CN209433059U - Temperature insensitive Mach-Zehnder interferometer - Google Patents
Temperature insensitive Mach-Zehnder interferometer Download PDFInfo
- Publication number
- CN209433059U CN209433059U CN201822059191.5U CN201822059191U CN209433059U CN 209433059 U CN209433059 U CN 209433059U CN 201822059191 U CN201822059191 U CN 201822059191U CN 209433059 U CN209433059 U CN 209433059U
- Authority
- CN
- China
- Prior art keywords
- transmission line
- width
- end surface
- asymmetric
- tapered transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010410 layer Substances 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 15
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052710 silicon Inorganic materials 0.000 claims description 12
- 239000010703 silicon Substances 0.000 claims description 12
- 239000011241 protective layer Substances 0.000 claims description 7
- 238000005530 etching Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 33
- 238000005305 interferometry Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
本实用新型提供一种温度不敏感马赫曾德尔干涉仪,包括:第一模式转换器;第二模式转换器,位于第一模式转换器的一侧,且与第一模式转换器具有间距;连接臂,位于第一模式转换器与第二模式转换器之间,一端与第一模式转换器相连接,另一端与第二模式转换器相连接;连接臂包括直波导连接臂。本实用新型的温度不敏感马赫曾德尔干涉仪通过设置所述连接臂的宽度及厚度等参数可以实现对温度不敏感。
The utility model provides a temperature-insensitive Mach-Zehnder interferometer, comprising: a first mode converter; a second mode converter, which is located on one side of the first mode converter and has a distance from the first mode converter; The arm is located between the first mode converter and the second mode converter, one end is connected to the first mode converter, and the other end is connected to the second mode converter; the connecting arm includes a straight waveguide connecting arm. The temperature insensitive Mach-Zehnder interferometer of the utility model can be insensitive to temperature by setting parameters such as the width and thickness of the connecting arm.
Description
技术领域technical field
本实用新型属于光学技术领域,特别是涉及一种温度不敏感马赫曾德尔干涉仪。The utility model belongs to the field of optical technology, in particular to a temperature-insensitive Mach-Zehnder interferometer.
背景技术Background technique
马赫曾德尔干涉仪(Mach~Zehnder Modulator,MZI)被广泛应用于光信号调制等技术领域。然后,现有的马赫曾德尔干涉仪基本均采用双连接臂结构,现有的马赫曾德尔干涉仪普遍存在对温度较为敏感,受温度影响较大,结构复杂,尺寸大等问题A Mach-Zehnder Modulator (MZI) is widely used in technical fields such as optical signal modulation. Then, the existing Mach-Zehnder interferometers basically adopt a double-connected arm structure, and the existing Mach-Zehnder interferometers are generally sensitive to temperature, greatly affected by temperature, complex in structure, and large in size.
实用新型内容Utility model content
鉴于以上所述现有技术的缺点,本实用新型的目的在于提供一种温度不敏感马赫曾德尔干涉仪,用于解决现有技术中的马赫曾德尔干涉仪存在的对温度较为敏感,受温度影响较大,结构复杂,尺寸大等问题。In view of the shortcomings of the prior art described above, the purpose of this utility model is to provide a temperature-insensitive Mach-Zehnder interferometer, which is used to solve the problem that the Mach-Zehnder interferometer in the prior art is relatively sensitive to temperature and is affected by temperature. Large impact, complex structure, large size and other issues.
为实现上述目的及其他相关目的,本实用新型提供一种温度不敏感马赫曾德尔干涉仪,所述温度不敏感马赫曾德尔干涉仪包括:In order to achieve the above purpose and other related purposes, the utility model provides a temperature-insensitive Mach-Zehnder interferometer, the temperature-insensitive Mach-Zehnder interferometer comprising:
第一模式转换器;a first mode converter;
第二模式转换器,位于所述第一模式转换器的一侧,且与所述第一模式转换器具有间距;a second mode converter located on one side of the first mode converter and spaced from the first mode converter;
连接臂,位于所述第一模式转换器与所述第二模式转换器之间,所述连接臂一端与所述第一模式转换器相连接,另一端与所述第二模式转换器相连接;所述连接臂包括直波导连接臂。A connecting arm, located between the first mode converter and the second mode converter, one end of the connecting arm is connected to the first mode converter, and the other end is connected to the second mode converter ; The connecting arm includes a straight waveguide connecting arm.
作为本实用新型的一种优选方案,所述第一模式转换器包括:输入波导、第一非对称锥形波导、第一直波导及第二非对称锥形波导;其中,所述输入波导、所述第一非对称锥形波导、所述直波导及所述第二非对称锥形波导依次相连接;所述第二非对称锥形波导与所述连接臂相连接;As a preferred solution of the present invention, the first mode converter includes: an input waveguide, a first asymmetric tapered waveguide, a first straight waveguide, and a second asymmetric tapered waveguide; wherein, the input waveguide, The first asymmetric tapered waveguide, the straight waveguide and the second asymmetric tapered waveguide are connected in sequence; the second asymmetric tapered waveguide is connected to the connecting arm;
所述第二模式转换器包括第三非对称锥形波导、第二直波导、第四非对称锥形波导及输出波导;其中,所述第三非对称锥形波导、所述第二直波导、所述第四非对称锥形波导及所述输出波导依次相连接;所述第三非对称锥形波导与所述连接臂相连接。The second mode converter includes a third asymmetric tapered waveguide, a second straight waveguide, a fourth asymmetric tapered waveguide, and an output waveguide; wherein, the third asymmetric tapered waveguide, the second straight waveguide 1. The fourth asymmetric tapered waveguide is connected to the output waveguide in sequence; the third asymmetric tapered waveguide is connected to the connecting arm.
作为本实用新型的一种优选方案,所述第一非对称锥形波导的一端为窄端面,另一端为宽端面,所述第一非对称锥形波导的窄端面与所述输入波导相连接,所述第一非对称锥形波导的宽端面与所述第一直波导相连接;As a preferred solution of the present invention, one end of the first asymmetric tapered waveguide is a narrow end face, and the other end is a wide end face, and the narrow end face of the first asymmetric tapered waveguide is connected to the input waveguide , the wide end face of the first asymmetric tapered waveguide is connected to the first straight waveguide;
所述第二非对称锥形波导的一端为窄端面,另一端为宽端面,所述第二非对称锥形波导的宽端面与所述第一直波导相连接,所述第二非对称锥形波导的窄端面与所述连接臂相连接;One end of the second asymmetric tapered waveguide is a narrow end face, and the other end is a wide end face, the wide end face of the second asymmetric tapered waveguide is connected to the first straight waveguide, and the second asymmetric tapered waveguide The narrow end face of the shaped waveguide is connected to the connecting arm;
所述第三非对称锥形波导的一端为窄端面,另一端为宽端面,所述第三非对称锥形波导的窄端面与所述连接臂相连接,所述第三非对称锥形波导的宽端面与所述第二直波导相连接;One end of the third asymmetric tapered waveguide is a narrow end face, and the other end is a wide end face, the narrow end face of the third asymmetric tapered waveguide is connected to the connecting arm, and the third asymmetric tapered waveguide The wide end face of is connected to the second straight waveguide;
所述第四非对称锥形波导的一端为窄端面,另一端为宽端面,所述第四非对称锥形波导的宽端面与所述第二直波导相连接,所述第四非对称锥形波导的窄端面与所述输出波导相连接。One end of the fourth asymmetric tapered waveguide is a narrow end face, and the other end is a wide end face, the wide end face of the fourth asymmetric tapered waveguide is connected to the second straight waveguide, and the fourth asymmetric tapered waveguide The narrow end face of the shaped waveguide is connected to the output waveguide.
作为本实用新型的一种优选方案,所述第一非对称锥形波导的宽端面的宽度及所述第二非对称锥形波导的宽端面的宽度均与所述第一直波导的宽度相同,所述第三非对称锥形波导的宽端面的宽度及所述第四非对称锥形波导宽端面的宽度均与所述第二直波导的宽度相同。As a preferred solution of the present invention, the width of the wide end face of the first asymmetric tapered waveguide and the width of the wide end face of the second asymmetric tapered waveguide are the same as the width of the first straight waveguide , the width of the wide end surface of the third asymmetric tapered waveguide and the width of the wide end surface of the fourth asymmetric tapered waveguide are the same as the width of the second straight waveguide.
作为本实用新型的一种优选方案,所述输入波导的宽度为0.45μm~0.55μm;所述第一锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第一锥形波导的窄端面的宽度为0.45μm~0.55μm,所述第一锥形波导的长度为8.05μm~8.15μm;所述第一直波导的宽度为2.1μm~2.2μm,所述第一直波导的长度为4.95μm~5.05μm;所述第二锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第二锥形波导的窄端面的宽度为1.15μm~1.25μm,所述第二锥形波导的长度为6.25μm~6.35μm;所述第三锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第三锥形波导的窄端面的宽度为1.15μm~1.25μm,所述第三锥形波导的长度为6.25μm~6.35μm;所述第二直波导的宽度为2.1μm~2.2μm,所述第二直波导的长度为4.95μm~5.05μm;所述第四锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第四锥形波导的窄端面的宽度为0.45μm~0.55μm,所述第四锥形波导的长度8.05μm~8.15μm;所述输入波导的宽度为0.45μm~0.55μm。As a preferred solution of the present invention, the width of the input waveguide is 0.45 μm to 0.55 μm; the width of the wide end face of the first tapered waveguide is 2.1 μm to 2.2 μm, and the width of the first tapered waveguide The width of the narrow end face is 0.45 μm-0.55 μm, the length of the first tapered waveguide is 8.05 μm-8.15 μm; the width of the first straight waveguide is 2.1 μm-2.2 μm, the length of the first straight waveguide is 4.95 μm to 5.05 μm; the width of the wide end surface of the second tapered waveguide is 2.1 μm to 2.2 μm, the width of the narrow end surface of the second tapered waveguide is 1.15 μm to 1.25 μm, and the width of the second tapered waveguide The length of the tapered waveguide is 6.25 μm to 6.35 μm; the width of the wide end surface of the third tapered waveguide is 2.1 μm to 2.2 μm, and the width of the narrow end surface of the third tapered waveguide is 1.15 μm to 1.25 μm. The length of the third tapered waveguide is 6.25 μm to 6.35 μm; the width of the second straight waveguide is 2.1 μm to 2.2 μm, and the length of the second straight waveguide is 4.95 μm to 5.05 μm; the fourth tapered waveguide The width of the wide end surface of the tapered waveguide is 2.1 μm to 2.2 μm, the width of the narrow end surface of the fourth tapered waveguide is 0.45 μm to 0.55 μm, and the length of the fourth tapered waveguide is 8.05 μm to 8.15 μm; The width of the input waveguide is 0.45 μm to 0.55 μm.
作为本实用新型的一种优选方案,所述第一模式转换器的厚度、所述第二模式转换器的厚度及所述连接臂的厚度均为215nm~225nm。As a preferred solution of the present invention, the thickness of the first mode converter, the thickness of the second mode converter and the thickness of the connecting arm are all 215nm-225nm.
作为本实用新型的一种优选方案,所述温度不敏感马赫增德尔干涉仪还包括第一反向锥形耦合器及第二反向锥形耦合器;其中,所述第一反向锥形耦合器包括两个输入端及一个输出端,所述第一反向锥形耦合器的输出端与所述第一模式转换器远离所述连接臂的一端相连接;所述第二反向锥形耦合器包括一个输入端及两个输出端,所述第二反向锥形耦合器的输入端与所述第二模式转换器远离所述连接臂的一端相连接。As a preferred solution of the present invention, the temperature-insensitive Mach-Zehnder interferometer also includes a first reverse cone coupler and a second reverse cone coupler; wherein, the first reverse cone coupler The coupler includes two input ends and an output end, and the output end of the first reverse taper coupler is connected to the end of the first mode converter away from the connecting arm; the second reverse taper The taper coupler includes an input end and two output ends, and the input end of the second reverse taper coupler is connected to an end of the second mode converter away from the connecting arm.
作为本实用新型的一种优选方案,所述温度不敏感马赫曾德尔干涉仪还包括基底,所述基底包括SOI衬底中的底层硅层及埋氧层,所述第一模式转换器、所述连接臂及所述第二模式转换器均通过刻蚀所述SOI衬底中的顶层硅层而形成。As a preferred solution of the present invention, the temperature-insensitive Mach-Zehnder interferometer further includes a base, the base includes the underlying silicon layer and the buried oxide layer in the SOI substrate, the first mode converter, the Both the connecting arm and the second mode converter are formed by etching the top silicon layer in the SOI substrate.
作为本实用新型的一种优选方案,所述温度不敏感马赫曾德尔干涉仪还包括保护层,所述保护层位于所述埋氧层的上表面,且完全覆盖所述第一模式转换器、所述连接臂及所述第二模式转换器。As a preferred solution of the present invention, the temperature-insensitive Mach-Zehnder interferometer further includes a protective layer, the protective layer is located on the upper surface of the buried oxide layer, and completely covers the first mode converter, The connecting arm and the second mode converter.
作为本实用新型的一种优选方案,所述连接臂的宽度为646nm。As a preferred solution of the present invention, the width of the connecting arm is 646nm.
如上所述,本实用新型的温度不敏感马赫曾德尔干涉仪,具有以下有益效果:As mentioned above, the temperature-insensitive Mach-Zehnder interferometer of the present invention has the following beneficial effects:
本实用新型的温度不敏感马赫曾德尔干涉仪中的器件结构基于SOI衬底制备而得到,由于SOI衬底中的硅的热光系数很大(可达到1.86×10~4RIU/K,其中,RIU为折射率单位),可以引起相当大的随温度变化的波长飘移(约80pm/K),在此基础上,通过设置所述连接臂的宽度及厚度等参数可以实现对温度不敏感;同时,本实用新型的温度不敏感马赫曾德尔干涉仪可以实现与CMOS工艺兼容,便于批量化生产;The device structure in the temperature-insensitive Mach-Zehnder interferometer of the present invention is obtained based on SOI substrate preparation, because the thermo-optic coefficient of silicon in the SOI substrate is very large (up to 1.86×10-4 RIU/K, where , RIU is the refractive index unit), which can cause considerable wavelength drift (about 80pm/K) with temperature. On this basis, the temperature insensitivity can be realized by setting parameters such as the width and thickness of the connecting arm; At the same time, the temperature-insensitive Mach-Zehnder interferometer of the utility model can be compatible with the CMOS process and is convenient for batch production;
本实用新型的温度不敏感马赫曾德尔干涉仪无论输入端输入TE0模式的入射光还是TE1模式的输入光,其输出端均可以输出TE0模式和TE1模式的出射光;The temperature insensitive Mach-Zehnder interferometer of the utility model can output the outgoing light of TE 0 mode and TE 1 mode at the output end no matter the incident light of TE 0 mode or the input light of TE 1 mode is input at the input end;
本实用新型的温度不敏感马赫曾德尔干涉仪中两个模式转换器通过一个连接臂相连接,结构简单,具有较小的损耗;In the temperature-insensitive Mach-Zehnder interferometer of the utility model, two mode converters are connected through a connecting arm, the structure is simple, and the loss is small;
本实用新型的温度不敏感马赫曾德尔干涉仪中的非对称锥形波导中的直波导宽度可以在较大范围(±50nm)调整而不会对器件的性能造成影响,可以在硅光子工艺平台实现高质量大规模生产。The width of the straight waveguide in the asymmetric tapered waveguide in the temperature-insensitive Mach-Zehnder interferometer of the utility model can be adjusted in a large range (±50nm) without affecting the performance of the device, and can be used on the silicon photonics process platform Achieve high-quality mass production.
附图说明Description of drawings
图1至图3显示为本实用新型提供的温度不敏感马赫曾德尔干涉仪的结构示意图;其中,图1及图3显示为两不同示例的温度不敏感马赫曾德尔干涉仪的俯视结构示意图,图2显示为一示例的温度不敏感马赫曾德尔干涉仪的立体结构示意图。Fig. 1 to Fig. 3 show the structural representation of the temperature-insensitive Mach-Zehnder interferometer provided by the utility model; Wherein, Fig. 1 and Fig. 3 show the top view structure schematic diagram of the temperature-insensitive Mach-Zehnder interferometer of two different examples, FIG. 2 shows a schematic diagram of a three-dimensional structure of an example temperature-insensitive Mach-Zehnder interferometer.
图4显示为本实用新型提供的温度不敏感马赫曾德尔干涉仪中的第一模式转换器的俯视结构示意图。Fig. 4 shows a top view structural diagram of the first mode converter in the temperature-insensitive Mach-Zehnder interferometer provided by the present invention.
图5显示为本实用新型提供的温度不敏感马赫曾德尔干涉仪中的第二模式转换器的俯视结构示意图。Fig. 5 shows a schematic top view of the second mode converter in the temperature-insensitive Mach-Zehnder interferometer provided by the present invention.
图6显示为本实用新型提供的温度不敏感马赫曾德尔干涉仪中连接臂的宽度与不同模式入射光的有效折射率相对于温度的变化率的曲线;其中,曲线①为入射光为TE0模式的入射光,曲线②为入射光为TE1模式的入射光。Fig. 6 shows the curves of the width of the connecting arm and the effective refractive index of different modes of incident light relative to the rate of change of temperature in the temperature-insensitive Mach-Zehnder interferometer provided by the utility model; wherein, curve ① is incident light TE 0 Mode of incident light, curve ② is incident light of TE 1 mode.
图7及图8显示为本实用新型提供的温度不敏感马赫曾德尔干涉仪在26.85℃及56.85℃两不同温度条件下入射光波长与输入损耗的曲线图;其中,图7以连接臂的长度560μm,入射光为TE0模式,输出光以TE0模式作为示例;图8中以连接臂的长度1100μm,入射光为TE0模式,输出光以TE0模式作为示例。Fig. 7 and Fig. 8 show the curve diagram of incident light wavelength and input loss under two different temperature conditions of 26.85 ℃ and 56.85 ℃ for the temperature-insensitive Mach-Zehnder interferometer provided by the utility model; wherein, Fig. 7 is based on the length of the connecting arm 560 μm, the incident light is TE 0 mode, and the output light is TE 0 mode as an example; in Figure 8, the length of the connecting arm is 1100 μm, the incident light is TE 0 mode, and the output light is TE 0 mode as an example.
图9至图12显示为本实用新型提供的温度不敏感马赫曾德尔干涉仪中不同宽度的连接臂时连接臂长度与输入损耗的曲线图;其中,图9及图10中输入光为TE0模式,输出光为TE0模式和TE1模式;图11及图12中输入光为TE1模式,输出光为TE0模式和TE1模式;图9至图12中,曲线①为第一直波导或第二直波导的宽度为2150nm时的曲线,曲线②为第一直波导或第二直波导的宽度为(2150-50)nm时的曲线,曲线③为第一直波导或第二直波导的宽度为(2150+50)nm时的曲线。Fig. 9 to Fig. 12 show the graph of connecting arm length and input loss when connecting arm of different widths in the temperature insensitive Mach-Zehnder interferometer provided by the utility model; Wherein, input light is TE in Fig. 9 and Fig. 10 0 mode, the output light is TE 0 mode and TE 1 mode; in Figure 11 and Figure 12, the input light is TE 1 mode, and the output light is TE 0 mode and TE 1 mode; in Figure 9 to Figure 12, curve ① is the first straight The curve when the width of the waveguide or the second straight waveguide is 2150nm, the curve ② is the curve when the width of the first straight waveguide or the second straight waveguide is (2150-50)nm, the curve ③ is the first straight waveguide or the second straight waveguide The curve when the width of the waveguide is (2150+50)nm.
元件标号说明Component designation description
10 第一模式转换器10 first mode converter
101 输入波导101 Input waveguide
102 第一非对称锥形波导102 The first asymmetric tapered waveguide
103 第一直波导103 The first straight waveguide
104 第二非对称锥形波导104 The second asymmetric tapered waveguide
11 第二模式转换器11 Second Mode Converter
111 第三非对称锥形波导111 The third asymmetric tapered waveguide
112 第二直波导112 Second straight waveguide
113 第四非对称锥形波导113 The fourth asymmetric tapered waveguide
114 输出波导114 output waveguide
12 连接臂12 connecting arm
13 第一反向锥形耦合器13 First reverse tapered coupler
14 第二反型锥形耦合器14 Second reverse tapered coupler
15 基底15 bases
151 底层硅层151 Bottom silicon layer
152 埋氧层152 buried oxide layer
16 保护层16 protective layer
具体实施方式Detailed ways
以下由特定的具体实施例说明本实用新型的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本实用新型的其他优点及功效。The implementation of the present utility model is illustrated by specific specific examples below, and those skilled in the art can easily understand other advantages and effects of the present utility model from the content disclosed in this specification.
请参阅图1至图11。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本实用新型可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本实用新型所能产生的功效及所能达成的目的下,均应仍落在本实用新型所揭示的技术内容得能涵盖的范围内。同时,本说明书中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等的用语,亦仅为便于叙述的明了,而非用以限定本实用新型可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本实用新型可实施的范畴。See Figures 1 through 11. It should be noted that the structures, proportions, sizes, etc. shown in the drawings attached to this specification are only used to match the content disclosed in the specification, for those who are familiar with this technology to understand and read, and are not used to limit the implementation of the utility model Therefore, it has no technical substantive meaning. Any modification of structure, change of proportional relationship or adjustment of size shall still fall within the scope of The technical content disclosed by the utility model must be within the scope covered. At the same time, terms such as "upper", "lower", "left", "right", "middle" and "one" quoted in this specification are only for the convenience of description and are not used to limit this specification. The practicable range of the utility model, and the change or adjustment of its relative relationship, without any substantial change in the technical content, shall also be regarded as the practicable scope of the utility model.
请参阅图1,本实用新型提供一种温度不敏感马赫曾德尔干涉仪,所述温度不敏感马赫曾德尔干涉仪包括:第一模式转换器10;第二模式转换器11,所述第二模式转换器11位于所述第一模式转换器10的一侧,且与所述第一模式转换器10具有间距;连接臂12,所述连接臂12位于所述第一模式转换器10与所述第二模式转换器11之间,所述连接臂12一端与所述第一模式转换器10相连接,另一端与所述第二模式转换器11相连接;所述连接臂12包括直波导连接臂。Please refer to Fig. 1, the utility model provides a kind of temperature-insensitive Mach-Zehnder interferometer, and described temperature-insensitive Mach-Zehnder interferometer comprises: first mode converter 10; Second mode converter 11, described second The mode converter 11 is located on one side of the first mode converter 10 and has a distance from the first mode converter 10; the connecting arm 12 is located between the first mode converter 10 and the first mode converter 10. Between the second mode converter 11, one end of the connecting arm 12 is connected to the first mode converter 10, and the other end is connected to the second mode converter 11; the connecting arm 12 includes a straight waveguide connecting arm.
作为示例,如图2及图3所示,所述温度不敏感马赫增德尔干涉仪还包括第一反向锥形耦合器13及第二反向锥形耦合器14;其中,所述第一反向锥形耦合器13包括两个输入端(如图3中的Port1及Port2)及一个输出端,所述第一反向锥形耦合器13的输出端与所述第一模式转换器10远离所述连接臂12的一端相连接;所述第二反向锥形耦合器14包括一个输入端及两个输出端(如图3中的Port3及Port4),所述第二反向锥形耦合器14的输入端与所述第二模式转换器11远离所述连接臂12的一端相连接。As an example, as shown in Figure 2 and Figure 3, the temperature insensitive Mach-Zehnder interferometer also includes a first reverse cone coupler 13 and a second reverse cone coupler 14; wherein, the first Reverse conical coupler 13 comprises two input ends (Port1 and Port2 among Fig. 3) and an output end, the output end of described first reverse conical coupler 13 and described first mode converter 10 One end away from the connecting arm 12 is connected; the second reverse tapered coupler 14 includes an input port and two output ports (Port3 and Port4 as in Fig. 3), the second reverse tapered coupler An input end of the coupler 14 is connected to an end of the second mode converter 11 away from the connecting arm 12 .
作为示例,如图2所示,所述温度不敏感马赫曾德尔干涉仪还包括基底15,所述基底15包括SOI衬底中的底层硅层151及埋氧层152,所述第一模式转换器10、所述连接臂12及所述第二模式转换器11均通过刻蚀所述SOI衬底中的顶层硅层而形成。本实用新型的温度不敏感马赫曾德尔干涉仪中的所述第一模式转换器10、所述连接臂12及所述第二模式转换器11基于SOI衬底制备而得到,由于SOI衬底中的硅的热光系数很大(可达到1.86×10-4RIU/K,其中,RIU为折射率单位),可以引起相当大的随温度变化的波长飘移(约80pm/K),在此基础上,通过设置所述连接臂12的宽度及厚度等参数可以实现对温度不敏感;同时,本实用新型的温度不敏感马赫曾德尔干涉仪可以实现与CMOS工艺兼容,便于批量化生产。As an example, as shown in FIG. 2, the temperature-insensitive Mach-Zehnder interferometer further includes a substrate 15, the substrate 15 includes an underlying silicon layer 151 and a buried oxide layer 152 in an SOI substrate, and the first mode conversion The device 10, the connecting arm 12 and the second mode converter 11 are all formed by etching the top silicon layer in the SOI substrate. The first mode converter 10, the connecting arm 12 and the second mode converter 11 in the temperature-insensitive Mach-Zehnder interferometer of the present utility model are prepared based on SOI substrates. Silicon has a large thermo-optic coefficient (up to 1.86×10 -4 RIU/K, where RIU is the unit of refractive index), which can cause a considerable wavelength shift (about 80pm/K) with temperature. Based on this In addition, temperature insensitivity can be achieved by setting parameters such as the width and thickness of the connecting arm 12; at the same time, the temperature insensitivity Mach-Zehnder interferometer of the present invention can be compatible with the CMOS process and is convenient for mass production.
作为示例,如图2所示,所述温度不敏感马赫曾德尔干涉仪还包括保护层16,所述保护层16位于所述埋氧层152的上表面,且完全覆盖所述第一模式转换器10、所述连接臂12及所述第二模式转换器11,以实现对所述第一模式转换器10、所述连接臂12及所述第二模式转换器11的保护。所述保护层16可以包括但不仅限于氧化硅层。As an example, as shown in FIG. 2, the temperature-insensitive Mach-Zehnder interferometer further includes a protective layer 16, the protective layer 16 is located on the upper surface of the buried oxide layer 152, and completely covers the first mode conversion 10, the connecting arm 12 and the second mode converter 11, so as to protect the first mode converter 10, the connecting arm 12 and the second mode converter 11. The protection layer 16 may include but not limited to a silicon oxide layer.
作为示例,如图4所示,所述第一模式转换器10包括:输入波导101、第一非对称锥形波导102、第一直波导103及第二非对称锥形波导104;其中,所述输入波导101、所述第一非对称锥形波导102、所述直波导103及所述第二非对称锥形波导104依次相连接;所述第二非对称锥形波导104与所述第一直波导103相连接,具体的,所述第二非对称锥形波导104远离所述第一直波导103的一端与所述连接臂12相连接。As an example, as shown in FIG. 4 , the first mode converter 10 includes: an input waveguide 101, a first asymmetric tapered waveguide 102, a first straight waveguide 103 and a second asymmetric tapered waveguide 104; wherein, the The input waveguide 101, the first asymmetric tapered waveguide 102, the straight waveguide 103 and the second asymmetric tapered waveguide 104 are sequentially connected; the second asymmetric tapered waveguide 104 is connected to the first asymmetric waveguide The straight waveguide 103 is connected, specifically, the end of the second asymmetric tapered waveguide 104 away from the first straight waveguide 103 is connected with the connecting arm 12 .
作为示例,如图5所示,所述第二模式转换器11包括第三非对称锥形波导111、第二直波导112、第四非对称锥形波导113及输出波导114;其中,所述第三非对称锥形波导111、所述第二直波导112、所述第四非对称锥形波导113及所述输出波导114依次相连接;所述第三非对称锥形波导111与所述连接臂12相连接。As an example, as shown in FIG. 5, the second mode converter 11 includes a third asymmetric tapered waveguide 111, a second straight waveguide 112, a fourth asymmetric tapered waveguide 113, and an output waveguide 114; wherein, the The third asymmetric tapered waveguide 111, the second straight waveguide 112, the fourth asymmetric tapered waveguide 113 and the output waveguide 114 are sequentially connected; the third asymmetric tapered waveguide 111 is connected to the The connecting arms 12 are connected.
作为示例,如图4所示,所述第一非对称锥形波导102的一端为窄端面,所述第一非对称锥形波导102的另一端为宽端面,所述第一非对称锥形波导102的窄端面与所述输入波导相101连接,所述第一非对称锥形波导102的宽端面与所述第一直波导103相连接;所述第二非对称锥形波导104的一端为窄端面,所述第二非对称锥形波导104的另一端为宽端面,所述第二非对称锥形波导104的宽端面与所述第一直波导103相连接,所述第二非对称锥形波导104的窄端面与所述连接臂12相连接。As an example, as shown in FIG. 4, one end of the first asymmetric tapered waveguide 102 is a narrow end face, the other end of the first asymmetric tapered waveguide 102 is a wide end face, and the first asymmetric tapered waveguide 102 is a wide end face. The narrow end face of the waveguide 102 is connected with the input waveguide phase 101, the wide end face of the first asymmetric tapered waveguide 102 is connected with the first straight waveguide 103; one end of the second asymmetric tapered waveguide 104 is a narrow end face, the other end of the second asymmetric tapered waveguide 104 is a wide end face, the wide end face of the second asymmetric tapered waveguide 104 is connected to the first straight waveguide 103, and the second asymmetric tapered waveguide 104 is connected to the first straight waveguide 103. The narrow end surface of the symmetrical tapered waveguide 104 is connected to the connecting arm 12 .
作为示例,如图5所示,所述第三非对称锥形波导111的一端为窄端面,所述第三非对称锥形波导111的另一端为宽端面,所述第三非对称锥形波导111的窄端面与所述连接臂12相连接,所述第三非对称锥形波导111的宽端面与所述第二直波导112相连接;所述第四非对称锥形波导113的一端为窄端面,所述第四非对称锥形波导113的另一端为宽端面,所述第四非对称锥形波导113的宽端面与所述第二直波导112相连接,所述第四非对称锥形波导113的窄端面与所述输出波导114相连接。As an example, as shown in FIG. 5, one end of the third asymmetric tapered waveguide 111 is a narrow end face, the other end of the third asymmetric tapered waveguide 111 is a wide end face, and the third asymmetric tapered waveguide 111 is a wide end face. The narrow end face of the waveguide 111 is connected with the connecting arm 12, the wide end face of the third asymmetric tapered waveguide 111 is connected with the second straight waveguide 112; one end of the fourth asymmetric tapered waveguide 113 The other end of the fourth asymmetric tapered waveguide 113 is a wide end face, the wide end face of the fourth asymmetric tapered waveguide 113 is connected to the second straight waveguide 112, and the fourth asymmetric tapered waveguide 113 is connected to the second straight waveguide 112. The narrow end face of the symmetrical tapered waveguide 113 is connected to the output waveguide 114 .
作为示例,所述第一非对称锥形波导102的宽端面的宽度及W3所述第二非对称锥形波导104的宽端面的宽度W5均与所述第一直波导103的宽度W4相同,所述第三非对称锥形波导111的宽端面的宽度W8及所述第四非对称锥形波导113的宽端面的宽度W10均与所述第二直波导112的宽度W9相同。As an example, the width of the wide end face of the first asymmetric tapered waveguide 102 and the width W3 of the wide end face of the second asymmetric tapered waveguide 104 are both the same as the width W4 of the first straight waveguide 103, The width W8 of the wide end surface of the third asymmetric tapered waveguide 111 and the width W10 of the wide end surface of the fourth asymmetric tapered waveguide 113 are both the same as the width W9 of the second straight waveguide 112 .
通过采用所述第一非对称锥形波导102、所述第二非对称锥形波导104、所述第三非对称锥形波导111及所述第四非对称锥形波导113,由于所述第一模式转换器10及所述第二模式转换器11在y方向(即所述第一直波导103的宽度方向及所述第二直波导112的宽度方向)上结构的不对称性,使得入射的TE0模式的入射光经过所述第一模式转换器10及所述第二模式转换器11时均会在不同的有效长度上传输,通过设定所述第一直波导103的宽度及所述第二直波导112的宽度可以使得入射的TE0模式的入射光不能完全转换成TE1模式,使得输出的光为包括TE0模式和TE1模式的混合模式的输出光。By using the first asymmetric tapered waveguide 102, the second asymmetric tapered waveguide 104, the third asymmetric tapered waveguide 111 and the fourth asymmetric tapered waveguide 113, since the first The asymmetry of the structure of the first mode converter 10 and the second mode converter 11 in the y direction (that is, the width direction of the first straight waveguide 103 and the width direction of the second straight waveguide 112) makes the incident The incident light of the TE 0 mode will be transmitted on different effective lengths when passing through the first mode converter 10 and the second mode converter 11, by setting the width of the first straight waveguide 103 and the The width of the second straight waveguide 112 can make the incident light of the TE 0 mode not fully converted into the TE 1 mode, so that the output light is output light of a mixed mode including the TE 0 mode and the TE 1 mode.
作为示例,所述输入波导的宽度为0.45μm~0.55μm;所述第一锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第一锥形波导的窄端面的宽度为0.45μm~0.55μm,所述第一锥形波导的长度为8.05μm~8.15μm;所述第一直波导的宽度为2.1μm~2.2μm,所述第一直波导的长度为4.95μm~5.05μm;所述第二锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第二锥形波导的窄端面的宽度为1.15μm~1.25μm,所述第二锥形波导的长度为6.25μm~6.35μm;所述第三锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第三锥形波导的窄端面的宽度为1.15μm~1.25μm,所述第三锥形波导的长度为6.25μm~6.35μm;所述第二直波导的宽度为2.1μm~2.2μm,所述第二直波导的长度为4.95μm~5.05μm;所述第四锥形波导的宽端面的宽度为2.1μm~2.2μm,所述第四锥形波导的窄端面的宽度为0.45μm~0.55μm,所述第四锥形波导的长度8.05μm~8.15μm;所述输入波导的宽度为0.45μm~0.55μm。As an example, the width of the input waveguide is 0.45 μm to 0.55 μm; the width of the wide end surface of the first tapered waveguide is 2.1 μm to 2.2 μm, and the width of the narrow end surface of the first tapered waveguide is 0.45 μm ~ 0.55 μm, the length of the first tapered waveguide is 8.05 μm ~ 8.15 μm; the width of the first straight waveguide is 2.1 μm ~ 2.2 μm, and the length of the first straight waveguide is 4.95 μm ~ 5.05 μm; The width of the wide end surface of the second tapered waveguide is 2.1 μm to 2.2 μm, the width of the narrow end surface of the second tapered waveguide is 1.15 μm to 1.25 μm, and the length of the second tapered waveguide is 6.25 μm ~6.35μm; the width of the wide end surface of the third tapered waveguide is 2.1μm~2.2μm, the width of the narrow end surface of the third tapered waveguide is 1.15μm~1.25μm, the width of the third tapered waveguide The length is 6.25 μm to 6.35 μm; the width of the second straight waveguide is 2.1 μm to 2.2 μm, and the length of the second straight waveguide is 4.95 μm to 5.05 μm; the width of the wide end surface of the fourth tapered waveguide 2.1 μm to 2.2 μm, the width of the narrow end face of the fourth tapered waveguide is 0.45 μm to 0.55 μm, the length of the fourth tapered waveguide is 8.05 μm to 8.15 μm; the width of the input waveguide is 0.45 μm ~0.55 μm.
需要说明的是,上述尺寸参数在上述范围之内需要有一一对应的关系,下面以几个示例进行说明:譬如,在第一示例中,所述输入波导101的宽度W1为0.5μm;所述第一锥形波导102的宽端面的宽度W3为1.9μm,所述第一锥形波导102的窄端面的宽度W2为0.5μm,所述第一锥形波导102的长度L1为7.6μm;所述第一直波导103的宽度W4可以为1.9μm,所述第一直波导103的长度L2可以为3.6μm;所述第二锥形波导104的宽端面的宽度W5可以为1.9μm,所述第二锥形波导104的窄端面的宽度W6可以为1.2μm,所述第二锥形波导104的长度L3可以为5.1μm;所述第三锥形波导111的宽端面的宽度W8为1.9μm,所述第三锥形波导111的窄端面的宽度W7为1.2μm,所述第三锥形波导111的长度L4为5.1μm;所述第二直波导112的宽度W9为1.9μm,所述第二直波导112的长度L5为3.6μm;所述第四锥形波导113的宽端面的宽度W10可以为1.9μm,所述第四锥形波导113的窄端面的宽度W11可以为0.5μm,所述第四锥形波导113的长度L6可以为7.6μm;所述输入波导114的宽度W12可以为0.5μm。在第二示例中,所述输入波导101的宽度W1为0.5μm;所述第一锥形波导102的宽端面的宽度W3为1.95μm,所述第一锥形波导102的窄端面的宽度W2为0.5μm,所述第一锥形波导102的长度L1为7.6μm;所述第一直波导103的宽度W4可以为,1.95μm,所述第一直波导103的长度L2可以为3.6μm;所述第二锥形波导104的宽端面的宽度W5可以为1.95μm,所述第二锥形波导104的窄端面的宽度W6可以为1.2μm,所述第二锥形波导104的长度L3可以为5.1μm;所述第三锥形波导111的宽端面的宽度W8为1.95μm,所述第三锥形波导111的窄端面的宽度W7.6为1.2μm,所述第三锥形波导111的长度L4为5.1μm;所述第二直波导112的宽度W9为1.95μm,所述第二直波导112的长度L5为3.6μm;所述第四锥形波导113的宽端面的宽度W10可以为1.95μm,所述第四锥形波导113的窄端面的宽度W11可以为0.5μm,所述第四锥形波导113的长度L6可以为7.6μm;所述输入波导114的宽度W12可以为0.5μm。在第三示例中,所述输入波导101的宽度W1为0.5μm;所述第一锥形波导102的宽端面的宽度W3为2.05μm,所述第一锥形波导102的窄端面的宽度W2为0.5μm,所述第一锥形波导102的长度L1为7.6μm;所述第一直波导103的宽度W4可以为,2.05μm,所述第一直波导103的长度L2可以为3.6μm;所述第二锥形波导104的宽端面的宽度W5可以为2.05μm,所述第二锥形波导104的窄端面的宽度W6可以为1.2μm,所述第二锥形波导104的长度L3可以为5.1μm;所述第三锥形波导111的宽端面的宽度W8为2.05μm,所述第三锥形波导111的窄端面的宽度W7.9为1.2μm,所述第三锥形波导111的长度L4为5.1μm;所述第二直波导112的宽度W9为2.05μm,所述第二直波导112的长度L5为3.6μm;所述第四锥形波导113的宽端面的宽度W10可以为2.05μm,所述第四锥形波导113的窄端面的宽度W11可以为0.5μm,所述第四锥形波导113的长度L6可以为7.6μm;所述输入波导114的宽度W12可以为0.5μm。在第四示例中,所述输入波导101的宽度W1为0.5μm;所述第一锥形波导102的宽端面的宽度W3为2.15μm,所述第一锥形波导102的窄端面的宽度W2为0.5μm,所述第一锥形波导102的长度L1为8.1μm;所述第一直波导103的宽度W4可以为,2.15μm,所述第一直波导103的长度L2可以为5μm;所述第二锥形波导104的宽端面的宽度W5可以为2.15μm,所述第二锥形波导104的窄端面的宽度W6可以为1.2μm,所述第二锥形波导104的长度L3可以为6.3μm;所述第三锥形波导111的宽端面的宽度W8为2.15μm,所述第三锥形波导111的窄端面的宽度W8.1为1.2μm,所述第三锥形波导111的长度L4为6.3μm;所述第二直波导112的宽度W9为2.15μm,所述第二直波导112的长度L5为5μm;所述第四锥形波导113的宽端面的宽度W10可以为2.15μm,所述第四锥形波导113的窄端面的宽度W11可以为0.5μm,所述第四锥形波导113的长度L6可以为8.1μm;所述输入波导114的宽度W12可以为0.5μm。在第五示例中,所述输入波导101的宽度W1为0.5μm;所述第一锥形波导102的宽端面的宽度W3为2.2μm,所述第一锥形波导102的窄端面的宽度W2为0.5μm,所述第一锥形波导102的长度L1为8.5μm;所述第一直波导103的宽度W4可以为,2.2μm,所述第一直波导103的长度L2可以为5μm;所述第二锥形波导104的宽端面的宽度W5可以为2.2μm,所述第二锥形波导104的窄端面的宽度W6可以为1.2μm,所述第二锥形波导104的长度L3可以为6.3μm;所述第三锥形波导111的宽端面的宽度W8为2.2μm,所述第三锥形波导111的窄端面的宽度W8.48为1.2μm,所述第三锥形波导111的长度L4为6.3μm;所述第二直波导112的宽度W9为2.2μm,所述第二直波导112的长度L5为5μm;所述第四锥形波导113的宽端面的宽度W10可以为2.2μm,所述第四锥形波导113的窄端面的宽度W11可以为0.5μm,所述第四锥形波导113的长度L6可以为8.1μm;所述输入波导114的宽度W12可以为0.5μm。It should be noted that there needs to be a one-to-one correspondence between the above-mentioned size parameters within the above-mentioned range, and a few examples are used below to illustrate: For example, in the first example, the width W1 of the input waveguide 101 is 0.5 μm; The width W3 of the wide end surface of the first tapered waveguide 102 is 1.9 μm, the width W2 of the narrow end surface of the first tapered waveguide 102 is 0.5 μm, and the length L1 of the first tapered waveguide 102 is 7.6 μm; The width W4 of the first straight waveguide 103 can be 1.9 μm, the length L2 of the first straight waveguide 103 can be 3.6 μm; the width W5 of the wide end face of the second tapered waveguide 104 can be 1.9 μm, so The width W6 of the narrow end surface of the second tapered waveguide 104 can be 1.2 μm, the length L3 of the second tapered waveguide 104 can be 5.1 μm; the width W8 of the wide end surface of the third tapered waveguide 111 is 1.9 μm. μm, the width W7 of the narrow end face of the third tapered waveguide 111 is 1.2 μm, the length L4 of the third tapered waveguide 111 is 5.1 μm; the width W9 of the second straight waveguide 112 is 1.9 μm, so The length L5 of the second straight waveguide 112 is 3.6 μm; the width W10 of the wide end surface of the fourth tapered waveguide 113 can be 1.9 μm, and the width W11 of the narrow end surface of the fourth tapered waveguide 113 can be 0.5 μm , the length L6 of the fourth tapered waveguide 113 may be 7.6 μm; the width W12 of the input waveguide 114 may be 0.5 μm. In the second example, the width W1 of the input waveguide 101 is 0.5 μm; the width W3 of the wide end surface of the first tapered waveguide 102 is 1.95 μm, and the width W2 of the narrow end surface of the first tapered waveguide 102 is 0.5 μm, the length L1 of the first tapered waveguide 102 is 7.6 μm; the width W4 of the first straight waveguide 103 may be 1.95 μm, and the length L2 of the first straight waveguide 103 may be 3.6 μm; The width W5 of the wide end surface of the second tapered waveguide 104 may be 1.95 μm, the width W6 of the narrow end surface of the second tapered waveguide 104 may be 1.2 μm, and the length L3 of the second tapered waveguide 104 may be is 5.1 μm; the width W8 of the wide end surface of the third tapered waveguide 111 is 1.95 μm, the width W7.6 of the narrow end surface of the third tapered waveguide 111 is 1.2 μm, and the third tapered waveguide 111 The length L4 of the second straight waveguide 112 is 5.1 μm; the width W9 of the second straight waveguide 112 is 1.95 μm, and the length L5 of the second straight waveguide 112 is 3.6 μm; the width W10 of the wide end surface of the fourth tapered waveguide 113 can be The width W11 of the narrow end face of the fourth tapered waveguide 113 can be 0.5 μm, the length L6 of the fourth tapered waveguide 113 can be 7.6 μm; the width W12 of the input waveguide 114 can be 0.5 μm μm. In the third example, the width W1 of the input waveguide 101 is 0.5 μm; the width W3 of the wide end surface of the first tapered waveguide 102 is 2.05 μm, and the width W2 of the narrow end surface of the first tapered waveguide 102 is 0.5 μm, the length L1 of the first tapered waveguide 102 is 7.6 μm; the width W4 of the first straight waveguide 103 may be 2.05 μm, and the length L2 of the first straight waveguide 103 may be 3.6 μm; The width W5 of the wide end surface of the second tapered waveguide 104 may be 2.05 μm, the width W6 of the narrow end surface of the second tapered waveguide 104 may be 1.2 μm, and the length L3 of the second tapered waveguide 104 may be is 5.1 μm; the width W8 of the wide end surface of the third tapered waveguide 111 is 2.05 μm, the width W7.9 of the narrow end surface of the third tapered waveguide 111 is 1.2 μm, and the third tapered waveguide 111 The length L4 of the second straight waveguide 112 is 5.1 μm; the width W9 of the second straight waveguide 112 is 2.05 μm, and the length L5 of the second straight waveguide 112 is 3.6 μm; the width W10 of the wide end surface of the fourth tapered waveguide 113 can be The width W11 of the narrow end face of the fourth tapered waveguide 113 can be 0.5 μm, the length L6 of the fourth tapered waveguide 113 can be 7.6 μm; the width W12 of the input waveguide 114 can be 0.5 μm μm. In the fourth example, the width W1 of the input waveguide 101 is 0.5 μm; the width W3 of the wide end surface of the first tapered waveguide 102 is 2.15 μm, and the width W2 of the narrow end surface of the first tapered waveguide 102 The length L1 of the first tapered waveguide 102 is 8.1 μm; the width W4 of the first straight waveguide 103 can be 2.15 μm, and the length L2 of the first straight waveguide 103 can be 5 μm; The width W5 of the wide end face of the second tapered waveguide 104 can be 2.15 μm, the width W6 of the narrow end face of the second tapered waveguide 104 can be 1.2 μm, and the length L3 of the second tapered waveguide 104 can be 6.3 μm; the width W8 of the wide end face of the third tapered waveguide 111 is 2.15 μm, the width W8.1 of the narrow end face of the third tapered waveguide 111 is 1.2 μm, and the width W8.1 of the third tapered waveguide 111 The length L4 is 6.3 μm; the width W9 of the second straight waveguide 112 is 2.15 μm, and the length L5 of the second straight waveguide 112 is 5 μm; the width W10 of the wide end surface of the fourth tapered waveguide 113 can be 2.15 μm μm, the width W11 of the narrow end face of the fourth tapered waveguide 113 may be 0.5 μm, the length L6 of the fourth tapered waveguide 113 may be 8.1 μm; the width W12 of the input waveguide 114 may be 0.5 μm. In the fifth example, the width W1 of the input waveguide 101 is 0.5 μm; the width W3 of the wide end surface of the first tapered waveguide 102 is 2.2 μm, and the width W2 of the narrow end surface of the first tapered waveguide 102 The length L1 of the first tapered waveguide 102 is 8.5 μm; the width W4 of the first straight waveguide 103 can be 2.2 μm, and the length L2 of the first straight waveguide 103 can be 5 μm; The width W5 of the wide end face of the second tapered waveguide 104 can be 2.2 μm, the width W6 of the narrow end face of the second tapered waveguide 104 can be 1.2 μm, and the length L3 of the second tapered waveguide 104 can be 6.3 μm; the width W8 of the wide end face of the third tapered waveguide 111 is 2.2 μm, the width W8.48 of the narrow end face of the third tapered waveguide 111 is 1.2 μm, and the width W8.48 of the third tapered waveguide 111 is The length L4 is 6.3 μm; the width W9 of the second straight waveguide 112 is 2.2 μm, and the length L5 of the second straight waveguide 112 is 5 μm; the width W10 of the wide end face of the fourth tapered waveguide 113 can be 2.2 μm. μm, the width W11 of the narrow end face of the fourth tapered waveguide 113 may be 0.5 μm, the length L6 of the fourth tapered waveguide 113 may be 8.1 μm; the width W12 of the input waveguide 114 may be 0.5 μm.
作为示例,所述第一模式转换器10的厚度、所述第二模式转换器11的厚度及所述连接臂12的厚度可以根据实际需要进行设定,优选地,所述第一模式转换器10的厚度、所述第二模式转换器11的厚度及所述连接臂12的厚度可以均为215nm~225nm;更为优选地,本实施例中,所述第一模式转换器10的厚度、所述第二模式转换器11的厚度及所述连接臂12的厚度为220nm。As an example, the thickness of the first mode converter 10, the thickness of the second mode converter 11 and the thickness of the connecting arm 12 can be set according to actual needs. Preferably, the first mode converter 10, the thickness of the second mode converter 11 and the thickness of the connecting arm 12 may all be 215 nm to 225 nm; more preferably, in this embodiment, the thickness of the first mode converter 10, The thickness of the second mode converter 11 and the connecting arm 12 are 220 nm.
作为示例,所述连接臂12的宽度可以根据实际需要进行设定,优选地,所述连接臂12的宽度为646nm;图6显示为本实用新型提供的温度不敏感马赫曾德尔干涉仪中连接臂的宽度与不同模式入射光的有效折射率相对于温度的变化率的曲线,选择两种模式的入射光具有相同的有效折射率相对于温度的变化率(dneff/dT)时所对应的所述连接臂12的宽度即为可以实现温度不敏感时对应的所述连接臂12的宽度.请参阅图7及图8,由图7及图8可知,本实用新型的温度不敏感马赫曾德尔干涉仪在不同的温度下具有大致相同的性能,即本实用新型的温度不敏感马赫曾德尔干涉仪的性能受温度影响不大,亦即图7及图8进一步证明了本实用新型的温度不敏感马赫曾德尔干涉仪对温度不敏感。As an example, the width of the connecting arm 12 can be set according to actual needs. Preferably, the width of the connecting arm 12 is 646nm; The curves of the width of the arm and the rate of change of the effective refractive index of the incident light in different modes with respect to the temperature, the corresponding when the incident light of the two modes has the same rate of change of the effective refractive index with respect to the temperature (d neff /dT) The width of the connecting arm 12 is the corresponding width of the connecting arm 12 when temperature insensitivity can be realized. Please refer to Fig. 7 and Fig. 8, as can be seen from Fig. 7 and Fig. 8, the temperature insensitive Mach of the present utility model has The Del interferometer has approximately the same performance at different temperatures, that is, the performance of the temperature-insensitive Mach-Zehnder interferometer of the present utility model is not greatly affected by temperature, that is, Fig. 7 and Fig. 8 further prove the temperature of the present utility model Insensitive Mach-Zehnder interferometers are not sensitive to temperature.
请参阅图9至图12,由图9至图12可知,本实用新型的温度不敏感马赫曾德尔干涉仪无论输入的是TE0模式的入射光还是TE1模式的入射光,均可得到TE0模式和TE1模式的混合模式出射光。由图9至图12可知,本实用新型的温度不敏感马赫曾德尔干涉仪中的所述第一直波导103及所述第二直波导112的宽度在±50nm的范围内变化时不会对温度不敏感马赫曾德尔干涉仪的性能产生明显的影响。Please refer to Fig. 9 to Fig. 12. It can be seen from Fig. 9 to Fig. 12 that the temperature-insensitive Mach-Zehnder interferometer of the present invention can obtain TE no matter the incident light of TE 0 mode or TE 1 mode is input Mixed mode exit light of 0 mode and TE 1 mode. It can be seen from Fig. 9 to Fig. 12 that the temperature-insensitive Mach-Zehnder interferometer of the present invention will not affect the temperature when the width of the first straight waveguide 103 and the width of the second straight waveguide 112 changes within the range of ±50nm. The temperature insensitivity has a clear effect on the performance of the Mach-Zehnder interferometer.
综上所述,本实用新型提供一种温度不敏感马赫曾德尔干涉仪,所述温度不敏感马赫曾德尔干涉仪包括:第一模式转换器;第二模式转换器,位于所述第一模式转换器的一侧,且与所述第一模式转换器具有间距;连接臂,位于所述第一模式转换器与所述第二模式转换器之间,所述连接臂一端与所述第一模式转换器相连接,另一端与所述第二模式转换器相连接;所述连接臂包括直波导连接臂。本实用新型的温度不敏感马赫曾德尔干涉仪中的器件结构基于SOI衬底制备而得到,由于SOI衬底中的硅的热光系数很大(可达到1.86×10-4RIU/K,其中,RIU为折射率单位),可以引起相当大的随温度变化的波长飘移(约80pm/K),在此基础上,通过设置所述连接臂的宽度及厚度等参数可以实现对温度不敏感;同时,本实用新型的温度不敏感马赫曾德尔干涉仪可以实现与CMOS工艺兼容,便于批量化生产;本实用新型的温度不敏感马赫曾德尔干涉仪无论输入端输入TE0模式的入射光还是TE1模式的输入光,其输出端均可以输出TE0模式和TE1模式的出射光;本实用新型的温度不敏感马赫曾德尔干涉仪中两个模式转换器通过一个连接臂相连接,结构简单,具有较小的损耗;本实用新型的温度不敏感马赫曾德尔干涉仪中的非对称锥形波导中直波导的宽度可以在较大范围(±50nm)调整而不会对器件的性能造成影响,可以在硅光子工艺平台实现高质量大规模生产。In summary, the utility model provides a temperature-insensitive Mach-Zehnder interferometer, the temperature-insensitive Mach-Zehnder interferometer includes: a first mode converter; a second mode converter, located in the first mode One side of the converter, and has a distance from the first mode converter; the connecting arm is located between the first mode converter and the second mode converter, and one end of the connecting arm is connected to the first mode converter. The mode converter is connected, and the other end is connected with the second mode converter; the connecting arm includes a straight waveguide connecting arm. The device structure in the temperature-insensitive Mach-Zehnder interferometer of the present invention is obtained based on SOI substrate preparation, because the thermo-optic coefficient of silicon in the SOI substrate is very large (up to 1.86×10 - 4RIU/K, wherein, RIU is the refractive index unit), which can cause a considerable wavelength shift (about 80pm/K) with temperature. On this basis, parameters such as the width and thickness of the connecting arm can be set to be insensitive to temperature; at the same time , the temperature-insensitive Mach-Zehnder interferometer of the utility model can be compatible with CMOS technology, and is convenient for mass production; the temperature-insensitive Mach-Zehnder interferometer of the utility model no matter the incident light of the TE0 mode or the TE1 mode is input at the input end Input light, its output port can output the outgoing light of TE0 mode and TE1 mode; in the temperature insensitive Mach-Zehnder interferometer of the utility model, two mode converters are connected by a connecting arm, the structure is simple, and it has a smaller loss; the width of the straight waveguide in the asymmetric tapered waveguide in the temperature-insensitive Mach-Zehnder interferometer of the present utility model can be adjusted in a large range (±50nm) without affecting the performance of the device, and can be used in silicon photonics The process platform enables high-quality mass production.
上述实施例仅例示性说明本实用新型的原理及其功效,而非用于限制本实用新型。任何熟悉此技术的人士皆可在不违背本实用新型的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本实用新型所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本实用新型的权利要求所涵盖。The above-mentioned embodiments only illustrate the principles and effects of the present utility model, but are not intended to limit the present utility model. Anyone familiar with this technology can modify or change the above-mentioned embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or changes made by those with ordinary knowledge in the technical field without departing from the spirit and technical ideas disclosed in the utility model should still be covered by the claims of the utility model.
Claims (10)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201822059191.5U CN209433059U (en) | 2018-12-10 | 2018-12-10 | Temperature insensitive Mach-Zehnder interferometer |
US17/312,393 US11796738B2 (en) | 2018-12-10 | 2019-01-03 | Temperature-insensitive Mach-Zehnder interferometer |
PCT/CN2019/070284 WO2020118807A1 (en) | 2018-12-10 | 2019-01-03 | Temperature-insensitive mach-zehnder interferometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201822059191.5U CN209433059U (en) | 2018-12-10 | 2018-12-10 | Temperature insensitive Mach-Zehnder interferometer |
Publications (1)
Publication Number | Publication Date |
---|---|
CN209433059U true CN209433059U (en) | 2019-09-24 |
Family
ID=67971233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201822059191.5U Active CN209433059U (en) | 2018-12-10 | 2018-12-10 | Temperature insensitive Mach-Zehnder interferometer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN209433059U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109283616A (en) * | 2018-12-10 | 2019-01-29 | 中国科学院上海微系统与信息技术研究所 | Temperature-Insensitive Mach-Zehnder Interferometer |
-
2018
- 2018-12-10 CN CN201822059191.5U patent/CN209433059U/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109283616A (en) * | 2018-12-10 | 2019-01-29 | 中国科学院上海微系统与信息技术研究所 | Temperature-Insensitive Mach-Zehnder Interferometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105204113B (en) | A kind of adjustable polarization rotary device of silicon substrate | |
CN111175999B (en) | High-speed low-voltage electro-optic modulator based on lithium niobate-silicon wafer | |
CN102540505B (en) | SOI (silicon on insulator) based electrooptical modulator based on symmetrical and vertical grating coupling | |
CN111458793A (en) | LNOI-based ridge-type optical waveguide end-face coupling structure and its application | |
CN101276068B (en) | Mach-zehnder type silicon optical waveguide switch based on narrow slit wave guide | |
CN106094107B (en) | Polarization beam splitter | |
CN100547456C (en) | Electro-optic modulator based on horizontal slit plate and photonic crystal line-defect waveguide | |
CN105388637A (en) | SOI-based MZI type 1*2 thermo-optical switch based on medium sedimentary type surface plasma waveguides | |
CN204302526U (en) | Polarization beam splitting circulator | |
CN103439807A (en) | Low-refractivity waveguide modulator for graphene and preparing method | |
CN111367014B (en) | On-chip edge coupler with spot-size conversion function for optical interconnection | |
CN111487715A (en) | L NOI-based optical waveguide end face coupling structure and application thereof | |
CN112180624A (en) | Nonvolatile reconfigurable integrated optocoupler based on phase change material and its tuning method | |
CN109283616B (en) | Temperature-insensitive Mach-Zehnder interferometer | |
CN104090375B (en) | Optically isolated device and optically isolated method | |
CN205941972U (en) | Polarization beam splitter | |
CN209433059U (en) | Temperature insensitive Mach-Zehnder interferometer | |
CN115291334A (en) | TE modulated by silicon-based PIN 0 /TE 1 Multimode electro-optical switch | |
CN117631146A (en) | Polarization converter based on film lithium niobate waveguide supermode evolution | |
CN115826137A (en) | A Broadband Polarizing Beam Splitter Based on Directional Coupling | |
CN115236881A (en) | Electro-optic polarization modulator based on thin-film lithium niobate | |
WO2020118807A1 (en) | Temperature-insensitive mach-zehnder interferometer | |
CN211698499U (en) | Integrated electro-optic modulator | |
CN115373159A (en) | Silicon-lithium niobate hybrid integrated polarization beam splitter rotator | |
CN118519226A (en) | Slit waveguide optical switch based on phase change material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |