CN210007344U - 基于二极管整流和全桥mmc换流器的直流融冰装置 - Google Patents

基于二极管整流和全桥mmc换流器的直流融冰装置 Download PDF

Info

Publication number
CN210007344U
CN210007344U CN201920933394.4U CN201920933394U CN210007344U CN 210007344 U CN210007344 U CN 210007344U CN 201920933394 U CN201920933394 U CN 201920933394U CN 210007344 U CN210007344 U CN 210007344U
Authority
CN
China
Prior art keywords
full
current
bridge mmc
ice
diode rectifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920933394.4U
Other languages
English (en)
Inventor
马晓红
许逵
张露松
班国邦
杨柳青
罗国强
曾华荣
刘君
陈沛龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Power Grid Co Ltd
Original Assignee
Guizhou Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Power Grid Co Ltd filed Critical Guizhou Power Grid Co Ltd
Priority to CN201920933394.4U priority Critical patent/CN210007344U/zh
Application granted granted Critical
Publication of CN210007344U publication Critical patent/CN210007344U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Rectifiers (AREA)

Abstract

本实用新型公开了基于二极管整流和全桥MMC换流器的直流融冰装置,包括全桥MMC换流器和二极管整流器,全桥MMC换流器的交流侧连接到交流电源母线上,二极管整流器的交流侧经过串接变压器后连接到交流电源母线上,二极管整流器直流侧的负极和融冰直流母线的负极连接,二极管整流器直流侧的正极和全桥MMC换流器的一个直流极连接,全桥MMC换流器的另一个直流极和融冰直流母线的正极连接。本实用新型很好地解决了如下问题:1)单一二极管整流器的直流融冰时:融冰电流不能连续可调的问题、其配置的整流变压器的档位很多,而且融冰过程中其该整流变压器的档位调节非常频繁的问题、融冰电流不能零起升的问题、和谐波电流问题,2)设备的使用效率低的问题。

Description

基于二极管整流和全桥MMC换流器的直流融冰装置
技术领域
本实用新型属于直流融冰设备技术领域,具体涉及一种基于二极管整流和全桥MMC换流器的直流融冰装置。
背景技术
目前,因输电线路结冰和积雪而造成高压输电线断线和倒塔、倒杆的事故时有发生,高压输电线路断线和倒塔事故严重影响了电网的安全运行,造成大面积停电事故。为了防止这类事故的发生,必须及时将导线上的结冰和积雪化掉,目前主要采取机械(振动)式、电热式两大类的融冰方法。机械(振动)式融冰,即采用振动导线的方法使冰雪脱落,其特点是简单操作,无需浪费电能,但其缺点是必须逐档进行,速度慢,而且在地面结冰和积雪严重的情况下,往往因为交通问题而不能到达高山上的输电线路而无法进行操作。电热式融冰技术,即利用将线路末端短路而产生的大电流将导线加热而达到融冰的目的,和机械(振动)式融冰方法相比,电热式融冰技术的优点是融冰速度较快,不受路面结冰和积雪的影响,但需耗费一定的电能和配置相关的配套装置。目前基于晶闸管整流和二极管整流的直流大电流融冰技术是电力系统中广泛应用的两种融冰技术。基于二极管整流的直流大电流融冰技术的优点是装置非常简单可靠,其缺点是融冰电流不能连续可调、不能做到零起升、其配置的整流变压器的档位很多,而且融冰过程中其该整流变压器的档位调节非常频繁。它们的共同缺点是融冰时产生较大的谐波电流,为了滤除这些谐波电流需要另外配备滤波装置。另外,因为线路严重结冰的现象并不常见,这些装置的利用率较低。申请号为200810060026.X的中国专利申请号为200810120372.2的中国专利公开了两类能将直流大电流融冰技术和静态无功补偿技术(SVC)相结合的装置,有效地提高了设备利用率,并且由于采用晶闸管为功率器,因此具有很高的融冰电流。但是上述发明的两类装置里均需要配置大量的基于电容器和电抗器的无源滤波器,因此存在占地面积大、融冰时无功功率变化大、容易产生谐波谐振等问题。中国专利(申请号为ZL201320048177.X)公开了一种基于级联型电压源型换流器(全桥MMC换流器)的融冰兼STATCOM技术,较成功地解决了上述问题。但是由于该技术的电力电子器件全部采用IGBT,其成本较高。
发明内容
本实用新型要解决的技术问题是:提供一种基于二极管整流和全桥MMC换流器的直流融冰装置,以解决现有技术中存在的问题。
本实用新型采取的技术方案为:一种基于二极管整流和全桥MMC换流器的直流融冰装置,包括全桥MMC换流器和二极管整流器,全桥MMC换流器的交流侧连接到交流电源母线上,二极管整流器的交流侧经过串接变压器后连接到交流电源母线上,二极管整流器直流侧的负极和融冰直流母线的负极连接,二极管整流器直流侧的正极和全桥MMC换流器的一个直流极连接,全桥MMC换流器的另一个直流极和融冰直流母线的正极连接。
优选的,上述变压器的挡位可调,包括两个挡位,分别为二极管整流器的直流输出电压U0档位和二极管整流器的直流输出电压3U0档位。
优选的,上述全桥MMC换流器的直流输出电压在(- U0,+U0 )范围内连续可调。
优选的,上述二极管整流器采用六脉波整流器或十二脉波整流器。
优选的,上述全桥MMC换流器由两个完全相同的星型接线方式的级联型STATCOM构成;两个STATCOM的交流侧均通过电抗器连接到同一交流电源母线上;两个STATCOM的中性点分别做为该全桥MMC换流器的两个直流极,其中一个直流极与二极管整流器直流侧的正极连接;另一个直流极与融冰直流母线的正极连接。
本实用新型的有益效果:与现有技术相比,本实用新型将基于二极管整流器的直流融冰技术和基于IGBT的全桥MMC换流器技术有机结合起来,从而很好地解决了如下问题:1)单一基于二极管整流器的直流融冰技术在融冰时:融冰电流不能连续可调的问题、其配置的整流变压器的档位很多,而且融冰过程中其该整流变压器的档位调节非常频繁的问题、融冰电流不能零起升的问题、和谐波电流问题, 2)设备的使用效率低的问题。
本实用新型中的全桥MMC换流器的有功功率容量为:U0IDC (IDC为融冰装置的额定直流电流),而全桥MMC换流器型直流融冰技术中的换流器的有功功率容量为:4U0IDC ,两者是4倍的关系。
本实用新型装置的交流侧电流谐波含量均很低、功率因数接近一,因此本实用新型的装置不需要在交流侧配置大量的基于电容器和电抗器的无源滤波器,从而大大降低了整个装置的占地面积。
附图说明
图1是本实用新型的整体电路结构示意图;
图2是全桥MMC换流器的电气主接线图;
图3是本实用新型中全桥MMC的电路结构示意图。
具体实施方式
下面结合附图及具体的实施例对本实用新型进行进一步介绍。
实施例1:如图1-3所示,一种基于二极管整流和全桥MMC换流器的直流融冰装置,包括全桥MMC换流器和二极管整流器,全桥MMC换流器的交流侧连接到交流电源母线上,二极管整流器的交流侧经过串接变压器后连接到交流电源母线上,二极管整流器直流侧的负极和融冰直流母线的负极连接,二极管整流器直流侧的正极和全桥MMC换流器的一个直流极连接,全桥MMC换流器的另一个直流极和融冰直流母线的正极连接。
优选的,上述变压器的挡位可调,包括两个挡位,分别为二极管整流器的直流输出电压(Udc_diode)U0档位和二极管整流器的直流输出电压(Udc_diode)3U0档位。
优选的,上述全桥MMC换流器的直流输出电压(Udc_MMC)在(- U0,+U0 )范围内连续可调。
优选的,上述二极管整流器采用六脉波整流器或十二脉波整流器。
优选的,上述全桥MMC换流器由两个完全相同的星型接线方式的级联型STATCOM构成;两个STATCOM的交流侧均通过电抗器连接到同一交流电源母线上;两个STATCOM的中性点分别做为该全桥MMC换流器的两个直流极,其中一个直流极与二极管整流器直流侧的正极连接;另一个直流极与融冰直流母线的正极连接。
实施例2:一种基于二极管整流和全桥MMC换流器的直流融冰装置的试验方法,该方法为:融冰时,控制器协调控制变压器的挡位和全桥MMC换流器的直流输出电压,确保融冰直流电压( Udc= Udc_diode+ Udc_MMC)在0到4U0之间连续可调,U0的取值根据变电站内需要融冰的线路的参数决定,全桥MMC换流器同时还工作在有源滤波状态,滤除二极管整流器所产生的谐波电流使得融冰时不对交流系统产生谐波污染;不融冰时,全桥MMC换流器作为为有源滤波和无功补偿运行(APF,和 STATCOM),以确保交流系统的电能质量,实现全桥MMC换流器有源滤波和无功补偿模拟。
由于该发明技术将基于二极管整流器的直流融冰技术和基于IGBT的全桥MMC换流器技术有机结合起来,从而很好地解决了:1)单一基于二极管整流器的直流融冰技术在融冰时:融冰电流不能连续可调的问题、其配置的整流变压器的档位很多,而且融冰过程中其该整流变压器的档位调节非常频繁的问题、融冰电流不能零起升的问题、和谐波电流问题,2)设备的使用效率低的问题。
本实用新型中的全桥MMC换流器的有功功率容量为:U0IDC (IDC为融冰装置的额定直流电流)。而全桥MMC换流器型直流融冰技术中的换流器的有功功率容量为:4U0IDC ,两者是4倍的关系。
本实用新型装置的交流侧电流谐波含量均很低、功率因数接近一,因此本实用新型的装置不需要在交流侧配置大量的基于电容器和电抗器的无源滤波器,从而大大降低了整个装置的占地面积。
图2为全桥MMC换流器的电气主接线图,由两个参数和结构完全相同的星型接线方式的级联型STATCOM构成。这两个STATCOM的交流侧连接到同一交流电源母线上;这两个STATCOM的中性点分别做为该全桥MMC换流器的两个直流极。MMC换流器的每相均由若干个全桥电路级联构成;全桥电路如图3所示。
由于全桥MMC换流器电路中级联全桥电路的数量较多,即使每个全桥电路的输出电压不是很高(受IGBT器件耐压限制),但整个级联全桥电路的交流侧输出电压的幅值可以达到较高的值,因此该装置可以不需要变压器就可以直接连接到电网中常见的电压等级(如35KV、10KV);并且其交流侧输出可以采用“阶梯波最近电平逼近”调制技术或“移相PWM”调制技术,可以灵活跟踪电流参考波从而实现: 整流;STATCOM;和APF功能。
本实用新型装置的交流侧电流谐波含量均很低、功率因数接近一,因此本实用新型的装置不需要在交流侧配置大量的基于电容器和电抗器的无源滤波器,从而大大降低了整个装置的占地面积。
以上所述,仅为本实用新型的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本实用新型的保护范围之内,因此,本实用新型的保护范围应以所述权利要求的保护范围为准。

Claims (4)

1.一种基于二极管整流和全桥MMC换流器的直流融冰装置,其特征在于:包括全桥MMC换流器和二极管整流器,全桥MMC换流器的交流侧连接到交流电源母线上,二极管整流器的交流侧经过串接变压器后连接到交流电源母线上,二极管整流器直流侧的负极和融冰直流母线的负极连接,二极管整流器直流侧的正极和全桥MMC换流器的一个直流极连接,全桥MMC换流器的另一个直流极和融冰直流母线的正极连接。
2.根据权利要求1所述的一种基于二极管整流和全桥MMC换流器的直流融冰装置,其特征在于:变压器的挡位可调,包括两个挡位,分别为二极管整流器的直流输出电压U0档位和二极管整流器的直流输出电压3U0档位。
3.根据权利要求1所述的一种基于二极管整流和全桥MMC换流器的直流融冰装置,其特征在于:二极管整流器采用六脉波整流器或十二脉波整流器。
4.根据权利要求1所述的一种基于二极管整流和全桥MMC换流器的直流融冰装置,其特征在于:全桥MMC换流器由两个完全相同的星型接线方式的级联型STATCOM构成;两个STATCOM的交流侧均通过电抗器连接到同一交流电源母线上;两个STATCOM的中性点分别做为该全桥MMC换流器的两个直流极,其中一个直流极与二极管整流器直流侧的正极连接;另一个直流极与融冰直流母线的正极连接。
CN201920933394.4U 2019-06-20 2019-06-20 基于二极管整流和全桥mmc换流器的直流融冰装置 Active CN210007344U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201920933394.4U CN210007344U (zh) 2019-06-20 2019-06-20 基于二极管整流和全桥mmc换流器的直流融冰装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201920933394.4U CN210007344U (zh) 2019-06-20 2019-06-20 基于二极管整流和全桥mmc换流器的直流融冰装置

Publications (1)

Publication Number Publication Date
CN210007344U true CN210007344U (zh) 2020-01-31

Family

ID=69309950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920933394.4U Active CN210007344U (zh) 2019-06-20 2019-06-20 基于二极管整流和全桥mmc换流器的直流融冰装置

Country Status (1)

Country Link
CN (1) CN210007344U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224365A (zh) * 2019-06-20 2019-09-10 贵州电网有限责任公司 基于二极管整流和全桥mmc换流器的直流融冰装置和方法
CN113036800A (zh) * 2021-05-06 2021-06-25 贵州电网有限责任公司 一种柔性互联变电站结构及控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110224365A (zh) * 2019-06-20 2019-09-10 贵州电网有限责任公司 基于二极管整流和全桥mmc换流器的直流融冰装置和方法
CN113036800A (zh) * 2021-05-06 2021-06-25 贵州电网有限责任公司 一种柔性互联变电站结构及控制方法
CN113036800B (zh) * 2021-05-06 2023-05-23 贵州电网有限责任公司 一种柔性互联变电站结构及控制方法

Similar Documents

Publication Publication Date Title
EP3514936B1 (en) Hybrid dc converter for offshore wind farm
CN109217687A (zh) 基于mmc的配电网电力电子变压器及其控制方法
CN109756121B (zh) 一种基于mmc的隔离型dc-dc直流变换器及控制方法
CN111525826B (zh) 一种模块化电容换相换流器和方法
CN102611144B (zh) 基于多重化技术的光伏并网发电装置
CN110224423B (zh) 一种柔性直流耗能装置及其环流控制方法
CN111740454B (zh) 一种基于母线接口变换器的混合微电网交直流电压统一控制方法
CN110943469B (zh) 一种单级式储能变流器及其控制方法
CN106602911A (zh) 模块化多电平变流器上下桥臂功率不平衡控制方法
CN104242341A (zh) 基于mmc和双极式直流传输结构的直驱风电变流结构
CN210007344U (zh) 基于二极管整流和全桥mmc换流器的直流融冰装置
CN116316782A (zh) 一种混合轻型海上风电直流输电系统和方法
CN110957912B (zh) 基于可控直流母线的分布式储能装置
CN102545675A (zh) 一种混合串联h桥多电平并网逆变器直流母线电压控制方法
CN116154832A (zh) 基于svg的海上风电不控整流直流输电系统及控制方法
Liu et al. A transformerless three-port nonagonal MMC for the grid connection and local consumption of distributed generation
Xia et al. Cooperative control strategy of fundamental frequency modulation-based current source converters for offshore wind farms
CN105024578A (zh) 一种三相模块化多电平变换器并联系统及其控制方法
CN105375515A (zh) 一种结合光伏发电的模块化多电平综合补偿装置
CN102983753B (zh) 一种带有ups的高压变频器
CN115207959B (zh) 一种基于lcc和全桥mmc-statcom混合串联的海上风电直流输电系统
CN204578373U (zh) 一种用于中低压直流配电的高频链多电平直流变压器
CN217545902U (zh) 用于电解水制氢的大功率移相斩波电源
CN111030483A (zh) 一种电力电子变压器及控制方法
CN106998067B (zh) 用于补偿高压直流输电系统特征谐波的交流有源滤波器

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant