CN210035490U - 分散燃烧无焰低氮燃烧头 - Google Patents

分散燃烧无焰低氮燃烧头 Download PDF

Info

Publication number
CN210035490U
CN210035490U CN201920399095.7U CN201920399095U CN210035490U CN 210035490 U CN210035490 U CN 210035490U CN 201920399095 U CN201920399095 U CN 201920399095U CN 210035490 U CN210035490 U CN 210035490U
Authority
CN
China
Prior art keywords
air
gas
pipes
pipe
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920399095.7U
Other languages
English (en)
Inventor
王磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU BOEHMER THERMAL ENERGY PRODUCTS Co.,Ltd.
Original Assignee
王磊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王磊 filed Critical 王磊
Priority to CN201920399095.7U priority Critical patent/CN210035490U/zh
Application granted granted Critical
Publication of CN210035490U publication Critical patent/CN210035490U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本实用新型提供了一种分散燃烧无焰低氮燃烧头,该燃烧头包括风管体系和燃气管体系,风管体系包括参与围成混合腔的风筒(1)及伸入混合腔内的多个风管,燃气管体系包括伸入混合腔内的多个燃气管;风筒(1)为夹层结构,夹层中通有空气,外层壁面不设孔,位于混合腔内的内层壁面上设置空气喷孔,空气能够由风筒(1)内层壁面上的空气喷孔喷入混合腔参与燃烧;风管管壁上带有若干空气喷孔以喷射带有设定压力的空气,燃气管管壁上设置若干燃气喷孔以喷射带有设定压力的燃气,使空气和燃气能够高速混合,进行燃烧。本实用新型中燃烧头,改善燃烧与空气的混合,把一个火焰分成数个小火焰,能够有效控制热力型、快速型NOx的生成,实现无焰低氮燃烧。

Description

分散燃烧无焰低氮燃烧头
技术领域
本实用新型属于工业燃烧头和锅炉领域,具体涉及分散燃烧无焰低氮燃烧头,主要用于工业燃烧头和锅炉。
背景技术
工业锅炉燃烧头多采用传统的、强制送风、扩散式的燃烧方式,该类型燃烧头的主要目的是燃尽和安全,很少有对NOx 排放做相应措施。现今,对于一些地区30mg/m3以下NOx排放的环保要求,已经出现并被采用的主要技术路线包括分散燃烧、预混燃烧、烟气再循环、和无焰燃烧:
(1)燃料分散燃烧或空气分散燃烧
两种方法最终将会使整个系统的过量空气系数保持一个定值。该技术系统较复杂,且也没有消除火焰的高温区域。
(2)贫燃预混燃烧技术
对于控制NOx的生成,这项技术的优点是可以通过当量比的完全控制实现对燃烧温度的控制,从而降低热力型NOx生成速率。但是,预混燃烧技术在安全性控制上仍存在未解决的技术难点:一是预混气体由于其高度可燃性可能会导致回火;二是过高的过量空气系数会导致排烟损失的增加,降低了锅炉热效率;三是金属丝网燃烧头容易被融化的细小灰尘粘附,维护周期短。
(3)外部烟气再循环和内部烟气再循环技术
燃烧温度的降低可以通过在火焰区域加入烟气来实现,加入的烟气吸热从而降低了燃烧温度。通过将烟气的燃烧产物加入到燃烧区域内,不仅降低了燃烧温度,减少了NOx生成;同时加入的烟气降低了氧气的分压,这将减弱氧气与氮气生成热力型NOx的过程,从而减少NOx的生成。根据应用原理的不同,烟气再循环有两种应用方式,分别为外部烟气再循环与内部烟气再循环。
对于外部烟气再循环技术来说,烟气从锅炉的出口通过一个外部管道,重新加入到炉膛内。外部烟气再循环可以减少70%的NOx生成。外循环比例对NOx控制效果也有较大影响,随着外循环比例的增加NOx降低幅度也更加明显,但循环风机电耗也将增加。
对于内部烟气再循环,烟气回流到燃烧区域主要通过燃烧头的气体动力学。内部烟气再循环主要通过高速喷射火焰的卷吸作用或者旋流燃烧头使得气流产生旋转达到循环效果。通过在火焰中心产生一个环形的再循环区域,高温气体将回到燃烧头喉部,这确保了对冷的未燃烧气体的点火,同时通过降低火焰温度和降低氧气分压减少NOx生成。
(4)无焰燃烧
传统的火焰燃烧分为预混燃烧和扩散燃烧,其主要特点包括:①燃料与氧气在高温下反应,温度越高越有助于火焰的稳定;②火焰峰面可视(甲烷燃烧的火焰一般为蓝色,有碳烟产生时为黄色);③大多数燃料在很薄的火焰层内完成燃烧,但是燃烧反应会在下游的不可见的区域内完成。
一般情况下,火焰在点燃以后一般自己充当点火器,对来流进行点火。这就需要足够高的火焰温度来达到最小点火能量,但是高的火焰温度会使得NOx生成增加。
实用新型内容
为了解决燃气燃烧NOx排放较高的问题,本发明人进行了锐意研究,设计出一种无焰低氮燃烧头,NOx排放满足低排放要求,而不存在燃料分散燃烧或空气分散燃烧、贫燃预混燃烧技术、外部烟气再循环和内部烟气再循环技术、无焰燃烧所具有的局限性,从而完成本实用新型。
实用新型的目的在于提供以下技术方案:
(1)一种分散燃烧无焰低氮燃烧头,其中,所述燃烧头包括风管体系和燃气管体系,风管体系包括参与围成混合腔的风筒1及伸入混合腔内的多个风管,燃气管体系包括伸入混合腔内的多个燃气管;
风筒1为夹层结构,夹层中通有空气,外层壁面不设孔,位于混合腔内的内层壁面上设置空气喷孔,空气能够由风筒1内层壁面上的空气喷孔喷入混合腔参与燃烧;
风管和燃气管分层交错排布,风管管壁上带有若干空气喷孔以喷射带有设定压力的空气,燃气管管壁上设置若干燃气喷孔以喷射带有设定压力的燃气,使空气和燃气能够高速混合,进行燃烧。
根据本实用新型提供的一种分散燃烧无焰低氮燃烧头,具有以下有益效果:
(1)本实用新型中,混合腔中包括多个风管和燃气管,风管和燃气管上排布喷孔,风管和燃气管分层交错排布,通过较多的喷孔数量及较大的射流表面积,燃气和空气能够实现在极短的时间内充分混合;
(2)本实用新型中,风筒为夹层结构,能够有效利用混合腔内高温烟气的传热实现夹层中空气的初步预热,降低了烟气的热损失,且利于燃烧效率的提高;
(3)本实用新型中,风管和燃气管的分级排布,以及各级燃气管和/或各级风管、周边燃气管和/或周边风管的排布形状与混合腔的截面形状相吻合的设置,利于提高燃烧均匀性和稳定性。
(4)本实用新型中,通过风管和燃气管的排布,利于通过控制不同区域不同的喷孔直径,实现供风和燃气不同配比,从而形成分级燃烧,进一步降低氮氧化物的排放。
(5)本实用新型中,带有若干喷流孔的多组空气管及燃气管改善燃烧与空气的混合,把一个火焰分成数个小火焰,火焰面的厚度减薄,散热面积加大,火焰温度降低,同时在燃烧负荷不变的情况下,小火焰面缩短了氧、氮在火焰面即高温区内的停留时间。此外,多点布置分散燃烧的方式,避免了热强度局部集中,弥散了高温区的火焰核心,火焰区域温度更均匀,以上有利因素对"热力型NOx"和"燃料型NOx"都有明显的抑制作用。
附图说明
图1示出根据本实用新型一种优选实施方式的无焰低氮燃烧头的结构示意图;
图2示出根据本实用新型中一种优选实施方式的无焰低氮燃烧头的侧面剖视图;
图3示出根据本实用新型中一种优选实施方式的周边风管的侧面剖视图;
图4示出根据本实用新型中一种优选实施方式的一级风管的侧面剖视图;
图5示出根据本实用新型中一种优选实施方式的截面图。
附图标号说明:
1-风筒;
2-侧板;
31-中心燃气管;
32-周边燃气管;
41-一级风管;
42-周边风管;
5-供气支管;
6-安装孔I;
7-安装孔II。
具体实施方式
下面通过附图和实施例对本实用新型进一步详细说明。通过这些说明,本实用新型的特点和优点将变得更为清楚明确。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其他实施例。
如图1和图2所示,本实用新型提供了一种分散燃烧无焰低氮燃烧头,所述燃烧头包括风管体系和燃气管体系,风管体系包括参与围成混合腔的风筒1及伸入混合腔内的风管,燃气管体系包括伸入混合腔内的燃气管;
风管管壁上带有若干空气喷孔以喷射带有设定压力的空气,燃气管管壁上设置若干燃气喷孔以喷射带有设定压力的燃气,空气和燃气高速混合并被混合腔内的高温烟气加热和稀释后,进行燃烧。
在一种优选的实施方式中,混合腔为侧板2和风筒1围成的发生燃气-空气或燃气-空气-烟气混合,以及燃气燃烧的场所。所述燃气管和风管穿过侧板2进入混合腔,侧板2对燃气管和风管起到支撑作用。
在一种优选的实施方式中,风筒1可以为圆筒、截面为规则多边形筒、截面为不规则多边形筒等,可划分为沿其轴向对称结构筒体或沿其轴向非对称结构筒体,优选为沿其轴向对称结构筒体,更优选为圆筒,其轴向为其长度方向。
风筒1为夹层结构,夹层中通有空气,外层壁面不设孔,位于混合腔内的内层壁面上设置环形空气喷孔,空气能够由风筒1 内层壁面上的空气喷孔喷入混合腔参与燃烧。
燃气点燃且燃烧头正常运行时,喷射的燃气先高速卷吸周围的烟气,稀释后的燃气和同样卷吸了烟气的高温高速空气相向运动、充分混合和燃烧。高速喷出的燃气因卷吸了烟气,燃气浓度得以稀释。高速喷出的空气因卷吸了烟气,氧气浓度得以稀释,燃烧反应变慢。风筒1的内层壁面因受热而成高温状态,对风筒1中的空气进行初步预热。喷出后的空气因卷吸高温烟气,得以进一步加热升温。高温的空气烟气混合物、高速的气流和较慢的燃烧反应,会形成弥散式无焰燃烧,燃烧无核心区和高温区,热力型NOx和快速型NOx生成减少。
在本实用新型一种优选的实施方式中,风管为多个,燃气管为多个,风管和燃气管分层交错排布。这样,通过较多的喷孔数量及较大的射流表面积,燃气和空气混合更有效。
燃气管和风管可以为圆管、截面为规则多边形的管、截面为不规则多边形的管等,可划分为沿其轴向对称的管或沿其轴向非对称的管,优选为沿其轴向对称的管,更优选为圆管。
在进一步优选的实施方式中,燃气管包括位于混合腔中心的中心燃气管31、靠近风筒1内壁的周边燃气管32、以及任选地介于中心燃气管31和周边燃气管32之间的各级燃气管。在中心燃气管31至周边燃气管32的方向上,燃气管命名为一级燃气管、二级燃气管、……,N级燃气管,N为正整数,同一级燃气距离中心燃气管31的距离相等或极为相近。
风管包括环绕中心燃气管31的一级风管41、靠近风筒1内壁的周边风管42、和任选地介于一级风管41和周边风管42之间的其他各级风管。在中心燃气管31至周边风管42的方向上,风管命名为一级风管41、二级风管、……,N级风管,N为正整数,同一级风管距离中心燃气管31的距离相等或极为相近。
在更进一步优选的实施方式中,各级燃气管和/或各级风管、以及周边燃气管32和/或周边风管42的排布形状与混合腔的截面形状相吻合,以提高燃烧均匀性和稳定性。
在更进一步优选的实施方式中,如图1所示,侧板2为圆形,风筒1为圆筒状,即其围成的混合腔的横截面为圆形,燃气管和风管在风筒1中以圆环状分层交错排布。燃气管包括位于混合腔中心的中心燃气管31和周边燃气管32,风管包括环绕中心燃气管31的一级风管41和周边燃气管32外围的周边风管42。
优选地,中心燃气管31的数目为一个,一级风管41的数目为六个,周边燃气管32的数目为六个,周边风管42的数目为六个。
在本实用新型一种优选的实施方式中,同级燃气管的管径、燃气喷孔的分布密度和孔径大小相同。中心燃气管31、周边燃气管32和各级燃气管上的燃气喷孔在轴向方向上环形分布。
各燃气管通过对应的供气支管5供气,优选同级燃气管的供气支管5管径和路程相等。
在本实用新型中,各风管位于混合腔外的一端与风筒1连通,由风筒1统一供风。
在本实用新型一种优选的实施方式中,同级风管的管径、空气喷孔的分布密度和孔径大小相同。一级风管41、周边风管42、和各级风管上的空气喷孔在轴向方向上环形分布。
在本实用新型另一种优选的实施方式中,如图3所示,同级风管的管径、空气喷孔的分布密度和孔径大小相同。周边风管 42单侧开设空气喷孔,开孔方向朝向中心燃气管31,即朝向风筒1内层壁面的周边风管42侧不开设空气喷孔。该单侧开孔方式,使得周边风管42与风筒1上空气喷孔的方向一致,避免由于周边风管42多方位开孔影响风筒1的进气量,降低对周边燃气管 32喷出的燃气的及时混合。
如图4所示,一级风管41或者其他各级风管为全壁面开孔,该开孔方式能够与其周围分布的燃气管喷出的燃气相向运动,产生的气流利于快速打散燃气,利于形成弥散式燃烧,燃烧无核心区和高温区,减少热力型和快速型NOx生成。
本实用新型中,带有若干喷孔的多组燃气管和风管能够改善燃气与空气的混合,把一个火焰分成数个小火焰,火焰面的厚度减薄,散热面积加大,火焰温度降低,同时在燃烧负荷不变的情况下,短小火焰甚至无焰缩短了氧、氮在高温区内的停留时间。此外多点布置分散燃烧的方式,避免了热强度局部集中,弥散了高温区的火焰核心,火焰区域温度更均匀,以上因素对“热力型NOx”和“燃料型NOx”都有明显的抑制作用。
本实用新型中,燃料型NOx是由燃料中所含有的氮元素在燃料燃烧时形成的。温度对燃料型NOx的生成影响并不明显。
热力型NOx生成主要在燃烧时,助燃空气中的氮气在高温火焰下经氧化生成的,温度、过剩空气系数和高温区停留时间都会影响热力型NOx的生成。其中温度是热力型最主要的影响因素,实际燃烧过程由于温度分布不均可能会造成高温区域而引起NOx生成增加。
快速型NOx中氮元素也来自于燃烧中的空气,快速型生成主要是由于碳氢化合物在燃烧时,能够分解出大量的CH、CH: 和C:等基团,能破坏氮气的分子键,进而生成NOx。快速型NOx 主要是燃料中碳氢化合物快速反应生成的。
过剩空气系数对热力型NOx生成的影响为双面效应,实际燃烧状况更为复杂。当过剩空气系数变大时,氧气浓度变大,促进化学反应平衡移动,使NOx的生成量增加;与此同时,随过剩空气系数变大,生成烟气量也变大,降低了燃烧温度,从而降低生成速率。因此过剩空气系数的影响较为复杂,可能是促进也可能是抑制作用,要根据实际情况分析。一般情况下反应在高温区的停留越长,NOx的生成量越大。
过剩空气系数对于快速型NOx生成的影响在于,温度一定时,随着过剩空气系数变大,NOx生成量先变大后减小会出现峰值。
过剩空气系数对燃料型NOx的生成影响在于燃料中的氮转化成NOx的转化率随过剩空气系数增加而增加;当过量空气系数a>1时,燃料NOx生成量基本保持不变;当过剩空气系数a<1 时,转化率会很快下降。
本实用新型提供的是一种分级弥散燃烧,分割火焰去高温核心,低空气过剩系数,无焰低氮的实施方式。
在本实用新型一种优选的实施方式中,中心燃气管31的燃气喷孔的直径大于各级燃气管或周边燃气管32的直径,优选在中心燃气管31至周边燃气管32的方向上,燃气管的燃气喷孔直径呈下降趋势,利于实现供风和燃气不同配比,从而形成分级燃烧,进一步降低氮氧化物的排放。一般地,中心燃气管31周围空气过量系数小于1,而周边燃气管的空气过量系数大于1,实现分级燃烧。
在本实用新型中,如图5所示,燃烧头还包括点火装置和离子感应针,分别进行点火和离子电流感应工作,离子感应针感应到电流后将关闭点火装置。侧板2中设置安装点火装置和离子感应针以使得点火装置的点火端和离子感应针的感应端伸入混合腔的安装孔I和安装孔II。优选地,安装孔I6和安装孔II7靠近中心燃气管31设置,以快速点火或感测到离子电流。
在本实用新型中,混合腔内燃烧后产生的烟气具有较高的热能和动能,随着混合腔内压力的升高,烟气能够自发的由侧板2的相对侧排出混合腔,进行后续的换热过程。烟气离开混合腔的过程无需额外的风机带动,降低了能耗。
实施例
实施例1
如图1所示,一种燃烧无焰低氮燃烧头,风筒1和侧板2围成圆柱状混合腔,燃气管和风管伸入混合腔中以圆环状分层交错排布,燃气管由位于混合腔中心的1个中心燃气管31和6个周边燃气管32组成,风管由环绕中心燃气管31的6个一级风管41和靠近风筒1外壁的6个周边风管42组成,一级风管41环绕中心燃气管31,周边燃气管32介于一级风管41和周边风管42之间,周边风管42位于最外围。中心燃气管31和周边燃气管32为全壁面开孔;周边风管42单侧开设空气喷孔,开孔方向朝向中心燃气管 31,一级风管41或者其他各级风管为全壁面开孔。
风筒1上空气喷孔的直径为2mm,空气喷孔的分布密度为 2000个/平米;空气预热温度200℃,空气流速为15米/秒;
中心燃气管31的管径为60mm,燃气喷孔的直径为1mm,燃气喷孔的分布密度为580个/平米,燃气流速为183米/秒;
周边燃气管32的管径为25mm,燃气喷孔的直径为1mm,燃气喷孔的分布密度为780个/平米,燃气流速为183米/秒;
一级风管41管径为60mm,空气喷孔的直径为8mm,空气喷孔的分布密度为590个/平米,空气预热温度200℃,空气流速为 15米/秒;
周边风管42管径为60mm,空气喷孔的直径为8mm,空气喷孔的分布密度为440个/平米(该分布密度是以整个风管作为基准),空气预热温度200℃,空气流速为15米/秒。
在实施例1中燃气由外部管道引入内部供气支管,然后经内部供气支管分配至中心燃气管31及周边燃气管32,然后经燃气喷孔喷入混合腔,引射烟气按一级风管41、周边风管42的顺序与空气掺混。空气经外部风道引入空气腔室,在空气腔室内预热到200℃(同时也冷却混合腔,降低混合腔内烟气温度至 1800K以下)后由空气喷口喷出,分别与中心燃气管31及周边燃气管32喷出的燃气混合,实现细分火焰,低浓度燃料及空气,多级充分混合,降低并均化燃烧温度,低空气过剩系数的弥散无焰低氮燃烧。
实施例2
低氮燃烧头的结构与实施的步骤与实施例1一致,区别仅在于不同区域喷孔直径不同,具体地:
风筒1上空气喷孔的直径为2mm,空气喷孔的分布密度为 2000个/平米,空气预热温度200℃,空气流速为15米/秒;
中心燃气管31的管径为60mm,燃气喷孔的直径为1.2mm,燃气喷孔的分布密度为580个/平米,燃气流速为183米/秒;
周边燃气管32的管径为25mm,燃气喷孔的直径为0.5,燃气喷孔的分布密度为780个/平米,燃气流速为183立方米/秒;
一级风管41管径为60mm,空气喷孔的直径为8mm,空气喷孔的分布密度为590个/平米,空气预热温度200℃,空气流速为15米/秒;
周边风管42管径为60mm,空气喷孔的直径为8mm,空气喷孔的分布密度为440个/平米,空气预热温度200℃,空气流速为 15米/秒。
实验例
燃烧头与锅炉配装,调整不同负荷,对最终尾气中CO(%)、 NOx(ppm)、O2(%)含量进行监测,确定燃烧情况。其中,负荷是指达到燃烧头额定状态的百分比;O2(%)是指最终尾气中O2的体积百分数;CO(%)是指最终尾气中CO的体积百分数。
表1
Figure BDA0002008805780000121
表2
Figure BDA0002008805780000122
通过对实施例1和实施例2的相关检验数据分析,调整不同区域喷孔直径对降低CO(%)、NOx(ppm)排放有利。本实用新型燃烧头在中心燃气管及混合腔内壁空气喷孔的基础上增加了一、二级风管及周边燃气管,弥散无焰低氮燃烧的结构更为优化,实现低氮排放的燃烧头功率上限由传统燃烧头的 200KW提高到800-1000KW。
以上结合了优选的实施方式对本实用新型进行了说明,不过这些实施方式仅是范例性的,仅起到说明性的作用。在此基础上,可以对本实用新型进行多种替换和改进,这些均落入本实用新型的保护范围内。

Claims (10)

1.一种分散燃烧无焰低氮燃烧头,其特征在于,所述燃烧头包括风管体系和燃气管体系,风管体系包括参与围成混合腔的风筒(1)及伸入混合腔内的多个风管,燃气管体系包括伸入混合腔内的多个燃气管;
风筒(1)为夹层结构,夹层中通有空气,外层壁面不设孔,位于混合腔内的内层壁面上设置空气喷孔,空气能够由风筒(1)内层壁面上的空气喷孔喷入混合腔参与燃烧;
风管和燃气管分层交错排布,风管管壁上带有若干空气喷孔以喷射带有设定压力的空气,燃气管管壁上设置若干燃气喷孔以喷射带有设定压力的燃气,使空气和燃气能够高速混合,进行燃烧。
2.根据权利要求1所述的燃烧头,其特征在于,风筒(1)为沿其轴向呈对称结构的筒体;
燃气管和风管为沿其轴向对称的管。
3.根据权利要求1所述的燃烧头,其特征在于,燃气管包括位于混合腔中心的中心燃气管(31)、靠近风筒(1)内壁的周边燃气管(32)、以及任选地介于中心燃气管(31)和周边燃气管(32)之间的各级燃气管;
风管包括环绕中心燃气管(31)的一级风管(41)、靠近风筒(1)内壁的周边风管(42)、和任选地介于一级风管(41)和周边风管(42)之间的各级风管。
4.根据权利要求3所述的燃烧头,其特征在于,各级燃气管和/或各级风管、以及周边燃气管(32)和/或周边风管(42)的排布形状与混合腔的截面形状相吻合。
5.根据权利要求3所述的燃烧头,其特征在于,同级燃气管的管径、燃气喷孔的分布密度和孔径大小相同;
同级风管的管径、空气喷孔的分布密度和孔径大小相同。
6.根据权利要求3所述的燃烧头,其特征在于,中心燃气管(31)、周边燃气管(32)和各级燃气管上的燃气喷孔在轴向方向上环形分布。
7.根据权利要求3所述的燃烧头,其特征在于,周边风管(42)单侧开设空气喷孔,开孔方向朝向中心燃气管(31);
一级风管(41)或者其他各级风管为全壁面开孔,空气喷孔在轴向方向上环形分布。
8.根据权利要求3所述的燃烧头,其特征在于,风筒(1)为圆筒状,其围成的混合腔的横截面为圆形,燃气管和风管在风筒(1)中以圆环状分层交错排布。
9.根据权利要求3所述的燃烧头,其特征在于,燃气管包括位于混合腔中心的一个中心燃气管(31)和六个周边燃气管(32),风管包括环绕中心燃气管(31)的六个一级风管(41)和周边燃气管(32)外围的六个周边风管(42)。
10.根据权利要求3所述的燃烧头,其特征在于,中心燃气管(31)的燃气喷孔的直径大于各级燃气管或周边燃气管(32)的直径,在中心燃气管(31)至周边燃气管(32)的方向上,燃气管的燃气喷孔直径呈下降趋势。
CN201920399095.7U 2019-03-27 2019-03-27 分散燃烧无焰低氮燃烧头 Active CN210035490U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920399095.7U CN210035490U (zh) 2019-03-27 2019-03-27 分散燃烧无焰低氮燃烧头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920399095.7U CN210035490U (zh) 2019-03-27 2019-03-27 分散燃烧无焰低氮燃烧头

Publications (1)

Publication Number Publication Date
CN210035490U true CN210035490U (zh) 2020-02-07

Family

ID=69356908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920399095.7U Active CN210035490U (zh) 2019-03-27 2019-03-27 分散燃烧无焰低氮燃烧头

Country Status (1)

Country Link
CN (1) CN210035490U (zh)

Similar Documents

Publication Publication Date Title
CN107559827B (zh) 一种超低氮燃气燃烧器
CN109899786B (zh) 无焰低氮燃烧器及无焰低氮燃烧方法
CN104235849A (zh) 分级富氧无焰燃烧燃气烧嘴及其控制方法
CN110486722B (zh) 一种低氧低NOx的底部气体燃烧器
CN104964282A (zh) 一种管式加热炉双预热环保燃烧器及其应用
CN105737152A (zh) 一种分级预混旋流低氮燃烧的燃烧装置
CN112212328A (zh) 燃烧器及其应用
CN112212327A (zh) 一种燃烧部件及燃烧器
CN108730978A (zh) 炉内烟气可调节自循环低氮燃气燃烧器
CN201028521Y (zh) 多层叠加蜂窝式燃气燃烧器
CN213577479U (zh) 一种燃烧部件及燃烧器
CN208952100U (zh) 炉内烟气可调节自循环低氮燃气燃烧器
CN214249581U (zh) 燃烧器及其应用的燃气灶、低氮燃烧机、燃气热水器和燃气采暖热水炉
CN107461742B (zh) 分级无焰低氮燃烧头
CN210035490U (zh) 分散燃烧无焰低氮燃烧头
WO2020108223A1 (zh) 炭黑尾气低氮稳燃工艺及炭黑尾气低氮稳燃系统
US20230349549A1 (en) Burner and applications thereof
CN109099425B (zh) 一种烟气内循环超低氮燃烧器
CN111578277A (zh) 一种低NOx烧嘴及超低NOx排放燃烧方法
CN210014359U (zh) 一种燃烧器
CN113432121B (zh) 一种异径环肋水冷型表面燃烧燃气装置
US20230220991A1 (en) Burner component and burner
CN215336318U (zh) 一种低污染燃烧器头部结构
CN220269371U (zh) 一种加热炉燃烧器
CN219045746U (zh) 一种低氮燃烧器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210526

Address after: 215500 building 11, 208 Huangpujiang Road, Changshu hi tech Industrial Development Zone, Changshu City, Suzhou City, Jiangsu Province

Patentee after: SUZHOU BOEHMER THERMAL ENERGY PRODUCTS Co.,Ltd.

Address before: 215500 building 11, 208 Huangpujiang Road, Changshu hi tech Industrial Development Zone, Changshu City, Suzhou City, Jiangsu Province

Patentee before: Wang Lei

TR01 Transfer of patent right