纤6耦合端面中心位于对应透镜焦点中心。
单模光纤(6)耦合端面位于圆形光纤安装板的中心通孔位置
一种提升空间光-光纤阵列耦合效率的方法,该方法依赖于一种提升空间光-光纤阵列耦合效率的装置,其结构为:包括透镜阵列安装层2,所述透镜阵列安装层2上设置有成半圆形外凸的透镜阵列9,透镜阵列9中的每个透镜焦点正下方均设置有单模光纤6,单模光纤6通过光纤安装板7进行固定,所有所述导光光纤形成与所述透镜阵列1一致对应的光纤阵列2,所述的光纤安装板7上设置有与单模光纤6平行的微动压电陶瓷4,微动压电陶瓷4的两端分别设置有上微动压电陶瓷安装层3和下微动压电陶瓷安装层5。
所述每个透镜均采用相对孔径为0.2的单透镜;
每个所述单模光纤6的四周均匀设置有4个微动压电陶瓷4;
所述微动压电陶瓷4外部设置有空间光-光纤阵列耦合装置外壳8,所述单模光纤6竖直穿出空间光-光纤阵列耦合装置外壳8;
所述透镜阵列安装层2为圆形,透镜阵列安装层2上分布有若干圆形通孔;
所述单模光纤6的耦合端面通过法兰固定于光纤安装板7上,单模光纤6耦合端面位于圆形光纤安装板的中心通孔位置;
所述单模光纤6耦合端面中心位于对应透镜焦点中心。
具体按照以下方法实施:
步骤1:首先调整装置中单模光纤6和透镜阵列9的角度,实现阵列单元中每个光纤耦合端面中心位于对应透镜焦点中心,且保持光纤与透镜光轴重合;
步骤2:将空间入射的信号光束经远距离湍流大气传输后,形成畸变波前,用大口径平行光管将畸变波前汇聚、缩束后入射至或直接入射至透镜阵列9的端面上。
步骤3:透镜阵列将光束汇聚并入射至单模光纤阵列耦合端面上,将空间传输光束转化为光纤传输;
步骤4:由于大气湍流的影响,当透镜聚焦光束未能汇聚至光纤端面的中心时,驱动压电陶瓷,实现阵列单元中每个光纤耦合端面中心位于对应透镜焦点中心,且保持光纤与透镜光轴重合。
步骤5;光纤阵列耦合完成,单模光纤6尾端,可进行光纤阵列熔融拉锥或者光电转化,进行信号探测。
实施例:
在自由空间光通信中或者激光雷达中,该装置可进行信号的接收。对于自由空间光通信系统而言,信号光束(如图2中1所示)由通信对方终端提供;对于激光雷达而言,信号光束是探测目标的回波信号。信号光束经远距离湍流大气传输后,形成的畸变波前。畸变波前被图2所示的空间光-光纤阵列耦合装置耦合,使得空间传输光束转化为光纤传输。在阵列光纤尾端,可进行光纤阵列熔融拉锥或者光电转化,进行信号探测还原的过程。

Claims (8)

1.一种提升空间光-光纤阵列耦合效率的装置,其特征在于,包括透镜阵列安装层(2),所述透镜阵列安装层(2)上设置有成半圆形外凸的透镜阵列(9),透镜阵列(9)中的每个透镜焦点正下方均设置有单模光纤(6),单模光纤(6)通过光纤安装板(7)进行固定,所有所述导光光纤形成与所述透镜阵列(1)一致对应的光纤阵列(2),所述的光纤安装板(7)上设置有与单模光纤(6)平行的微动压电陶瓷(4),微动压电陶瓷(4)的两端分别设置有上微动压电陶瓷安装层(3)和下微动压电陶瓷安装层(5)。
2.如权利要求1所述的一种提升空间光-光纤阵列耦合效率的装置,其特征在于,所述每个透镜均采用相对孔径为0.2的单透镜。
3.如权利要求1或2所述的一种提升空间光-光纤阵列耦合效率的装置,其特征在于,每个所述单模光纤(6)的四周均匀设置有4个微动压电陶瓷(4)。
4.如权利要求1所述的一种提升空间光-光纤阵列耦合效率的装置,其特征在于,所述微动压电陶瓷(4)外部设置有空间光-光纤阵列耦合装置外壳(8),所述单模光纤(6)竖直穿出空间光-光纤阵列耦合装置外壳(8)。
5.如权利要求4所述的一种提升空间光-光纤阵列耦合效率的装置,其特征在于,所述透镜阵列安装层(2)为圆形,透镜阵列安装层(2)上分布有若干圆形通孔。
6.如权利要求1所述的一种提升空间光-光纤阵列耦合效率的装置,其特征在于,所述单模光纤(6)的耦合端面通过法兰固定于光纤安装板(7)上,单模光纤(6)耦合端面位于光纤安装板(7)的中心通孔位置。
7.如权利要求1所述的一种提升空间光-光纤阵列耦合效率的装置,其特征在于,在所述单模光纤(6)耦合端面中心位于对应透镜焦点中心。
单模光纤(6)耦合端面位于圆形光纤安装板的中心通孔位置。
8.一种提升空间光-光纤阵列耦合效率的方法,其特征在于,该方法依赖于一种提升空间光-光纤阵列耦合效率的装置,其结构为:包括透镜阵列安装层(2),所述透镜阵列安装层(2)上设置有成半圆形外凸的透镜阵列(9),透镜阵列(9)中的每个透镜焦点正下方均设置有单模光纤(6),单模光纤(6)通过光纤安装板(7)进行固定,所有所述导光光纤形成与所述透镜阵列(1)一致对应的光纤阵列(2),所述的光纤安装板(7)上设置有与单模光纤(6)平行的微动压电陶瓷(4),微动压电陶瓷(4)的两端分别设置有上微动压电陶瓷安装层(3)和下微动压电陶瓷安装层(5)。
所述每个透镜均采用相对孔径为0.2的单透镜;
每个所述单模光纤(6)的四周均匀设置有4个微动压电陶瓷(4);
所述微动压电陶瓷(4)外部设置有空间光-光纤阵列耦合装置外壳(8),所述单模光纤(6)竖直穿出空间光-光纤阵列耦合装置外壳(8);
所述透镜阵列安装层(2)为圆形,透镜阵列安装层(2)上分布有若干圆形通孔;
所述单模光纤(6)的耦合端面通过法兰固定于光纤安装板(7)上,单模光纤(6)耦合端面位于圆形光纤安装板的中心通孔位置;
所述单模光纤(6)耦合端面中心位于对应透镜焦点中心。
具体按照以下方法实施:
步骤1:首先调整装置中单模光纤(6)和透镜阵列(9)的角度,实现阵列单元中每个光纤耦合端面中心位于对应透镜焦点中心,且保持光纤与透镜光轴重合;
步骤2:将空间入射的信号光束经远距离湍流大气传输后,形成畸变波前,用大口径平行光管将畸变波前汇聚、缩束后入射至或直接入射至透镜阵列(9)的端面上。
步骤3:透镜阵列将光束汇聚并入射至单模光纤阵列耦合端面上,将空间传输光束转化为光纤传输;
步骤4:由于大气湍流的影响,当透镜聚焦光束未能汇聚至光纤端面的中心时,驱动压电陶瓷,实现阵列单元中每个光纤耦合端面中心位于对应透镜焦点中心,且保持光纤与透镜光轴重合。
步骤5;光纤阵列耦合完成,单模光纤(6)尾端,可进行光纤阵列熔融拉锥或者光电转化,进行信号探测。
CN201910469563.8A 2019-05-31 2019-05-31 一种提升空间光-光纤阵列耦合效率的装置及方法 Active CN110261967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910469563.8A CN110261967B (zh) 2019-05-31 2019-05-31 一种提升空间光-光纤阵列耦合效率的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910469563.8A CN110261967B (zh) 2019-05-31 2019-05-31 一种提升空间光-光纤阵列耦合效率的装置及方法

Publications (2)

Publication Number Publication Date
CN110261967A true CN110261967A (zh) 2019-09-20
CN110261967B CN110261967B (zh) 2021-09-10

Family

ID=67916475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910469563.8A Active CN110261967B (zh) 2019-05-31 2019-05-31 一种提升空间光-光纤阵列耦合效率的装置及方法

Country Status (1)

Country Link
CN (1) CN110261967B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111338037A (zh) * 2020-04-10 2020-06-26 季华实验室 光纤耦合调节装置及其调节方法
CN111338038A (zh) * 2020-04-10 2020-06-26 季华实验室 光纤耦合调节装置及其调节方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311790A (zh) * 2013-05-03 2013-09-18 中国科学院光电技术研究所 一种激光束双向收发的自适应光纤耦合或准直器控制系统
CN106199840A (zh) * 2016-09-23 2016-12-07 华南师范大学 双层自聚焦透镜阵列
WO2017141854A1 (ja) * 2016-02-16 2017-08-24 日本電気株式会社 空間光通信システム、空間光通信の受信装置、及び空間光通信の受信方法
CN210605073U (zh) * 2019-05-31 2020-05-22 西安理工大学 光纤阵列耦合装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311790A (zh) * 2013-05-03 2013-09-18 中国科学院光电技术研究所 一种激光束双向收发的自适应光纤耦合或准直器控制系统
WO2017141854A1 (ja) * 2016-02-16 2017-08-24 日本電気株式会社 空間光通信システム、空間光通信の受信装置、及び空間光通信の受信方法
CN106199840A (zh) * 2016-09-23 2016-12-07 华南师范大学 双层自聚焦透镜阵列
CN210605073U (zh) * 2019-05-31 2020-05-22 西安理工大学 光纤阵列耦合装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111338037A (zh) * 2020-04-10 2020-06-26 季华实验室 光纤耦合调节装置及其调节方法
CN111338038A (zh) * 2020-04-10 2020-06-26 季华实验室 光纤耦合调节装置及其调节方法

Also Published As

Publication number Publication date
CN110261967B (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
CN110488247A (zh) 一种二维mems扫描振镜激光雷达系统
CN109506764B (zh) 一种光纤mems麦克风阵列声波探测板及系统
CN110261967A (zh) 一种提升空间光-光纤阵列耦合效率的装置及方法
CN111399131A (zh) 自由空间光学(fso)系统
CN109581598B (zh) 一种同轴双波导光纤连接器
CN104166194A (zh) 一种两发一收光组件及其装配方法
CN102253458B (zh) 一种宽光谱光纤准直器
US6792185B1 (en) Method and apparatus for automatic tracking of an optical signal in a wireless optical communication system
CN110488246A (zh) 一种二维mems扫描激光雷达大视场信号接收系统
CN210605073U (zh) 光纤阵列耦合装置
US6690459B2 (en) Method and apparatus for fiber alignment using light leaked from cladding
CN103313817B (zh) 一种激光加工系统
CN101446668A (zh) 自由空间光通信光接收天线
CN209280994U (zh) 一种集成分光探测功能的可调光衰减装置以及系统
CN208314275U (zh) 一种粗波分复用定焦平行光路的光接收系统
CN103209022B (zh) 基于光纤阵列的空间光耦合探测装置
CN201100946Y (zh) 光功率光电探测器
CN104092493A (zh) 一种单向光功率监测器
CN2550785Y (zh) 双波长单纤双向收发一体有源器件
CN206788413U (zh) 一种减小自由空间封装中多路平行光光通道间距的结构
CN101446676A (zh) 用于无线光通信中的光接收天线
JPS62184406A (ja) 光信号送受信器
CN107219595A (zh) 一种透镜阵列及光发射组件、光收发组件
CN201110904Y (zh) 双波长单纤双向收发一体有源器件
CN107677613B (zh) 具有侧面微流体通道的全光纤开腔fp式光流体传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant