CN209433059U - Temperature-insensitive Mach-Zehnder interferometers - Google Patents
Temperature-insensitive Mach-Zehnder interferometers Download PDFInfo
- Publication number
- CN209433059U CN209433059U CN201822059191.5U CN201822059191U CN209433059U CN 209433059 U CN209433059 U CN 209433059U CN 201822059191 U CN201822059191 U CN 201822059191U CN 209433059 U CN209433059 U CN 209433059U
- Authority
- CN
- China
- Prior art keywords
- transmission line
- tapered transmission
- end surface
- width
- asymmetric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
The utility model provides a kind of temperature-insensitive Mach-Zehnder interferometers, comprising: first mode converter;Second mode converter has spacing positioned at the side of first mode converter, and with first mode converter;Linking arm, between first mode converter and second mode converter, one end is connected with first mode converter, and the other end is connected with second mode converter;Linking arm includes straight wave guide linking arm.The temperature-insensitive Mach-Zehnder interferometers of the utility model may be implemented by parameters such as the width of the setting linking arm and thickness to temperature-insensitive.
Description
Technical field
The utility model belongs to optical technical field, more particularly to a kind of temperature-insensitive Mach-Zehnder interferometers.
Background technique
Mach-Zehnder interferometers (Mach~Zehnder Modulator, MZI) are widely used in optical signal modulation etc.
Technical field.Then, existing Mach-Zehnder interferometers are all made of dual link arm configuration substantially, and existing mach zhender is dry
Interferometer is generally existing more sensitive to temperature, is affected by temperature larger, the problems such as structure is complicated, and size is big
Utility model content
In view of the foregoing deficiencies of prior art, the purpose of this utility model is to provide a kind of temperature-insensitive Mach
Zeng Deer interferometer, it is more sensitive to temperature existing for Mach-Zehnder interferometers in the prior art for solving, by temperature
It is affected, the problems such as structure is complicated, and size is big.
In order to achieve the above objects and other related objects, it is dry to provide a kind of temperature-insensitive mach zhender for the utility model
Interferometer, the temperature-insensitive Mach-Zehnder interferometers include:
First mode converter;
Second mode converter converts utensil positioned at the side of the first mode converter, and with the first mode
There is spacing;
Linking arm, between the first mode converter and the second mode converter, described linking arm one end
It is connected with the first mode converter, the other end is connected with the second mode converter;The linking arm includes straight
Waveguide linking arm.
As a kind of preferred embodiment of the utility model, the first mode converter includes: input waveguide, first non-right
Claim tapered transmission line, the first straight wave guide and the second asymmetric tapered transmission line;Wherein, the input waveguide, the first asymmetric cone
Shape waveguide, the straight wave guide and the second asymmetric tapered transmission line are sequentially connected and connect;The second asymmetric tapered transmission line with
The linking arm is connected;
The second mode converter includes the asymmetric tapered transmission line of third, the second straight wave guide, the 4th asymmetric conical wave
It leads and output waveguide;Wherein, the asymmetric tapered transmission line of the third, second straight wave guide, the 4th asymmetric conical wave
It leads and the output waveguide is sequentially connected and connects;The asymmetric tapered transmission line of third is connected with the linking arm.
As a kind of preferred embodiment of the utility model, one end of the first asymmetric tapered transmission line is narrow end surface, separately
One end is wide end surface, and the narrow end surface of the first asymmetric tapered transmission line is connected with the input waveguide, and described first is non-right
The wide end surface of tapered transmission line is claimed to be connected with first straight wave guide;
One end of the second asymmetric tapered transmission line is narrow end surface, and the other end is wide end surface, the second asymmetric cone
The wide end surface of shape waveguide is connected with first straight wave guide, the narrow end surface of the second asymmetric tapered transmission line and the connection
Arm is connected;
One end of the asymmetric tapered transmission line of third is narrow end surface, and the other end is wide end surface, the asymmetric cone of third
The narrow end surface of shape waveguide is connected with the linking arm, the wide end surface and the described second straight wave of the asymmetric tapered transmission line of third
It leads and is connected;
One end of the 4th asymmetric tapered transmission line is narrow end surface, and the other end is wide end surface, the 4th asymmetric cone
The wide end surface of shape waveguide is connected with second straight wave guide, the narrow end surface of the 4th asymmetric tapered transmission line and the output
Waveguide is connected.
As a kind of preferred embodiment of the utility model, the width of the wide end surface of the first asymmetric tapered transmission line and institute
The width for stating the wide end surface of the second asymmetric tapered transmission line is of same size with first straight wave guide, and the third is asymmetric
The width of the width of the wide end surface of tapered transmission line and the 4th asymmetric tapered transmission line wide end surface with second straight wave guide
It is of same size.
As a kind of preferred embodiment of the utility model, the width of the input waveguide is 0.45 μm~0.55 μm;It is described
The width of the wide end surface of first tapered transmission line is 2.1 μm~2.2 μm, and the width of the narrow end surface of first tapered transmission line is 0.45
μm~0.55 μm, the length of first tapered transmission line is 8.05 μm~8.15 μm;The width of first straight wave guide is 2.1 μm
~2.2 μm, the length of first straight wave guide is 4.95 μm~5.05 μm;The width of the wide end surface of second tapered transmission line is
2.1 μm~2.2 μm, the width of the narrow end surface of second tapered transmission line is 1.15 μm~1.25 μm, second tapered transmission line
Length be 6.25 μm~6.35 μm;The width of the wide end surface of the third tapered transmission line is 2.1 μm~2.2 μm, the third
The width of the narrow end surface of tapered transmission line is 1.15 μm~1.25 μm, and the length of the third tapered transmission line is 6.25 μm~6.35 μ
m;The width of second straight wave guide is 2.1 μm~2.2 μm, and the length of second straight wave guide is 4.95 μm~5.05 μm;Institute
The width for stating the wide end surface of the 4th tapered transmission line is 2.1 μm~2.2 μm, and the width of the narrow end surface of the 4th tapered transmission line is
0.45 μm~0.55 μm, 8.05 μm~8.15 μm of the length of the 4th tapered transmission line;The width of the input waveguide is 0.45 μ
M~0.55 μm.
As a kind of preferred embodiment of the utility model, the thickness of the first mode converter, the second mode turn
The thickness of the thickness of parallel operation and the linking arm is 215nm~225nm.
As a kind of preferred embodiment of the utility model, it further includes first that the temperature-insensitive Mach, which increases Dare interferometer,
Reversed taper coupler and the second reversed taper coupler;Wherein, the described first reversed taper coupler includes two input terminals
And an output end, the output end and the first mode converter of the first reversed taper coupler are far from the linking arm
One end be connected;The second reversed taper coupler includes an input terminal and two output ends, the described second reversed cone
The input terminal of shape coupler is connected with the second mode converter far from one end of the linking arm.
As a kind of preferred embodiment of the utility model, the temperature-insensitive Mach-Zehnder interferometers further include base
Bottom, the substrate include bottom silicon layer and buried oxide layer in SOI substrate, the first mode converter, the linking arm and institute
Second mode converter is stated to be formed by etching the top silicon layer in the SOI substrate.
As a kind of preferred embodiment of the utility model, the temperature-insensitive Mach-Zehnder interferometers further include protection
Layer, the protective layer is located at the upper surface of the buried oxide layer, and be completely covered the first mode converter, the linking arm and
The second mode converter.
As a kind of preferred embodiment of the utility model, the width of the linking arm is 646nm.
As described above, the temperature-insensitive Mach-Zehnder interferometers of the utility model, have the advantages that
Device architecture in the temperature-insensitive Mach-Zehnder interferometers of the utility model is prepared based on SOI substrate
It arrives, since the thermo-optical coeffecient of the silicon in SOI substrate (can reach 1.86 × 10 greatly very much~4RIU/K, wherein RIU is refractive index list
Position), sizable wavelength drift (about 80pm/K) varied with temperature can be caused, on this basis, by the way that the company is arranged
Connecing the parameters such as width and the thickness of arm may be implemented to temperature-insensitive;Meanwhile the temperature-insensitive Mach of the utility model was once
Dare interferometer may be implemented it is compatible with CMOS technology, be convenient for mass production;
No matter input terminal inputs TE to the temperature-insensitive Mach-Zehnder interferometers of the utility model0The incident light of mode is also
It is TE1The input light of mode, output end can export TE0Mode and TE1The emergent light of mode;
Two mode converters pass through a linking arm in the temperature-insensitive Mach-Zehnder interferometers of the utility model
It is connected, structure is simple, has lesser loss;
The straight wave guide in asymmetric tapered transmission line in the temperature-insensitive Mach-Zehnder interferometers of the utility model is wide
Degree can be adjusted at larger range (± 50nm) and be impacted without the performance to device, can be real in silicon photon technique platform
Existing high quality large-scale production.
Detailed description of the invention
Fig. 1 to Fig. 3 is shown as the structural schematic diagram of temperature-insensitive Mach-Zehnder interferometers provided by the utility model;
Wherein, Fig. 1 and Fig. 3 is shown as the overlooking structure diagram of two different exemplary temperature-insensitive Mach-Zehnder interferometers, Fig. 2
It is shown as the schematic perspective view of an exemplary temperature-insensitive Mach-Zehnder interferometers.
Fig. 4 is shown as the first mode converter in temperature-insensitive Mach-Zehnder interferometers provided by the utility model
Overlooking structure diagram.
Fig. 5 is shown as the second mode converter in temperature-insensitive Mach-Zehnder interferometers provided by the utility model
Overlooking structure diagram.
Fig. 6 be shown as in temperature-insensitive Mach-Zehnder interferometers provided by the utility model the width of linking arm with not
With pattern incident light effective refractive index relative to temperature change rate curve;Wherein, it is TE that 1. curve, which is incident light,0Mode
Incident light, 2. curve is that incident light is TE1The incident light of mode.
Fig. 7 and Fig. 8 be shown as temperature-insensitive Mach-Zehnder interferometers provided by the utility model at 26.85 DEG C and
The curve graph of lambda1-wavelength and input loss under the conditions of 56.85 DEG C of two different temperatures;Wherein, Fig. 7 is with the length 560 of linking arm
μm, incident light TE0Mode, output light is with TE0Mode is as example;With 1100 μm of the length of linking arm in Fig. 8, incident light is
TE0Mode, output light is with TE0Mode is as example.
Fig. 9 to Figure 12 is shown as different in width in temperature-insensitive Mach-Zehnder interferometers provided by the utility model
The curve graph of arm lengths and input loss is connected when linking arm;Wherein, input light is TE in Fig. 9 and Figure 100Mode, output light are
TE0Mode and TE1Mode;Input light is TE in Figure 11 and Figure 121Mode, output light TE0Mode and TE1Mode;Fig. 9 to Figure 12
In, the curve that 1. curve is the width of the first straight wave guide or the second straight wave guide when being 2150nm, curve be 2. the first straight wave guide or
3. curve when the width of second straight wave guide is (2150-50) nm, curve are that the width of the first straight wave guide or the second straight wave guide is
Curve when (2150+50) nm.
Component label instructions
10 first mode converters
101 input waveguides
102 first asymmetric tapered transmission lines
103 first straight wave guides
104 second asymmetric tapered transmission lines
11 second mode converters
The asymmetric tapered transmission line of 111 thirds
112 second straight wave guides
113 the 4th asymmetric tapered transmission lines
114 output waveguides
12 linking arms
13 first reversed taper couplers
14 second transoid taper couplers
15 substrates
151 bottom silicon layers
152 buried oxide layers
16 protective layers
Specific embodiment
The embodiments of the present invention is illustrated by particular specific embodiment below, those skilled in the art can be by this
Content disclosed by specification understands other advantages and effect of the utility model easily.
Fig. 1 is please referred to Figure 11.It should be clear that this specification structure depicted in this specification institute accompanying drawings, ratio, size etc., are only used
To cooperate the revealed content of specification, so that those skilled in the art understands and reads, it is practical new to be not limited to this
The enforceable qualifications of type, therefore do not have technical essential meaning, the modification of any structure, the change of proportionate relationship or size
Adjustment it is practical new should all still to fall in this in the case where not influencing the effect of the utility model can be generated and the purpose that can reach
The revealed technology contents of type obtain in the range of capable of covering.Meanwhile in this specification it is cited as "upper", "lower", " left side ",
The term on " right side ", " centre " and " one " etc. is merely convenient to being illustrated for narration, rather than enforceable to limit the utility model
Range, relativeness are altered or modified, under the content of no substantial changes in technology, enforceable when being also considered as the utility model
Scope.
Referring to Fig. 1, the utility model provides a kind of temperature-insensitive Mach-Zehnder interferometers, the temperature-insensitive
Mach-Zehnder interferometers include: first mode converter 10;Second mode converter 11, the second mode converter 11
There is spacing in the side of the first mode converter 10, and with the first mode converter 10;Linking arm 12, the company
Arm 12 is connect between the first mode converter 10 and the second mode converter 11, described 12 one end of linking arm and institute
It states first mode converter 10 to be connected, the other end is connected with the second mode converter 11;The linking arm 12 includes
Straight wave guide linking arm.
As an example, as shown in Figures 2 and 3, it further includes first reversed that the temperature-insensitive Mach, which increases Dare interferometer,
Taper coupler 13 and the second reversed taper coupler 14;Wherein, the described first reversed taper coupler 13 includes two inputs
Hold (Port1 and Port2 in such as Fig. 3) and an output end, the output end of the first reversed taper coupler 13 with it is described
First mode converter 10 is connected far from one end of the linking arm 12;The second reversed taper coupler 14 includes one
Input terminal and two output ends (Port3 and Port4 in such as Fig. 3), the input terminal of the second reversed taper coupler 14 with
The second mode converter 11 is connected far from one end of the linking arm 12.
As an example, as shown in Fig. 2, the temperature-insensitive Mach-Zehnder interferometers further include substrate 15, the base
Bottom 15 include SOI substrate in bottom silicon layer 151 and buried oxide layer 152, the first mode converter 10, the linking arm 12 and
The second mode converter 11 is formed by etching the top silicon layer in the SOI substrate.The temperature of the utility model
The first mode converter 10, the linking arm 12 and second mode conversion in insensitive Mach-Zehnder interferometers
Device 11 is based on SOI substrate and is prepared, since the thermo-optical coeffecient of the silicon in SOI substrate (can reach 1.86 × 10 greatly very much-4RIU/
K, wherein RIU is refractive index unit), sizable wavelength drift (about 80pm/K) varied with temperature can be caused, in this base
On plinth, it may be implemented by parameters such as the width of the setting linking arm 12 and thickness to temperature-insensitive;Meanwhile this is practical new
The temperature-insensitive Mach-Zehnder interferometers of type may be implemented it is compatible with CMOS technology, be convenient for mass production.
As an example, as shown in Fig. 2, the temperature-insensitive Mach-Zehnder interferometers further include protective layer 16, it is described
Protective layer 16 is located at the upper surface of the buried oxide layer 152, and the first mode converter 10, the linking arm 12 is completely covered
And the second mode converter 11, to realize to the first mode converter 10, the linking arm 12 and second mould
The protection of formula converter 11.The protective layer 16 may include but be not limited only to silicon oxide layer.
As an example, as shown in figure 4, the first mode converter 10 includes: input waveguide 101, the first asymmetric cone
Shape waveguide 102, the first straight wave guide 103 and the second asymmetric tapered transmission line 104;Wherein, the input waveguide 101, described first
Asymmetric tapered transmission line 102, the straight wave guide 103 and the second asymmetric tapered transmission line 104 are sequentially connected and connect;Described second
Asymmetric tapered transmission line 104 is connected with first straight wave guide 103, specifically, the second asymmetric tapered transmission line 104 is remote
One end from first straight wave guide 103 is connected with the linking arm 12.
As an example, as shown in figure 5, the second mode converter 11 includes the asymmetric tapered transmission line 111, second of third
Straight wave guide 112, the 4th asymmetric tapered transmission line 113 and output waveguide 114;Wherein, the asymmetric tapered transmission line 111 of the third,
Second straight wave guide 112, the 4th asymmetric tapered transmission line 113 and the output waveguide 114 are sequentially connected and connect;Described
Three asymmetric tapered transmission lines 111 are connected with the linking arm 12.
As an example, described first is non-as shown in figure 4, one end of the first asymmetric tapered transmission line 102 is narrow end surface
The other end of symmetric pyramid waveguide 102 is wide end surface, the narrow end surface and the incoming wave of the first asymmetric tapered transmission line 102
The connection of phase 101 is led, the wide end surface of the first asymmetric tapered transmission line 102 is connected with first straight wave guide 103;Described
One end of two asymmetric tapered transmission lines 104 is narrow end surface, and the other end of the second asymmetric tapered transmission line 104 is wide end surface,
The wide end surface of the second asymmetric tapered transmission line 104 is connected with first straight wave guide 103, the second asymmetric taper
The narrow end surface of waveguide 104 is connected with the linking arm 12.
As an example, the third is non-as shown in figure 5, one end of the asymmetric tapered transmission line 111 of the third is narrow end surface
The other end of symmetric pyramid waveguide 111 is wide end surface, the narrow end surface and the linking arm of the asymmetric tapered transmission line 111 of third
12 are connected, and the wide end surface of the asymmetric tapered transmission line 111 of third is connected with second straight wave guide 112;Described 4th
One end of asymmetric tapered transmission line 113 is narrow end surface, and the other end of the 4th asymmetric tapered transmission line 113 is wide end surface, institute
The wide end surface for stating the 4th asymmetric tapered transmission line 113 is connected with second straight wave guide 112, the 4th asymmetric conical wave
113 narrow end surface is led to be connected with the output waveguide 114.
As an example, the second asymmetric cone described in the width and W3 of the wide end surface of the first asymmetric tapered transmission line 102
The width W5 of the wide end surface of shape waveguide 104 is identical as the width W4 of first straight wave guide 103, the asymmetric taper of third
The width W10 of the width W8 of the wide end surface of waveguide 111 and the wide end surface of the 4th asymmetric tapered transmission line 113 is with described
The width W9 of two straight wave guides 112 is identical.
By using the described first asymmetric tapered transmission line 102, the second asymmetric tapered transmission line 104, the third
Asymmetric tapered transmission line 111 and the 4th asymmetric tapered transmission line 113, due to the first mode converter 10 and described
Two modes converter 11 is in the direction y (width direction of i.e. described first straight wave guide 103 and the width of second straight wave guide 112
Direction) on structure asymmetry so that incident TE0The incident light of mode is by the first mode converter 10 and described
11 Shi Junhui of second mode converter is transmitted in different effective lengths, by the width for setting first straight wave guide 103
And the width of second straight wave guide 112 can make incident TE0The incident light of mode cannot be completely converted into TE1Mode makes
The light that must be exported be include TE0Mode and TE1The output light of the mixed mode of mode.
As an example, the width of the input waveguide is 0.45 μm~0.55 μm;The wide end surface of first tapered transmission line
Width be 2.1 μm~2.2 μm, the width of the narrow end surface of first tapered transmission line is 0.45 μm~0.55 μm, described first
The length of tapered transmission line is 8.05 μm~8.15 μm;The width of first straight wave guide is 2.1 μm~2.2 μm, and described first is straight
The length of waveguide is 4.95 μm~5.05 μm;The width of the wide end surface of second tapered transmission line is 2.1 μm~2.2 μm, described
The width of the narrow end surface of second tapered transmission line is 1.15 μm~1.25 μm, the length of second tapered transmission line is 6.25 μm~
6.35μm;The width of the wide end surface of the third tapered transmission line is 2.1 μm~2.2 μm, the narrow end surface of the third tapered transmission line
Width be 1.15 μm~1.25 μm, the length of the third tapered transmission line is 6.25 μm~6.35 μm;Second straight wave guide
Width be 2.1 μm~2.2 μm, the length of second straight wave guide is 4.95 μm~5.05 μm;4th tapered transmission line
The width of wide end surface is 2.1 μm~2.2 μm, and the width of the narrow end surface of the 4th tapered transmission line is 0.45 μm~0.55 μm, institute
8.05 μm~8.15 μm of length for stating the 4th tapered transmission line;The width of the input waveguide is 0.45 μm~0.55 μm.
It should be noted that above-mentioned dimensional parameters need one-to-one relationship within above range, below with several
A example is illustrated: for example, in the first example, the width W1 of the input waveguide 101 is 0.5 μm;First taper
The width W3 of the wide end surface of waveguide 102 is 1.9 μm, and the width W2 of the narrow end surface of first tapered transmission line 102 is 0.5 μm, institute
The length L1 for stating the first tapered transmission line 102 is 7.6 μm;The width W4 of first straight wave guide 103 can be 1.9 μm, described the
The length L2 of one straight wave guide 103 can be 3.6 μm;The width W5 of the wide end surface of second tapered transmission line 104 can be 1.9 μ
M, the width W6 of the narrow end surface of second tapered transmission line 104 can be 1.2 μm, the length L3 of second tapered transmission line 104
It can be 5.1 μm;The width W8 of the wide end surface of the third tapered transmission line 111 is 1.9 μm, the third tapered transmission line 111
The width W7 of narrow end surface is 1.2 μm, and the length L4 of the third tapered transmission line 111 is 5.1 μm;Second straight wave guide 112
Width W9 is 1.9 μm, and the length L5 of second straight wave guide 112 is 3.6 μm;The wide end surface of 4th tapered transmission line 113
Width W10 can be 1.9 μm, and the width W11 of the narrow end surface of the 4th tapered transmission line 113 can be 0.5 μm, the 4th cone
The length L6 of shape waveguide 113 can be 7.6 μm;The width W12 of the input waveguide 114 can be 0.5 μm.In the second example
In, the width W1 of the input waveguide 101 is 0.5 μm;The width W3 of the wide end surface of first tapered transmission line 102 is 1.95 μ
M, the width W2 of the narrow end surface of first tapered transmission line 102 are 0.5 μm, and the length L1 of first tapered transmission line 102 is 7.6
μm;The width W4 of first straight wave guide 103 can be 1.95 μm, and the length L2 of first straight wave guide 103 can be 3.6 μ
m;The width W5 of the wide end surface of second tapered transmission line 104 can be 1.95 μm, the narrow end surface of second tapered transmission line 104
Width W6 can be 1.2 μm, the length L3 of second tapered transmission line 104 can be 5.1 μm;The third tapered transmission line
The width W8 of 111 wide end surface is 1.95 μm, and the width W7.6 of the narrow end surface of the third tapered transmission line 111 is 1.2 μm, described
The length L4 of third tapered transmission line 111 is 5.1 μm;The width W9 of second straight wave guide 112 is 1.95 μm, the second straight wave
The length L5 for leading 112 is 3.6 μm;The width W10 of the wide end surface of 4th tapered transmission line 113 can be 1.95 μm, described the
The width W11 of the narrow end surface of four tapered transmission lines 113 can be 0.5 μm, and the length L6 of the 4th tapered transmission line 113 can be
7.6μm;The width W12 of the input waveguide 114 can be 0.5 μm.In third example, the width of the input waveguide 101
W1 is 0.5 μm;The width W3 of the wide end surface of first tapered transmission line 102 be 2.05 μm, first tapered transmission line 102 it is narrow
The width W2 of end face is 0.5 μm, and the length L1 of first tapered transmission line 102 is 7.6 μm;The width of first straight wave guide 103
Spending W4 can be 2.05 μm, and the length L2 of first straight wave guide 103 can be 3.6 μm;Second tapered transmission line 104
The width W5 of wide end surface can be 2.05 μm, and the width W6 of the narrow end surface of second tapered transmission line 104 can be 1.2 μm, institute
The length L3 for stating the second tapered transmission line 104 can be 5.1 μm;The width W8 of the wide end surface of the third tapered transmission line 111 is
2.05 μm, the width W7.9 of the narrow end surface of the third tapered transmission line 111 is 1.2 μm, the length of the third tapered transmission line 111
L4 is 5.1 μm;The width W9 of second straight wave guide 112 is 2.05 μm, and the length L5 of second straight wave guide 112 is 3.6 μm;
The width W10 of the wide end surface of 4th tapered transmission line 113 can be 2.05 μm, the narrow end surface of the 4th tapered transmission line 113
Width W11 can be 0.5 μm, the length L6 of the 4th tapered transmission line 113 can be 7.6 μm;The input waveguide 114
Width W12 can be 0.5 μm.In the fourth example, the width W1 of the input waveguide 101 is 0.5 μm;First conical wave
The width W3 for leading 102 wide end surface is 2.15 μm, and the width W2 of the narrow end surface of first tapered transmission line 102 is 0.5 μm, described
The length L1 of first tapered transmission line 102 is 8.1 μm;The width W4 of first straight wave guide 103 can be 2.15 μm, described
The length L2 of one straight wave guide 103 can be 5 μm;The width W5 of the wide end surface of second tapered transmission line 104 can be 2.15 μm,
The width W6 of the narrow end surface of second tapered transmission line 104 can be 1.2 μm, and the length L3 of second tapered transmission line 104 can
Think 6.3 μm;The width W8 of the wide end surface of the third tapered transmission line 111 be 2.15 μm, the third tapered transmission line 111 it is narrow
The width W8.1 of end face is 1.2 μm, and the length L4 of the third tapered transmission line 111 is 6.3 μm;Second straight wave guide 112
Width W9 is 2.15 μm, and the length L5 of second straight wave guide 112 is 5 μm;The width of the wide end surface of 4th tapered transmission line 113
Spending W10 can be 2.15 μm, and the width W11 of the narrow end surface of the 4th tapered transmission line 113 can be 0.5 μm, the 4th cone
The length L6 of shape waveguide 113 can be 8.1 μm;The width W12 of the input waveguide 114 can be 0.5 μm.In the 5th example
In, the width W1 of the input waveguide 101 is 0.5 μm;The width W3 of the wide end surface of first tapered transmission line 102 is 2.2 μm,
The width W2 of the narrow end surface of first tapered transmission line 102 is 0.5 μm, and the length L1 of first tapered transmission line 102 is 8.5 μ
m;The width W4 of first straight wave guide 103 can be 2.2 μm, and the length L2 of first straight wave guide 103 can be 5 μm;Institute
The width W5 for stating the wide end surface of the second tapered transmission line 104 can be 2.2 μm, the width of the narrow end surface of second tapered transmission line 104
Spending W6 can be 1.2 μm, and the length L3 of second tapered transmission line 104 can be 6.3 μm;The third tapered transmission line 111
The width W8 of wide end surface is 2.2 μm, and the width W8.48 of the narrow end surface of the third tapered transmission line 111 is 1.2 μm, the third
The length L4 of tapered transmission line 111 is 6.3 μm;The width W9 of second straight wave guide 112 is 2.2 μm, second straight wave guide 112
Length L5 be 5 μm;The width W10 of the wide end surface of 4th tapered transmission line 113 can be 2.2 μm, the 4th conical wave
The width W11 for leading 113 narrow end surface can be 0.5 μm, and the length L6 of the 4th tapered transmission line 113 can be 8.1 μm;It is described
The width W12 of input waveguide 114 can be 0.5 μm.
As an example, the thickness of the thickness of the first mode converter 10, the second mode converter 11 and described
The thickness of linking arm 12 can be set according to actual needs, it is preferable that the thickness of the first mode converter 10, described
The thickness of the thickness of second mode converter 11 and the linking arm 12 can be 215nm~225nm;It is further preferable that this
In embodiment, the thickness and the linking arm 12 of the thickness of the first mode converter 10, the second mode converter 11
With a thickness of 220nm.
As an example, the width of the linking arm 12 can be set according to actual needs, it is preferable that the linking arm
12 width is 646nm;Fig. 6 is shown as linking arm in temperature-insensitive Mach-Zehnder interferometers provided by the utility model
Curve of the effective refractive index of width and different mode incident light relative to the change rate of temperature, selects the incident light of both of which
Change rate (d of the effective refractive index having the same relative to temperatureneff/ dT) when the corresponding linking arm 12 width
The width of the corresponding linking arm 12 please refers to Fig. 7 and Fig. 8 when for temperature-insensitive may be implemented, by Fig. 7 and Fig. 8 it is found that
The temperature-insensitive Mach-Zehnder interferometers of the utility model have roughly the same performance, i.e. this reality at different temperature
It is affected by temperature less with the performance of novel temperature-insensitive Mach-Zehnder interferometers, that is, Fig. 7 and Fig. 8 are further proved
The temperature-insensitive Mach-Zehnder interferometers of the utility model are to temperature-insensitive.
Fig. 9 to Figure 12 is please referred to, by Fig. 9 to Figure 12 it is found that the temperature-insensitive Mach Zehnder interferometry of the utility model
That no matter instrument inputs is TE0The incident light or TE of mode1The incident light of mode, can be obtained TE0Mode and TE1Mode is mixed
Syntype emergent light.By Fig. 9 to Figure 12 it is found that in the temperature-insensitive Mach-Zehnder interferometers of the utility model described
The width of one straight wave guide 103 and second straight wave guide 112 will not be to temperature-insensitive horse when changing in the range of ± 50nm
The performance of conspicuous Zeng Deer interferometer generates apparent influence.
In conclusion the utility model provides a kind of temperature-insensitive Mach-Zehnder interferometers, the temperature-insensitive
Mach-Zehnder interferometers include: first mode converter;Second mode converter, positioned at the one of the first mode converter
Side, and there is spacing with the first mode converter;Linking arm is located at the first mode converter and the second mode
Between converter, described linking arm one end is connected with the first mode converter, and the other end and the second mode are converted
Device is connected;The linking arm includes straight wave guide linking arm.In the temperature-insensitive Mach-Zehnder interferometers of the utility model
Device architecture be based on SOI substrate and be prepared, due to the thermo-optical coeffecient of the silicon in SOI substrate it is very big (can reach 1.86 ×
10-4RIU/K, wherein RIU is refractive index unit), sizable wavelength drift (about 80pm/ varied with temperature can be caused
K), on this basis, may be implemented by parameters such as the width of the setting linking arm and thickness to temperature-insensitive;Meanwhile
The temperature-insensitive Mach-Zehnder interferometers of the utility model may be implemented it is compatible with CMOS technology, be convenient for mass production;
The temperature-insensitive Mach-Zehnder interferometers of the utility model no matter input terminal input TE0 mode incident light or TE1 mould
The input light of formula, output end can export the emergent light of TE0 mode and TE1 mode;The temperature-insensitive of the utility model
Two mode converters are connected by a linking arm in Mach-Zehnder interferometers, and structure is simple, have lesser loss;
The width of straight wave guide can be in asymmetric tapered transmission line in the temperature-insensitive Mach-Zehnder interferometers of the utility model
Larger range (± 50nm) adjustment is impacted without the performance to device, can realize high quality in silicon photon technique platform
Large-scale production.
The above embodiments are only illustrative of the principle and efficacy of the utility model, and not for limitation, this is practical new
Type.Any person skilled in the art can all carry out above-described embodiment under the spirit and scope without prejudice to the utility model
Modifications and changes.Therefore, such as those of ordinary skill in the art without departing from the revealed essence of the utility model
All equivalent modifications or change completed under mind and technical idea, should be covered by the claim of the utility model.
Claims (10)
1. a kind of temperature-insensitive Mach-Zehnder interferometers, which is characterized in that the temperature-insensitive Mach Zehnder interferometry
Instrument includes:
First mode converter;
Second mode converter, positioned at the side of the first mode converter, and between having with the first mode converter
Away from;
Linking arm, between the first mode converter and the second mode converter, described linking arm one end and institute
It states first mode converter to be connected, the other end is connected with the second mode converter;The linking arm includes straight wave guide
Linking arm.
2. temperature-insensitive Mach-Zehnder interferometers according to claim 1, which is characterized in that
The first mode converter includes: that input waveguide, the first asymmetric tapered transmission line, the first straight wave guide and second are asymmetric
Tapered transmission line;Wherein, the input waveguide, the first asymmetric tapered transmission line, the straight wave guide and described second asymmetric
Tapered transmission line, which is sequentially connected, to be connect;The second asymmetric tapered transmission line is connected with the linking arm;
The second mode converter include the asymmetric tapered transmission line of third, the second straight wave guide, the 4th asymmetric tapered transmission line and
Output waveguide;Wherein, the asymmetric tapered transmission line of the third, second straight wave guide, the 4th asymmetric tapered transmission line and
The output waveguide, which is sequentially connected, to be connect;The asymmetric tapered transmission line of third is connected with the linking arm.
3. temperature-insensitive Mach-Zehnder interferometers according to claim 2, which is characterized in that
One end of the first asymmetric tapered transmission line is narrow end surface, and the other end is wide end surface, the first asymmetric conical wave
The narrow end surface led is connected with the input waveguide, the wide end surface and first straight wave guide of the first asymmetric tapered transmission line
It is connected;
One end of the second asymmetric tapered transmission line is narrow end surface, and the other end is wide end surface, the second asymmetric conical wave
The wide end surface led is connected with first straight wave guide, narrow end surface and the linking arm phase of the second asymmetric tapered transmission line
Connection;
One end of the asymmetric tapered transmission line of third is narrow end surface, and the other end is wide end surface, the asymmetric conical wave of third
The narrow end surface led is connected with the linking arm, wide end surface and the second straight wave guide phase of the asymmetric tapered transmission line of third
Connection;
One end of the 4th asymmetric tapered transmission line is narrow end surface, and the other end is wide end surface, the 4th asymmetric conical wave
The wide end surface led is connected with second straight wave guide, the narrow end surface of the 4th asymmetric tapered transmission line and the output waveguide
It is connected.
4. temperature-insensitive Mach-Zehnder interferometers according to claim 3, which is characterized in that described first is asymmetric
The width of the width of the wide end surface of tapered transmission line and the wide end surface of the second asymmetric tapered transmission line with the described first straight wave
That leads is of same size, the width of the wide end surface of the asymmetric tapered transmission line of third and the 4th asymmetric tapered transmission line wide end
The width in face is of same size with second straight wave guide.
5. temperature-insensitive Mach-Zehnder interferometers according to claim 3, which is characterized in that the input waveguide
Width is 0.45 μm~0.55 μm;The width of the wide end surface of the first asymmetric tapered transmission line is 2.1 μm~2.2 μm, described
The width of the narrow end surface of first asymmetric tapered transmission line is 0.45 μm~0.55 μm, the length of the first asymmetric tapered transmission line
It is 8.05 μm~8.15 μm;The width of first straight wave guide is 2.1 μm~2.2 μm, and the length of first straight wave guide is
4.95 μm~5.05 μm;The width of the wide end surface of the second asymmetric tapered transmission line is 2.1 μm~2.2 μm, and described second is non-
The width of the narrow end surface of symmetric pyramid waveguide is 1.15 μm~1.25 μm, and the length of the second asymmetric tapered transmission line is 6.25
μm~6.35 μm;The width of the wide end surface of the asymmetric tapered transmission line of third is 2.1 μm~2.2 μm, and the third is asymmetric
The width of the narrow end surface of tapered transmission line is 1.15 μm~1.25 μm, the length of the asymmetric tapered transmission line of third is 6.25 μm~
6.35μm;The width of second straight wave guide is 2.1 μm~2.2 μm, and the length of second straight wave guide is 4.95 μm~5.05 μ
m;The width of the wide end surface of the 4th asymmetric tapered transmission line is 2.1 μm~2.2 μm, the 4th asymmetric tapered transmission line
The width of narrow end surface is 0.45 μm~0.55 μm, 8.05 μm~8.15 μm of the length of the 4th asymmetric tapered transmission line.
6. temperature-insensitive Mach-Zehnder interferometers according to claim 1, which is characterized in that the first mode turns
The thickness of the thickness of parallel operation, the thickness of the second mode converter and the linking arm is 215nm~225nm.
7. temperature-insensitive Mach-Zehnder interferometers according to claim 1, which is characterized in that the temperature-insensitive
It further includes the first reversed taper coupler and the second reversed taper coupler that Mach, which increases Dare interferometer,;Wherein, described first is anti-
It include two input terminals and an output end, the output end of the first reversed taper coupler and described the to taper coupler
One mode converter is connected far from one end of the linking arm;The second reversed taper coupler include an input terminal and
Two output ends, the input terminal and the second mode converter of the second reversed taper coupler are far from the linking arm
One end is connected.
8. temperature-insensitive Mach-Zehnder interferometers according to claim 1, which is characterized in that the temperature-insensitive
Mach-Zehnder interferometers further include substrate, and the substrate includes bottom silicon layer and buried oxide layer in SOI substrate, first mould
Formula converter, the linking arm and the second mode converter are by etching the top silicon layer shape in the SOI substrate
At.
9. temperature-insensitive Mach-Zehnder interferometers according to claim 8, which is characterized in that the temperature-insensitive
Mach-Zehnder interferometers further include protective layer, and the protective layer is located at the upper surface of the buried oxide layer, and are completely covered described
First mode converter, the linking arm and the second mode converter.
10. temperature-insensitive Mach-Zehnder interferometers according to any one of claim 1 to 9, which is characterized in that institute
The width for stating linking arm is 646nm.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201822059191.5U CN209433059U (en) | 2018-12-10 | 2018-12-10 | Temperature-insensitive Mach-Zehnder interferometers |
PCT/CN2019/070284 WO2020118807A1 (en) | 2018-12-10 | 2019-01-03 | Temperature-insensitive mach-zehnder interferometer |
US17/312,393 US11796738B2 (en) | 2018-12-10 | 2019-01-03 | Temperature-insensitive Mach-Zehnder interferometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201822059191.5U CN209433059U (en) | 2018-12-10 | 2018-12-10 | Temperature-insensitive Mach-Zehnder interferometers |
Publications (1)
Publication Number | Publication Date |
---|---|
CN209433059U true CN209433059U (en) | 2019-09-24 |
Family
ID=67971233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201822059191.5U Active CN209433059U (en) | 2018-12-10 | 2018-12-10 | Temperature-insensitive Mach-Zehnder interferometers |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN209433059U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109283616A (en) * | 2018-12-10 | 2019-01-29 | 中国科学院上海微系统与信息技术研究所 | Temperature-insensitive Mach-Zehnder interferometers |
-
2018
- 2018-12-10 CN CN201822059191.5U patent/CN209433059U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109283616A (en) * | 2018-12-10 | 2019-01-29 | 中国科学院上海微系统与信息技术研究所 | Temperature-insensitive Mach-Zehnder interferometers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102540505B (en) | SOI (silicon on insulator) based electrooptical modulator based on symmetrical and vertical grating coupling | |
CN111175999B (en) | High-speed low-voltage electro-optical modulator based on lithium niobate-silicon wafer | |
CN105204113B (en) | A kind of adjustable polarization rotary device of silicon substrate | |
CN204302526U (en) | Polarization beam splitting circulator | |
CN209606662U (en) | 2 × 2 integrated optical switch led based on silicon planar lightwave | |
CN101620296A (en) | High confinement waveguide on an electro-optic substrate | |
JP2009053499A (en) | Optical modulator and optical modulation module | |
CN111367014B (en) | On-chip edge coupler with spot-size conversion function for optical interconnection | |
CN107533197A (en) | A kind of polarization rotator and optical signal processing method | |
CN101276068A (en) | Mach-zehnder type silicon optical waveguide switch based on narrow slit wave guide | |
US9588395B2 (en) | Optical waveguide modulator with an output MMI tap | |
US20090074346A1 (en) | Hybrid Electro-Optic Polymer/Sol-Gel Modulator | |
US11520175B2 (en) | Active region-less modulator and method | |
CN109283616A (en) | Temperature-insensitive Mach-Zehnder interferometers | |
CN209433059U (en) | Temperature-insensitive Mach-Zehnder interferometers | |
CN204188832U (en) | Polarization beam apparatus | |
CN115857201A (en) | Polarization-independent electro-optic modulator based on thin-film lithium niobate dense double waveguides | |
CN105785507A (en) | Polarization beam-splitting rotator | |
CN105652371B (en) | Polarization beam apparatus | |
CN115755275B (en) | Miniaturized slit waveguide mode conversion device based on sub-wavelength structure | |
CN102636841B (en) | Micro-ring assistant ring mirror structure | |
TWI670537B (en) | Optical waveguide structure | |
WO2022126813A1 (en) | Silicon-based mach-zehnder interferometer based on y-branch symmetric structure | |
WO2020118807A1 (en) | Temperature-insensitive mach-zehnder interferometer | |
CN114488580A (en) | High-speed electro-optical modulator based on silicon nitride/organic polymer mixed waveguide structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |