CN209925490U - Electromagnetic spring - Google Patents

Electromagnetic spring Download PDF

Info

Publication number
CN209925490U
CN209925490U CN201920413860.6U CN201920413860U CN209925490U CN 209925490 U CN209925490 U CN 209925490U CN 201920413860 U CN201920413860 U CN 201920413860U CN 209925490 U CN209925490 U CN 209925490U
Authority
CN
China
Prior art keywords
electromagnetic
permanent magnet
core rod
magnetic
electromagnetic coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201920413860.6U
Other languages
Chinese (zh)
Inventor
刘大银
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of CN209925490U publication Critical patent/CN209925490U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electromagnets (AREA)

Abstract

The utility model discloses an electromagnetic spring, which comprises a permanent magnet I, a permanent magnet II, an electromagnetic coil, a magnetic conduction core rod, an electromagnetic controller, a power supply, a bracket, an electromagnetic control wire and a power line; the bracket is provided with an electromagnetic coil; the magnetic conducting core rod penetrates through the electromagnetic coil, and a permanent magnet I and a permanent magnet II are mounted on the magnetic conducting core rod; and the power supply input terminal of the electromagnetic controller is connected with the power supply output terminal of the power supply through a power line. The utility model is matched with the magnetic conduction core rod through the permanent magnet, the electromagnetic coil and the magnetic conduction core rod; so that the magnetic core rod forms an axial force in the axial stroke inside the electromagnetic coil; the electromagnetic controller is also arranged to change the direction of the electromagnetic current so as to change the direction of the magnetic pole of the electromagnetic coil, thereby changing the direction of the action force F of the core rod; and an electromagnetic controller is arranged to operate the magnetic spring.

Description

Electromagnetic spring
Technical Field
The utility model belongs to electromagnetism application specifically is an electromagnetic spring.
Background
The known technology of the prior electromagnetic application is in an on-off state and has no elasticity. The traditional method is to use a spring to solve the problems of automatic adjustment, pressure change, direction change, repeated mechanism and difficult operation, and is a great problem in implementing automatic control.
SUMMERY OF THE UTILITY MODEL
The to-be-solved technical problem of the utility model is to provide an electromagnetic spring.
In order to solve the above problems, the present invention adopts the following technique and method:
an electromagnetic spring comprises a permanent magnet I, a permanent magnet II, an electromagnetic coil, a magnetic core rod, an electromagnetic controller, a power supply, a bracket, an electromagnetic control wire and a power line; the bracket is provided with an electromagnetic coil; the magnetic conducting core rod penetrates through the electromagnetic coil, and a permanent magnet I and a permanent magnet II are mounted on the magnetic conducting core rod; the power supply input terminal of the electromagnetic controller is connected with the power supply output terminal of the power supply through a power line, and the output terminal of the electromagnetic controller is connected with the electromagnetic coil through an electromagnetic control electric wire.
Furthermore, a permanent magnet I and a permanent magnet II are respectively and simultaneously installed at two ends of the magnetic conduction core rod, and the permanent magnet I and the permanent magnet II are installed oppositely in the same pole.
Furthermore, a permanent magnet I is independently installed on the magnetic conduction core rod.
Furthermore, a permanent magnet II is independently installed on the magnetic conduction core rod.
Further, after the electromagnetic coil is electrified, under the condition that the left end is an S pole and the right end is an N pole, the right end of the permanent magnet I is an N pole, opposite poles attract each other, the direction of the force is from left to right under the guidance of the magnetic conducting core rod, the left end of the permanent magnet II is an S pole, the same poles are separated, and the direction of the force is from left to right under the guidance of the magnetic conducting core rod; when the electromagnetic control current is constant, the attraction force F1 of the permanent magnet I and the electromagnetic coil is in an ascending trend along with the rightward movement of the magnetic conductive core rod, the dismantling force F2 of the permanent magnet II and the electromagnetic coil is in a descending trend along with the rightward movement of the magnetic conductive core rod, when the electromagnetic control current is constant, the attraction force F1 of the permanent magnet II and the electromagnetic coil is in an ascending trend along with the rightward movement of the core rod when only the permanent magnet I is installed, and the attraction force F2 of the permanent magnet I and the attraction force F is in a descending.
Furthermore, the permanent magnet and the permanent magnet are respectively and simultaneously installed at the two ends of the magnetic conduction core rod, and the magnetic conduction core rod can realize constant axial resultant force F in the axial stroke.
Further, the electromagnetic controller is used for displaying the current magnitude and direction of the control electromagnetic coil.
Further, the direction of the spring force changes when the direction of the input current changes.
Further, when the magnitude of the input current changes, the magnitude of the elastic force also changes.
The utility model is matched with the magnetic conduction core rod through the permanent magnet I, the permanent magnet II, the electromagnetic coil and the magnetic conduction core rod; so that the magnetic core rod forms an axial force in the axial stroke inside the electromagnetic coil; the electromagnetic controller is also arranged to change the direction of the electromagnetic current so as to change the direction of the magnetic pole of the electromagnetic coil, thereby changing the direction of the action force F of the core rod; the magnetic spring is operated by arranging an electromagnetic controller; the problem of controllable and adjustable size and direction of elastic force is solved.
Drawings
In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings needed to be used in the description of the embodiments or the prior art will be briefly described below, it is obvious that the drawings in the following description are only some embodiments of the present invention, and for those skilled in the art, other drawings can be obtained according to the drawings without creative efforts;
fig. 1 is a schematic structural diagram of the present invention.
FIG. 2 is a schematic diagram of the design principle of the present invention;
fig. 3 is a schematic view of the axial force in the axial stroke of the magnetic core rod of the present invention;
in the figure, the magnitude of the F-elasticity, the S-elasticity distance, the F1-the axial force of the permanent magnet I, the F2-the axial force of the permanent magnet II, and the F resultant-axial force.
Detailed Description
The following detailed description of the preferred embodiments of the present invention is provided with reference to the accompanying drawings, so that the advantages and features of the present invention can be more easily understood by those skilled in the art, and the protection scope of the present invention can be more clearly and clearly defined;
as shown in fig. 1, the electromagnetic spring according to the technical solution of the present invention includes a permanent magnet i 1, a permanent magnet ii 2, an electromagnetic coil 3, a magnetic core rod 4, an electromagnetic controller 5, a power supply 6, a bracket 7, an electromagnetic control wire 8 and a power line 9; the bracket 7 is provided with an electromagnetic coil 3; the magnetic conducting core rod 4 penetrates through the electromagnetic coil 3, and the permanent magnet I1 and the permanent magnet II 2 are mounted on the magnetic conducting core rod 4; the power supply input terminal of the electromagnetic controller 5 is connected with the power supply output terminal of the power supply 6 through a power supply wire 9, and the output terminal of the electromagnetic controller 5 is connected with the electromagnetic coil 3 through an electromagnetic control electric wire 8.
And two ends of the magnetic conduction core rod 4 are respectively and simultaneously provided with a permanent magnet I1 and a permanent magnet II 2, and the permanent magnets I1 and II 2 are oppositely arranged in the same pole.
And the magnetic conducting core rod 4 is independently provided with a permanent magnet I1.
And the magnetic conducting core rod 4 is independently provided with a permanent magnet II 2.
When the electromagnetic coil 3 is electrified, under the condition that the left end is an S pole and the right end is an N pole, the right end of the permanent magnet I1 is the N pole, opposite poles attract each other, the direction of the force is from left to right under the guidance of the magnetic conducting core rod 4, the left end of the permanent magnet II 2 is the S pole, the same poles are separated, and the direction of the force is from left to right under the guidance of the magnetic conducting core rod 4; when the electromagnetic control current is constant, the attraction force F1 of the permanent magnet I1 and the electromagnetic coil 3 tends to rise along with the rightward movement of the magnetic conductive core rod 4, the detaching force F2 of the permanent magnet II 2 and the electromagnetic coil 3 tends to fall along with the rightward movement of the magnetic conductive core rod 4, when the electromagnetic control current is constant, the attraction force F1 tends to rise along with the rightward movement of the core rod when only the permanent magnet I1 is installed, and the attraction force F2 tends to fall along with the rightward movement of the core rod when only the permanent magnet II 2 is installed.
The permanent magnets 1 and 2 are respectively and simultaneously installed at two ends of the magnetic conducting core rod 4, and the magnetic conducting core rod 4 can achieve constant axial resultant force F in an axial stroke.
The electromagnetic controller 5 is used for displaying the current magnitude and direction of the control electromagnetic coil 3.
The direction of the spring force changes when the direction of the input current changes.
When the input current changes, the elastic force changes.
The independent fixing of the permanent magnet I1 and the independent fixing of the permanent magnet II 2 can respectively obtain the electromagnetic forces F1 and F2.
And meanwhile, the permanent magnet I1 and the permanent magnet II 2 are fixed to obtain the electromagnetic force F.
As shown in fig. 2, the working principle of the present invention is as follows: when the electromagnetic coil 3 is electrified, under the condition that the left end is an S pole and the right end is an N pole, the right end of the permanent magnet I1 is the N pole, opposite poles attract each other, the direction of the force is from left to right under the guidance of the magnetic conducting core rod 4, the left end of the permanent magnet II 2 is the S pole, the same poles are separated, and the direction of the force is from left to right under the guidance of the magnetic conducting core rod 4; when the electromagnetic control current is constant, the attraction force F1 of the permanent magnet I1 and the electromagnetic coil 3 is in an ascending trend along with the rightward movement of the magnetic conductive core rod 4, as shown in F1 in FIG. 3; with the rightward movement of the magnetic conducting core rod 4, the detaching force F2 of the permanent magnet II 2 and the electromagnetic coil 3 is in a downward trend;
f2 shown in fig. 3; therefore, the magnetic core rod 4 with the designed structure of the utility model can realize the output of the constant axial resultant force F, such as the elastic constant force F shown in fig. 3, in the axial stroke.
The above description is only for the specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto, and any changes or substitutions that are not thought of through the creative work should be covered within the protection scope of the present invention, therefore, the protection scope of the present invention should be subject to the protection scope defined by the claims.

Claims (9)

1. An electromagnetic spring is characterized by comprising a permanent magnet I (1), a permanent magnet II (2), an electromagnetic coil (3), a magnetic core rod (4), an electromagnetic controller (5), a power supply (6), a bracket (7), an electromagnetic control electric wire (8) and a power line (9); the bracket (7) is provided with an electromagnetic coil (3); the magnetic conduction core rod (4) penetrates through the electromagnetic coil (3), and the permanent magnet I (1) and the permanent magnet II (2) are mounted on the magnetic conduction core rod (4); the power supply input terminal of the electromagnetic controller (5) is connected with the power supply output terminal of the power supply (6) through a power supply line (9), and the output terminal of the electromagnetic controller (5) is connected with the electromagnetic coil (3) through an electromagnetic control electric wire (8).
2. An electromagnetic spring as claimed in claim 1, wherein: the two ends of the magnetic conduction core rod (4) are respectively and simultaneously provided with a permanent magnet I (1) and a permanent magnet II (2), and the permanent magnets I (1) and the permanent magnets II (2) are oppositely arranged in the same pole.
3. An electromagnetic spring as claimed in claim 1, wherein: and the magnetic conduction core rod (4) is independently provided with a permanent magnet I (1).
4. An electromagnetic spring as claimed in claim 1, wherein: and the magnetic conduction core rod (4) is independently provided with a permanent magnet II (2).
5. An electromagnetic spring as claimed in claim 1, wherein: after the electromagnetic coil (3) is electrified, under the condition that the left end is an S pole and the right end is an N pole, the right end of the permanent magnet I (1) is an N pole, opposite poles attract each other, the direction of the force is from left to right under the guidance of the magnetic conducting core rod (4), the left end of the permanent magnet II (2) is an S pole, the same poles are detached from each other, and the direction of the force is from left to right under the guidance of the magnetic conducting core rod (4); when the electromagnetic control current is constant, the attraction force F1 of the permanent magnet I (1) and the electromagnetic coil (3) is in an ascending trend along with the rightward movement of the magnetic conducting core rod (4), the detaching force F2 of the permanent magnet II (2) and the electromagnetic coil (3) is in a descending trend along with the rightward movement of the magnetic conducting core rod (4), when the electromagnetic control current is constant, the attraction force F1 is in an ascending trend along with the rightward movement of the core rod when only the permanent magnet I (1) is installed, and the attraction force F2 is in a descending trend along with the rightward movement of the core rod when only the permanent magnet II (2) is installed.
6. An electromagnetic spring as claimed in claim 1, wherein: the permanent magnet I (1) and the permanent magnet II (2) are respectively and simultaneously installed at two ends of the magnetic conduction core rod (4), and the magnetic conduction core rod (4) can achieve constant axial resultant force F in an axial stroke.
7. An electromagnetic spring as claimed in claim 1, wherein: the electromagnetic controller (5) is used for controlling the current magnitude and direction of the electromagnetic coil (3).
8. An electromagnetic spring as claimed in claim 5, wherein: the direction of the spring force changes when the direction of the input current changes.
9. An electromagnetic spring as claimed in claim 5, wherein: when the input current changes, the elastic force changes.
CN201920413860.6U 2018-08-24 2019-03-29 Electromagnetic spring Active CN209925490U (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821371923 2018-08-24
CN2018213719238 2018-08-24

Publications (1)

Publication Number Publication Date
CN209925490U true CN209925490U (en) 2020-01-10

Family

ID=69071748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201920413860.6U Active CN209925490U (en) 2018-08-24 2019-03-29 Electromagnetic spring

Country Status (1)

Country Link
CN (1) CN209925490U (en)

Similar Documents

Publication Publication Date Title
CN202839195U (en) Novel electromagnetic driving mechanism
CN203882905U (en) Electromagnetic relay
CN201421812Y (en) Combined electromagnetic tripper
CN209925490U (en) Electromagnetic spring
CN110857717A (en) Electromagnetic spring
CN108550503A (en) A kind of D.C. contactor
CN203233298U (en) Magnetic electricity kinetic energy continuous movement device
CN204257420U (en) A kind of permanent magnetic drive on-load voltage regulating switch
CN107887228B (en) Permanent-magnet energy-saving contactor
CN203733721U (en) Electromagnetic suction mechanism for control and protection switch
CN202183338U (en) Permanent magnet contact
CN102324732A (en) Motor protecting device
CN108172470A (en) A kind of bistable relay being simple and efficient and bistable contactor and control method
CN204257438U (en) A kind of permanent magnetic drive on-load voltage regulating switch
CN103122951B (en) Magnetic clutch
CN204029725U (en) A kind of A.C. contactor with symmetrical iron core group
CN202260401U (en) Motor protection device
CN203288493U (en) Permanent magnetic mechanism
CN203312186U (en) Relay electric actuator
CN203656326U (en) Self-holding coil structure for valves such as four-way valve, two-way valve and the like
CN202816812U (en) Electromagnetic system of energy-saving contactor
CN201725697U (en) Electromagnet control device for control and protective switching device
CN102867687A (en) Automatic electromagnetic switch
CN201311851Y (en) Electromagnetic system of switch electric appliance
CN206368978U (en) A kind of reversal valve

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant