CN209549520U - Micro-and nano-particles micro-fluidic chip based on surface acoustic wave - Google Patents

Micro-and nano-particles micro-fluidic chip based on surface acoustic wave Download PDF

Info

Publication number
CN209549520U
CN209549520U CN201822216199.8U CN201822216199U CN209549520U CN 209549520 U CN209549520 U CN 209549520U CN 201822216199 U CN201822216199 U CN 201822216199U CN 209549520 U CN209549520 U CN 209549520U
Authority
CN
China
Prior art keywords
sample
micro
channel
nano
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201822216199.8U
Other languages
Chinese (zh)
Inventor
刘党培
刘岩磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Nagenuosi Biological Technology Co Ltd
Original Assignee
Suzhou Nagenuosi Biological Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Nagenuosi Biological Technology Co Ltd filed Critical Suzhou Nagenuosi Biological Technology Co Ltd
Priority to CN201822216199.8U priority Critical patent/CN209549520U/en
Application granted granted Critical
Publication of CN209549520U publication Critical patent/CN209549520U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

The utility model relates to micro-nano material fields, provide a kind of micro-and nano-particles micro-fluidic chip based on surface acoustic wave, include microfluidic channel layer and the piezoelectric substrate combined closely thereunder;Have in microfluidic channel layer positioned at the hollow channel of its underpart, channel has main channel, at least two sample inlet channels and at least three sample export channels, is connected between each sample access road and each sample exit passageway by main channel;Main channel is conversion zone close to the side of each sample access road, it is separated region close to the side of each sample exit passageway, separated region two sides setting a pair in main channel is parallel to each other and separation interdigital transducer group staggered relatively, separates two in interdigital transducer group between interdigital transducer and main channel in default angle theta.The utility model makes the reaction between micro-and nano-particles more efficient more rapidly on chip, realizes the separation for the efficient high-purity of micro-and nano-particles that will combine together and be not associated with.

Description

Micro-and nano-particles micro-fluidic chip based on surface acoustic wave
Technical field
The utility model relates to micro-fluidic chip, biochemistry and micro-nano material fields, in particular to a kind of to be based on sound The micro-and nano-particles micro-fluidic chip of surface wave.
Background technique
Micro-fluidic chip refers to the technology of a kind of accurate control and manipulation minute yardstick fluid also referred to as on piece laboratory, Minute yardstick fluid is intended to less sample, occupies less volume, the faster reaction time, and more precisely more accurate Control.By the various biochemical experimentations usually completed on large apparatus in one piece of micro-fluidic core On piece is completed.Surface acoustic wave be applied to micro-fluidic chip on various particles driving, detect and control, relative to magnetic field, electric field, The control modes such as mechanical force have high-biocompatibility, without the advantages such as invasive, highly sensitive, wide usage is strong.
It is frequently necessary to mix various micro-and nano-particles in Biochemistry Experiment and brings it about various biochemical reactions, such as Nano material, magnetic bead, cell, the micro-and nano-particles such as fluorescent microsphere, and then realize such as magnetic marker, fluorescent marker and various materials The reaction be combineding with each other between material.To which micro-and nano-particles are realized with the detection of combination between each other and a certain or several substances Deng application.The disadvantages of traditional hybrid mode has the time long, and process is cumbersome, and mixing efficiency is not high, it is also relatively difficult to achieve after mixing The separation of various particles after reaction.
Utility model content
Purpose of utility model: aiming at the problems existing in the prior art, the utility model provides a kind of based on surface acoustic wave Micro-and nano-particles micro-fluidic chip, the micro-and nano-particles that will combine together and unbonded micro-nano can be realized on chip The separation of the efficient high-purity of rice corpuscles.
Technical solution: the utility model provides a kind of micro-and nano-particles micro-fluidic chip based on surface acoustic wave, includes Microfluidic channel layer and the piezoelectric substrate combined closely thereunder;Have in the microfluidic channel layer and is located in its underpart Empty channel, the channel have main channel, at least two sample inlet channels and at least three sample export channels, each institute It states and is connected between sample inlet channel and each sample export channel by the main channel;The main channel is close to each described The side of sample inlet channel is conversion zone, and the side close to each sample export channel is separated region, in the master The separated region two sides setting a pair in channel is parallel to each other and separation interdigital transducer group staggered relatively, and the separation is interdigital to change In default angle theta between two interdigital transducers and the main channel in energy device group.
Preferably, the sample inlet channel is two, and respectively the first sample inlet channel and the second sample inlet are logical Road, first sample inlet channel have the first sample inlet, and second sample inlet channel has the second sample inlet. Two sample inlet channels are then suitable for the reaction between two kinds of samples, and it is preferable to use two kinds of samples in the utility model, in reality In the application of border, two or more samples also can be used and reacted, it is only necessary to correspondingly increase sample inlet channel.
Preferably, the sample export channel is three, respectively the first sample export channel, the second sample export channel With third sample export channel;First sample export channel has the first sample export, second sample export channel With the second sample export, third sample export channel has third sample export.It will appear three after two kinds of example reactions Kind particle: particle and two kinds of unbonded particles after two kinds of particles combinations, the separation of three kinds of particles then need three samples to go out Mouth channel, the separation if it is three kinds of samples then need correspondingly to increase sample export channel.
Preferably, the default angle is 0 ~ 90 °.
Preferably, the piezoelectric substrate is made out of a piezoelectric material.
Preferably, the piezoelectric material is lithium columbate crystal, quartz crystal or bismuth-germanium-oxide crystal.
The utility model has the advantages that the utility model remarkable advantage is:
By separated region after conversion zone reaction of several micro-and nano-particles samples in main channel, in separated region It, can be by different micro-and nano-particles sample meetings by the effect for the surface acoustic wave field that inclined separation interdigital transducer group is formed It by different size of active force, generates different deflection angles and deflects different distances, later unbonded several micro-nanos Grain of rice subsample and the sample of combination flow out chip via different sample export channels respectively, complete on chip pair Mixed difference micro-and nano-particles are separated simultaneously, the micro-and nano-particles after can directly obtaining the combination of high-purity.Separation The setting of interdigital transducer group is so that this chip can be realized the particle that will combine together and unbonded particle efficient is high-purity The separation of degree then can also correspondingly increase the length of separation interdigital transducer group if the separated region of main channel is longer.
(3) micro-fluidic chip described in the utility model uses sound wave as the isolated mode of action, has extremely outstanding Biocompatibility so the reaction that can be carried out on this chip is not limited to the substances such as various particles and microvesicle, while can carry out thin The highly effective reaction of the biological particles such as born of the same parents and combination.
(4) it can be realized by the frequency and power for adjusting each interdigital transducer input signal to a variety of different particle reactions The separation of high-purity afterwards, applicability are extensive.
Micro-and nano-particles micro-fluidic chip of the utility model based on surface acoustic wave, in particular to make in micro-fluidic chip Separation of the surface acoustic wave as driving method control micro-and nano-particles on chip is used, to realize micro-and nano-particles micro-fluidic High-purity separation after being reacted on chip.Many advantages, such as it has structure simple, and wide usage is strong, good biocompatibility, is one Kind is capable of high-purity and obtains the micro-fluidic chip for combining rear particle, has good application in biochemistry and field of nanometer material technology Prospect.
Surface acoustic wave is applied to the driving of various particles on micro-fluidic chip, detects and controls in the utility model, relatively There is high-biocompatibility, strong etc. excellent without invasive, highly sensitive, wide usage in control modes such as magnetic field, electric field, mechanical forces Gesture.It solves after traditional hybrid mode mixing after reaction relatively difficult to achieve the disadvantages of the separation of various particles.
Detailed description of the invention
Fig. 1 is the birds-eye perspective of the micro-and nano-particles micro-fluidic chip in the utility model based on surface acoustic wave;
Fig. 2 is the top view of the microfluidic channel layer with hollow channel during this is clearly demarcated;
Fig. 3 is the top view in the utility model with the piezoelectric substrate for focusing interdigital transducer group.
Specific embodiment
The utility model is described in detail with reference to the accompanying drawing.
Present embodiments provide for a kind of micro-and nano-particles micro-fluidic chip based on surface acoustic wave, in conjunction with Fig. 1 to Fig. 3, The chip includes microfluidic channel layer 1 and piezoelectric substrate 2, and piezoelectric substrate 2 is combined closely in the lower surface of microfluidic channel layer 1, Piezoelectric substrate 2 is made out of a piezoelectric material, and it is preferable to use lithium columbate crystal, quartz crystal or bismuth-germanium-oxide crystals for piezoelectric material;Miniflow Controlling has hollow channel in channel layer 1, which is located at the lower part of microfluidic channel layer 1, and channel has main channel 3, two sample inlet channels 4 and three sample export channels 5;Two sample inlet channels 4 are respectively to have the first sample First sample inlet channel 401 of entrance 403 and the second sample inlet channel 402 with the second sample inlet 404;First sample It is connected between product access road 401 and the second sample inlet channel 402 and sample export channel 5 by main channel 3.
Three sample export channels 5 are respectively the first sample export channel 501 with the first sample export 504, have Second sample export channel 502 of the second sample export 505 and third sample export channel with third sample export 506 503;Main channel 3 is conversion zone 301 close to the side of the first sample inlet channel 401 and the second sample inlet channel 402, is leaned on The side in nearly first sample export channel 501, the second sample export channel 502 and third sample export channel 503 is Disengagement zone Domain 302 also sets up a pair of be parallel to each other and separation interdigital transducer staggered relatively in 302 two sides of separated region of main channel 3 7 are organized, two interdigital transducers in the separation interdigital transducer group 7 are located at 302 two sides of separated region of main channel 3, and Two interdigital transducers are between main channel 3 in 0 ~ 90 ° of angle setting.
The micro-and nano-particles micro-fluidic chip based on surface acoustic wave in present embodiment at work, micro-and nano-particles sample Product 1 enter the first sample inlet channel 401 by the first sample inlet 403, and enter main lead to by the first sample inlet channel 401 The conversion zone 301 in road;Micro-and nano-particles sample 2 enters the second sample inlet channel 402 by the second sample inlet 404, and The conversion zone 301 for entering main channel by the second sample inlet channel 402, in conversion zone 301, two kinds of micro-and nano-particles samples Product are gathered together in the conversion zone 301 of main channel 3, and two be gathered together kind micro-and nano-particles are in conversion zone 301 Enter separated region 302 after interior reaction, two interdigital transducers in interdigital transducer group 7 are segregated in separated region 302 The effect of surface acoustic wave that generates of two opposite interdigital electrodes, the different micro-nano grain of rice of three kinds for being combined together and being not associated with Son will receive the different size of active force of surface acoustic wave, generate different deflection angles, later unbonded micro-and nano-particles Sample 1 and unbonded micro-and nano-particles sample 2 and the micro-and nano-particles sample combined are logical via the first sample export respectively First sample export 504 in road 501, second sample export 505 in the second sample export channel 502 and third sample export channel 503 third sample export 506 flows out chip.
If the separated region of main channel 3 is longer, then it can also correspondingly increase the length of separation interdigital transducer group 7.
A kind of typical production process of micro-and nano-particles micro-fluidic chip in present embodiment based on surface acoustic wave is as follows:
Piezoelectric substrate 2 is prepared using materials such as piezoelectric material lithium columbate crystal, quartz crystal or bismuth-germanium-oxide crystals.
In piezoelectric substrate 2 use PECVD(plasma enhanced chemical vapor deposition), vapor deposition, sputtering etc. techniques formed The metallic films such as platinum, gold or copper form separation interdigital transducer group 7 by the methods of photoetching and subsequent metal etch.
On a silicon substrate by optical graving for SU-8 formpiston, pouring preparation using PDMS later has the micro- of hollow channel Flow control channel layer 1.
By to brigadier's microfluidic channel layer 1 with have separate interdigital transducer group 7 piezoelectric substrate 2 combine into Row builds conjunction, that is, completes the preparation of the micro-and nano-particles micro-fluidic chip based on surface acoustic wave.
Above embodiment is only to illustrate the technical ideas and features of the present invention, and its object is to allow be familiar with this skill The people of art can understand the content of the utility model and implement accordingly, not limit the protection scope of the present invention. It is all according to the spirit of the present invention substantially equivalent transformation that is done or modification, should all cover the protection scope of the utility model it It is interior.

Claims (6)

1. a kind of micro-and nano-particles micro-fluidic chip based on surface acoustic wave, it is characterised in that: comprising microfluidic channel layer (1) and The piezoelectric substrate (2) combined closely thereunder;Have in the microfluidic channel layer (1) and leads to positioned at the hollow of its underpart Road, the channel have main channel (3), at least two sample inlet channels (4) and at least three sample export channels (5), It is connected between each sample inlet channel (4) and each sample export channel (5) by the main channel (3);The master Channel (3) is conversion zone (301) close to the side of each sample inlet channel (4), close to each sample export channel (5) side be separated region (302), separated region (302) two sides of the main channel (3) be arranged a pair be parallel to each other and Separation interdigital transducer group (7) staggered relatively, it is described separation interdigital transducer group (7) in two interdigital transducers with it is described In default angle theta between main channel (3).
2. the micro-and nano-particles micro-fluidic chip according to claim 1 based on surface acoustic wave, it is characterised in that: the sample Product access road (4) is two, respectively the first sample inlet channel (401) and the second sample inlet channel (402), described the A sample access road (401) has the first sample inlet (403), and second sample inlet channel (402) has the second sample Product entrance (404).
3. the micro-and nano-particles micro-fluidic chip according to claim 1 based on surface acoustic wave, it is characterised in that: the sample Product exit passageway (5) is three, respectively the first sample export channel (501), the second sample export channel (502) and third sample Product exit passageway (503);First sample export channel (501) has the first sample export (504), and second sample goes out Mouth channel (502) has the second sample export (505), and third sample export channel (503) has third sample export (506).
4. the micro-and nano-particles micro-fluidic chip according to any one of claim 1 to 3 based on surface acoustic wave, feature Be: the default angle theta is 0 ~ 90 °.
5. the micro-and nano-particles micro-fluidic chip according to any one of claim 1 to 3 based on surface acoustic wave, feature Be: the piezoelectric substrate (2) is made out of a piezoelectric material.
6. the micro-and nano-particles micro-fluidic chip according to claim 5 based on surface acoustic wave, it is characterised in that: the pressure Electric material is lithium columbate crystal, quartz crystal or bismuth-germanium-oxide crystal.
CN201822216199.8U 2018-12-27 2018-12-27 Micro-and nano-particles micro-fluidic chip based on surface acoustic wave Expired - Fee Related CN209549520U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201822216199.8U CN209549520U (en) 2018-12-27 2018-12-27 Micro-and nano-particles micro-fluidic chip based on surface acoustic wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201822216199.8U CN209549520U (en) 2018-12-27 2018-12-27 Micro-and nano-particles micro-fluidic chip based on surface acoustic wave

Publications (1)

Publication Number Publication Date
CN209549520U true CN209549520U (en) 2019-10-29

Family

ID=68303994

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201822216199.8U Expired - Fee Related CN209549520U (en) 2018-12-27 2018-12-27 Micro-and nano-particles micro-fluidic chip based on surface acoustic wave

Country Status (1)

Country Link
CN (1) CN209549520U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433285A (en) * 2018-12-27 2019-03-08 苏州纳葛诺斯生物科技有限公司 Micro-and nano-particles micro-fluidic chip based on surface acoustic wave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433285A (en) * 2018-12-27 2019-03-08 苏州纳葛诺斯生物科技有限公司 Micro-and nano-particles micro-fluidic chip based on surface acoustic wave

Similar Documents

Publication Publication Date Title
CN109482121A (en) Micro-and nano-particles highly effective reaction micro-fluidic chip based on surface acoustic wave
CN109433285A (en) Micro-and nano-particles micro-fluidic chip based on surface acoustic wave
Wang et al. Sorting of tumour cells in a microfluidic device by multi-stage surface acoustic waves
US9606086B2 (en) High-efficiency separation and manipulation of particles and cells in microfluidic device using surface acoustic waves at an oblique angle
CN209612920U (en) Micro-and nano-particles highly effective reaction micro-fluidic chip based on surface acoustic wave
US8252569B2 (en) Microfluidic device and method for concentration and lysis of cells or viruses
Wu et al. Microfluidic technologies in cell isolation and analysis for biomedical applications
Huang et al. Microfluidics cell sample preparation for analysis: advances in efficient cell enrichment and precise single cell capture
US8991614B2 (en) Microfluidic ultrasonic particle separators with engineered node locations and geometries
CN108823065B (en) Microparticle sorting device based on intermittent inclined surface acoustic wave
JP4661942B2 (en) Microchip and its channel structure
CN102240534B (en) Method for manufacturing three-dimensional micromixer microfluidic chip
CN109865542A (en) Microparticle multichannel timesharing separator and method based on the oblique finger transducer of arc
CN106824313A (en) A kind of digital pcr chip and preparation method thereof
JP2012504243A (en) Particle capture
CN109012771B (en) Full-transparent microfluidic acoustic bulk wave chip and preparation method thereof
US20190292565A1 (en) Acoustically-Driven Buffer Switching for Microparticles
CN209549520U (en) Micro-and nano-particles micro-fluidic chip based on surface acoustic wave
CN110628614A (en) Microfluidic whole blood cell multistage sorting chip and method based on surface acoustic waves
CN109569392A (en) A kind of active micro-mixer of Y type based on surface acoustic wave
CN106914288A (en) A kind of micro-fluidic high frequency sound focusing chip and preparation method thereof
Gwak et al. A modular microfluidic platform for serial enrichment and harvest of pure extracellular vesicles
CN116656489B (en) Standing wave acoustic fluid control device for sorting exosomes in body fluid and use method thereof
CN209307340U (en) Microparticle sorting unit based on intermittent inclination surface acoustic wave
Wang et al. Sheathless acoustic based flow cell sorter for enrichment of rare cells

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191029

Termination date: 20211227

CF01 Termination of patent right due to non-payment of annual fee